
A Multiple-server Efficient Reusable Proof of Data Possesionfrom
Private Information Retrieval Techniques

Juan Camilo Corena, Anirban Basu, Yuto Nakano, Shinsaku Kiyomoto and Yutaka Miyake
Information Security Group, KDDI R&D Labs Inc. Fujimino, Saitama, Japan

Keywords: Cloud Storage, Proof of Data Possession, Private Information Retrieval.

Abstract: A proof of Data Possession (PDP) allows a client to verify that a remote server is still in possession of a file
entrusted to it. One way to design a PDP, is to compute a function depending on a secret and the file. Then,
during the verification stage, the client reveals the secret input to the server who recomputes the function and
sends the output back to the client. The client can then compare both values to determine if the server is still
in possession of the file. The problem with this approach is that once the server knows the secret, it is not
useful anymore. In this article, we present two PDP schemes inspired in Multiple-Server Private Information
Retrieval (MSPIR) protocols. In a traditional MSPIR protocol, the goal is to retrieve a given block of the file
from a group of servers storing identical copies of it, without telling the servers what block was retrieved.
In contrast, our goal is to let servers evaluate a function using an input that is not revealed to them. We
show that our constructions are secure, practical and that they can complement existing approaches in storage
architectures using multiple cloud providers. The amount of transmitted information during the verification
stage of the protocols is proportional to the square root of the length of the file.

1 INTRODUCTION

The popularity of cloud-based storage services has
fostered the development of primitives to guarantee
that the owners of the information can retrieve their
data when needed. Given the pay-as-you-go model
for storage in cloud providers, it is necessary to per-
form this task in an efficient way to minimize the cost
and resources. Several solutions exist in the litera-
ture for this problem, besides the obvious solution of
downloading the entire file and performing a compu-
tation over it locally. In the literature, the two most
relevant solutions for this problem are named Proofs
of Data Possession (PDPs) (Ateniese et al., 2007) and
Proofs of Retrievability (Shacham and Waters, 2008)
(PORs). The difference between these primitives is
that even though in both of them blocks of a given
file are checked to be stored correctly, in the latter an
Erasure Code is applied to guarantee that the file is
actually retrievable.

We consider a scenario where there is a set of
usersU that stores data blocks at a set of remote
serversS through a local trustworthy proxyP, similar
to an enterprise setting with an in-house proxy, or a
website using cloud infrastructure. The requirement
for several remote servers (or clouds) comes from

a redundancy perspective given that cloud providers
also present outages (Raphael, 2013).

A PIR protocol (Chor et al., 1998) allows a client
to query a replicated database, in such a way that no
server knows what record was retrieved by the client.
We wish to apply ideas from MSPIR schemes to the
problem of reusing secrets securely in PDP schemes.
Even though the idea is very natural, it is usually be-
lieved that PIR protocols are too slow to be used in
practice (Sion and Carbunar, 2007). For this reason,
the approach has not been developed fully and has
been deemed only of theoretical interest (Hanser and
Slamanig, 2013). However, recent advances in the
area (Olumofin and Goldberg, 2012) have made PIR
more practical even for the single server scenario.

We show that PIR can be used in a real system in
the context of proving data possession, based on the
following observations: data storage in cloud servers
involves replication, making fast MSPIR schemes
such as (Chor et al., 1998) feasible for this scenario.
Cloud providers have incentives not to cooperate with
each other (e.g. market share). Some efficient PIR
schemes can be extended to not just retrieve some
blocks form the server, but also to apply a function
over the entire file. We present a construction achiev-
ing this in Section 4.

307Camilo Corena J., Basu A., Nakano Y., Kiyomoto S. and Miyake Y..
A Multiple-server Efficient Reusable Proof of Data Possesion from Private Information Retrieval Techniques.
DOI: 10.5220/0005049803070314
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 307-314
ISBN: 978-989-758-045-1
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

In this work we present two approaches, the first
of them is very intuitive: when the proxy has access
to a block, it simply stores a hash of the block lo-
cally. The verification procedure involves using PIR
to download some blocks, in order to verify that their
hashes match the ones stored by the proxy. The in-
tuition for security is that by using PIR, the servers
have to compute a function involving all the blocks.
If a server is storing even a single corrupt block, this
will be reflected in the output of the function.

One advantage of this approach is that it requires
no additional storage at the server. Processing at the
proxy is light since it only involves the computation
of a dot product. In addition, it can support dynamic
files efficiently. The drawback of this approach is that
for the non-retrieved blocks, it does not check that the
blocks are those stored byP, but simply that all the
servers are storing the same value. It is also possible
to reduce the local storage atP by storing hashes of
blocks locally with a probabilityq.

To overcome the previous security drawback, we
designed an additional scheme that uses PIR tech-
niques not just for retrieval but also for computing a
secret function over the data. The construction can
be explained with a toy example: assume we want to
perform PIR to recoverb4 over a databaseB with five
elementsb1,b2,b3,b4,b5; the database is stored at two
serversS1 andS2. The client sends to each server the
following vectors:

S1 :V[1] = (−2,1,−5,2,−1)

S2 :V[2] = (2,−1,5,−1,1) (1)

note thatV[1]+V[2] = (0,0,0,1,0) = E[4], whereE[i]

is a vector consisting of 0s in all coordinates except at
coordinatei where it is 1. Now, each server computes
the dot product “·” between the received vector and
its local version ofB. Given the properties of the dot
product, we have that:

B·V[1]+B·V[2] =B·(V[1]+V[2])

=B·E[4] = b4. (2)

Therefore,b4 can be recoverd by adding the response
from each server. In this sense, this PIR protocol is
computing the dot product of a secret vectorE[i] and
the databaseB. The idea of our PDP is to select a
random vectorR and computeR ·B before uploading
the file to the servers. To verify, we select two ran-
dom vectors such thatV[1] +V[2] = R. Since each
vector V[i] does not give any information aboutR,
we can verify many times without leaking significant
information about our secret vector. Given that all
the elements ofB are used in the computation, any
change or deletion at any of the servers will be de-
tected with high probability. In the current scheme,

the client must upload a number of elements equal to
the size of the database|B|. However, by representing
the database as a square of length

√

|B|, it is possible
to reduce the total transmission to 2|S|

√

|B|, where
|S| is the number of servers. The security assumption
in the schemes, is that the servers do not communicate
among themselves.

1.1 Contributions

The contributions of this work are as follows.

1. We present a novel way to create PDPs, by extend-
ing current ideas in multi-server PIR protocols.

2. Our constructions are reusable, can test several
servers simultaneously and one of them is very ef-
ficient for dynamic files. Even though we are not
the first ones to propose a system with these prop-
erties (see (Le and Markopoulou, 2012) for a sys-
tem involving multiple servers), our constructions
are simpler and easier to implement for practition-
ers.

3. We show that our PIR-based constructions are
practical given the current trends in remote infor-
mation storage.

Regarding existing schemes, the drawback of our
constructions is that they do not achieve a property
calledPublic Verifiability. For this property to hold,
anyone should be able to verify the file is stored, re-
gardless of the file’s access control policies. Since our
proposals may reveal the file contents to the verifier,
they should not be used by unauthorized third parties.

The rest of the article is organized as follows: In
Section 2 we present the problem scenario; in Section
3 we present existing work related to our proposal;
in Section 4 we present our PIR-based constructions
and their proof of security; in Section 5 we present
the results of the simulation of our proposal and ex-
isting constructions; finally, in section 6 we present
the conclusions of this work.

2 PROBLEM STATEMENT AND
NOTATION

There is a set of usersU that connects to a set of re-
mote serversS= S1, . . . ,Ss through a local proxyP. P
forwards all user requests toSand it is assumed to be
trustworthy. By trustworthy we mean that the results
reported byP about its operations, reflect its view of
the system accurately. On the other hand, members of
Smight want to hide data loss/corruption from mem-
bers ofU . Even thoughP has storage capabilities,

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

308

the amount of storage available at the members ofS is
significantly larger. We also assume thatP is able to
perform computations to help members ofU to verify
that their remote data is stored as intended.

Operations will be performed atS andP in units
called blocks. For practical purposes, these blocks are
around 4 or 8 KB which is the usual parameter for
file systems. It is possible to interact with the storage
service using 3 operations namely:

• write(pos, data, length): this operations writes
lengthblocks stored indatastarting at blockpos.

• read(pos): reads the block stored at positionpos.

• delete(pos): deletes the block stored at postion
pos.

Our goal is to verify the correctness and complete-
ness of theread, write, deleteoperations inS. By cor-
rectness we imply that the information is stored as it
was sent by the users. By completeness, we mean that
S is returning the requested information in its current
state.

The types of attack that can be possible to perform
by Sare the following:

• A readoperation returns a random value, or a pre-
vious value for the block.

• A write operation writes a different data.

• A deleteoperation might not be executed.

We will denote vectors and matrices by bold cap-
ital letters (e.g. V, B). Unless otherwise defined,
the elements of a given vector will be represented by
lower indices, such asV1. Positions in the matrix
will be given by two lower indices enclosed by square
brackets and separated by a comma. Thus,B[k, j] rep-
resents positionk, j of matrix B. A column j of a
matrix will be represented byB[:, j], conversely thek-
th row will be represented byB[k,:]. Upper indices in
vectors will be used to denote vectors and matrices
that are used or stored by a given server. According
to this,V[i] is a version of vectorV used by serverSi .

Similarly,B[i]
[k, j] represents the elementk, j of a matrix

at serverSi. The need to represent different versions
of a given vector arises from possible local variations
due tu corruption.

Another use of upper indices is to represent vec-
tors of a given class, such asE[i] which denotes the
i-th row of the identity matrix. The operator|V| de-
notes the number of coordinates of a vector. When
used on a set (e.g.|S|), it denotes the number of ele-
ments of the set. Finally, when used on a function, the
operator denotes the size of the output of the function.

3 EXISTING WORK

Existing work in this area includes several ap-
proaches. On a general perspective there has been
significant research on authenticated data structures
(Tamassia, 2003). These structures can be used to
verify that the elements returned by the remote server
contain certain properties, such as being part of a file.

Proofs of Data Possession (PDPs) allow to check
a file remotely without downloading it. To this date,
many constructions are available, including: trap-
door functions based on discrete logarithms (Ate-
niese et al., 2007), proofs based on vector opera-
tions ans pseudo random functions (Shacham and
Waters, 2008), the previous schemes can be set up
for public verifiability. Other constructions include:
adversarial error correcting codes (Bowers et al.,
2009), commitment schemes over linear functions
(Xu and Chang, 2012), authenticated encryption (Ate-
niese et al., 2008) and hardness amplification (Dodis
et al., 2009). Other lines of research include: mul-
tiuser batch authentication of files (Wang et al., 2010),
where a third party can peform tests on behalf of
many users simultaneously; audits for dynamic files
(Zhu et al., 2013); guaranteeing that multiple en-
crypted copies can be recovered without additional
setup processing (Curtmola et al., 2008); simultane-
ous public and private verifiability (Hanser and Sla-
manig, 2013); verification for encoded files (Le and
Markopoulou, 2012), (Corena and Ohtsuki, 2013);
None of these approaches use PIR techniques to cre-
ate reusable schemes. Schemes based on Oblivious
RAM (ORAM) have also been proposed (Cash et al.,
2013), (Apon et al., 2014), their goal is to hide the
access pattern of the file, but their overhead is consid-
erable.

A related primitive to proofs of data possession
is Private Information Retrieval (PIR) (Chor et al.,
1998), where a client wishes to retrieve records from
a server without the server knowing what item was
retrieved. In particular, we are interested in proto-
cols where there are several servers storing the same
database and that are not allowed to communicate
among themselves, such as the one from (Chor et al.,
1998). This protocol is similar to those described in
the introduction.

Efficient single server PIR is also possible. In
(Trostle and Parrish, 2011) Trostle and Parrish apply
a set of random coefficients to the database to return
a single noisy value. The noise can be subtracted in
an oblivious way. Single server PIR does not lend it-
self well for our constructions since the mechanisms
used for cancelling the noise works regardless of the
correctness of a given block.

A�Multiple-server�Efficient�Reusable�Proof�of�Data�Possesion�from�Private�Information�Retrieval�Techniques

309

4 PROPOSAL

In this section we will present two proposals: the ba-
sic one will sample some elements that were stored by
P using a PIR protocol. The second one will compute
a function over all the blocks.

4.1 Sampling Scheme

The general idea of our construction is to store atP a
function of the blocks, and then ask the cloud servers
for the blocks to verify them locally. The reason we
need PIR to achieve this is twofold. First, PIR proto-
cols apply a function over all the blocks participating
in the test. Second, we do not want the cloud servers
to know what blocks have been requested byP. Oth-
erwise, a non-persistent attacker that is able to write
the same value at a given position for several servers,
can reduce the detection capabilities of the scheme.
We will now present our approach based on sampling:

Setup: A user sends toP a block B and a valuei
denoting the absolute position of this block in the
file. P computesH(s,B||i) and stores it locally.
Here,H is a MAC function (e.g. HMAC) using
a secrets, over dataB||i. The operator|| is the
concatenation operator. Finally,P uploadsB to S.

Challenge: Each member ofS models theL blocks
Bi of the file as a matrix, we call this matrix the
matrix representation of the file:

B =







B1 . . . B√
L

...
. ..

...
BL−

√
L+1 . . . BL






. (3)

If L is not a square number, then fill the remain-
ing positions of the matrix with a padding scheme
over the incomplete columns. Then,P creates|S|
random vectorsV[1], . . . ,V[|S|] of length

√
L such

that
|S|
∑
i=1

V[i] = E[j] (4)

where j is the row of the matrix that wants to be
retrieved, andE[j] is a vector full of 0s except
at coordinatej where it is 1. NowP sendsV[i]

to Si,1 ≤ i ≤ |S| and asks them to compute the

product ofB[i]
[j ,k] = V[i]·B[:,k] for all the columns

1≤ k≤
√

L .

Verification: OnceP has received all the responses
from each server, it adds them to obtain the re-
turned rowj for each columnk

B[j ,k] =
|S|
∑
i=1

B[i]
[j ,k]. (5)

For each elementB[j ,k], P inverts the mapping
function used for the matrix representation, to
obtain the real indexi′ of this block. Next it
computesH(s,Bi′ ||i′) and verifies that it has been
stored locally. If the previous test does not hold,
then we know there is a problem in one of the
blocks mapped to the corresponding column in the
matrix representation. The column is considered
correct otherwise.

Even though it would be tempting not to store the
output of H at P for each block, and store it at the
servers. That would make the system vulnerable to an
attack where a previous version ofB[j ,k] is returned
by the servers. In such a case, the MAC would verify
correctly, without detecting that there is a new version
of the block. The purpose of storing the output ofH
locally, is then to guarantee freshness in the retrieved
blocks.

Regarding the detection capabilities of this
scheme, it is different from a naive sampling scheme
where blocks are retrieved at random without PIR.
The reason is that all blocks involved in the proof are
included in the computation. If any single part of any
block at any of the servers has the wrong value, it will
be detected with high probability. In contrast, naive
sampling can only detect problems in the blocks that
were downloaded byP. We will now formalize this
claim

Claim 1. Our proposed system can detect bit decay
or adversarial modification of the file by an adversary
who does not corrupt all servers, with significantly
higher probability than the naive sampling scheme as
the file grows.

Proof. A scheme that samples random blocks from a
file with L blocks, can detect at least one defective
block out ofd defective blocks with probability:

1−
(

L−d
L

)τ
(6)

whereτ is the number of sampled blocks. The expres-
sion follows from complementing the probability of
always selecting a good element given by(L−d)/L
on all theτ tests.

As the file lengthL grows, the detection probabil-
ity of the naive sampling approach tends to 0, given
that:

lim
L→∞

(

1−
(

L−d
L

)τ)

= 0. (7)

Now consider our method that retrieves the rowj
from the file matrix using PIR. Seen from the perspec-
tive of a single columnk, the blockB[j ,k] is retrieved

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

310

by computing:

B[j ,k] = V[1]·B[1]
[:,k]+ . . .+V[|S|]·B[|S|]

[:,k] (8)

whereB[i]
[:,k] is thek-th column of matrixB at thei-th

server and∑|S|
i=1V[i] = E[j]. If any elementB[i]

[r,k] is dif-
ferent at one of the|S| servers, and assuming that the

modified element equalsB[i]
[r,k] =B[r,k]+N[r,k] whereN

is a column noise vector vector full of zeroes except
at N[r,k] 6= 0. The contribution of thei-th server to the
sum becomes:

V[i]
(

B[i]
[:,k]+N

)

. (9)

By combining (9) and (8), it is possible to verify that
the result retrieved by the client for thek-th column
is:

B[j ,k]+V[i]N. (10)

SinceN[r,k] 6= 0, thenV[i]
j N can take any possible value

of the finite fieldF where computations are being per-
formed. The probability of getting a value that when
applied toH provides the right result, is less than or
equal toc/|H|. Wherec is the maximum number of
elements fromF assigned to a single output ofH. By
selecting a proper size for|H|, c can be made close to
1 with overwelming probability. Hence, we can detect
random bit decay with probability:

|F|− c
|F| . (11)

This proves that the detection capabilities of our
scheme are better than in the naive sampling ap-
proach, regardless of the sampling parameters se-
lected for smalld in the asymptotic case.

It is important to note that the previous proof does
not imply that the file is safe from an adversary that
can modify the information at all the servers. Con-

sider an adversary that can modifyB[i]
[r,k],∀i ∈ S, r 6= j

with the same value. Since the challenge phase of our
construction wishes to cancel the contribution of each
of the servers whenr 6= j, our test is verifying that
the non-retrieved rows are storing the same value at
all the servers. Therefore, this method can only de-
tect a smart adversary, when the exact row that was
modified is retrieved. In terms of detection probabil-
ity for this scenario, our scheme would be equivalent
to the naive sampling scheme over each column of the
matrix representation of the file.

4.2 A Scheme Against Smart
Adversaries

To address the concern of a smart adversary that mod-
ifies blocks using a well defined strategy aimed at

fooling the verifier, we can modify the system to re-
turn a result that includes information from all the
given blocks in a column. The main observation of
this scheme is that in a PIR protocol, we want random
vectors with this property:

S

∑
i=1

V [i] = E[j]. (12)

However, for our purposes of verifying information,
what we want to compute is the result of applying a
random vectorV to the columns of the matrix repre-
senting the file, hence

S

∑
i=1

V[i] = V. (13)

This is equivalent to applying a dot product using
replication as a way to mask the secret vectorV from
the servers.

The modified scheme is as follows:

Setup: P wishes to upload a file which is modeled
as a matrixB in the same way as in theChallenge
phase of the sampling protocol. Then,P generates
a random vectorV and computes the dot product
betweenV and each of the columns ofB to gen-
erate the values:

σk = V·B[:,k] (14)

whereB[:,k] represents thek-th column of matrix
B. Then,P uploads the file to the members ofS
and stores theσk values either locally or encrypted
at S.

Challenge: P creates challenge vectorsV[i] for each
server such that

S

∑
i=1

V[i] = V. (15)

Each server applies vectorV[i] to all the columns
of its local version of the fileB[i] and returns the
valuesσ[i]

k for each columnk.

Verification: OnceP has received all the responses

σ[i]
k from all the servers, it adds them in the fol-

lowing way:

σ′
k =

|S|
∑
i=1

σ[i]
k (16)

to obtain the result of computing the MAC to the
given column. Ifσk = σ′

k,1≤ k≤ |S| then all the
servers are correct; otherwise, there is an error.

Similar to the previous scheme, since no information
from V is revealed to any client, the sameV can be
reused many times without compromising its security.

A�Multiple-server�Efficient�Reusable�Proof�of�Data�Possesion�from�Private�Information�Retrieval�Techniques

311

Compared to the previous scheme, it is not possible

for an adversary to set a random valueB[i]
[r,k]∀i ∈ S,

because it would alter the total sumσ′
k. This happens

becauseV[i]
r 6= 0 with high probability. We can avoid

the possibility ofV[i]
r = 0 by selecting a larger field

or sampling a different number from a pseudorandom
function if the output in the sequence is 0.

One difference between this scheme and the pre-
vious one, is that we are not returning actual blocks
from the file, but rather a function of the blocks. For
this reason, we need to prove that actually passing the
test implies that the servers are storing a copy of the
file.

Claim 2. A set of servers computing the function cor-
rectly can recover the file with high probability.

Proof. From the scheme’s description it is possible to
see that servers who have the correct file, can compute
the function correctly. Now consider a scenario where
at least one server is missing one correct block in a
column. There are two options for these servers to
provide a satisfactory response:

1. Send a random value and expect that the result
adds to the correctσk. This happens with prob-
ability 1/|F| because of the properties of the dot
product and the combination procedure performed
atP. By selecting a larger field size, the probabil-
ity of this option succeeding becomes negligible.

2. Use previous responses to infer the right answer.
This is possible whenever the new challenge vec-
tors sent byP are linearly dependent to the previ-
ous ones. Assume the result for previous vectors
V[i],W[i] was:

ak = B[i]
[:,k]V

[i] andbk = B[i]
[:,k]W

[i]. (17)

Then, for a given vectorαV[i]+βW[i] whereα,β
are coefficients, the result isαak + βbk. This re-

sult can be computed by a server even whenB[i]
[:,k]

is not available. Now, assumeq= |F| andn=
√

L.
Then, in order to reply to any query fromP,
the server needs to haven vector-response pairs.
However, if this information is available, the file
can be recovered using Gaussian Elimination. If
less thann vector-response pairs are available, a
copy of the file is still needed to reply to most
queries.
To understand why this reasoning is true, con-
sider the best scenario for a cheating server, that
is: having the output ofn− 1 linearly indepen-
dent vector-response pairs. In such a case, there

are stillλ = qn−qn−1 vectors that cannot be pro-
duced as a linear combination of then−1 vector-
response pairs owned by the server. Hereqn is
the total number of vectors of lengthn overF and
qn−1 is the number of linear combinations that can
be formed withn−1 vectors. If we select a vec-
tor at random, the probability of choosing a vector
for which the server does not have the necessary
information to reply is:

λ
qn =

qn−qn−1

qn = 1− 1
q
. (18)

Therefore, the probability of selecting a vector for
which the server can reply correctly without hav-
ing a copy of the file is:

1−
(

1− 1
q

)

=
1
q
. (19)

This probability becomes very small asq grows.
In addition, the vector-response representation for
the file is not advantageous for the server, since it
requires more storage than storing the column it-
self. The previous argument also holds even if the
servers uses smaller subvectors for the columns.

The drawback of this scheme is that when blocks
are being overwritten, we need to subtract the contri-
bution of the previous version of the blockB[j ,k] to
a givenσk. Then, we must add the contribution of
the new version of the blockB′

[j ,k]. The procedure is
illustrated in this equation:

σ′
k = σk−V jB[j ,k]+V jB′

[j ,k]. (20)

Unfortunately, this procedure involves downloading
the current blockB[j ,k] from some member ofS.
For this reason, we believe this construction is more
suited for systems where the blocks do not change of-
ten, as any update operation involves one additional
readoperation.

Up to this point, both proposals can detect whether
at least one of the servers is storing corrupt data, but
they do not identify which one exactly. In the next
section we will see how to find the corrupt servers
from the received responses.

4.3 Finding the Corrupt Servers

The two proposed schemes involve hiding the secret
vector by splitting it into several vectors; shares of this
vector are sent to the different nodes. This is a par-
ticular case of a Threshold Scheme (Shamir, 1979),
wheren shares are created and at leasttt +1 ≤ n of
them are needed to recover the secret.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

312

One could try several approaches to find the cor-
rupt server, such as repeating the test with a different
subset of them. Unfortunately, this is not efficient.
A better approach is presented in (Goldberg, 2007):
assume that our secret vectorV has|V| coordinates
v1, . . . ,v|V|. For each coordinate ofV, create a poly-
nomial of degreet < |S|−1

f j (x) = a j ,tx
t + . . .+a j ,1x+a j ,0 (21)

wherea j ,0 = v j (the secret to be shared) and the other
coefficientsa j ,k,k 6= 0 are selected randomly. Here,
t +1 denotes the minimum number of servers needed
to recoverV. Each server receives a vector of the form

f1(ci), . . . , f|V|(ci) (22)

whereci is a random coefficient used for the serveri
for this particular test.P receives the dot product of
this vector with the columnk of the file matrix:

B[1]
[j ,k] f j (c1), . . . ,B

[|S|]
[j ,k] f j(c|S|). (23)

By selecting anyt +1 of them, it is possible to inter-
polate and recoverB[j ,k]a0, and given thata0 is known
by P, it is possible to recoverB[j ,k]. Since we are
working in an scenario where we have evaluations of
the same polynomial at different points, we need to
solve an interpolation with errors problem. This is
equivalent to decoding Reed-Solomon codes.

Given the previous presentation of Goldberg’s
scheme for PIR, it is clear that it can be applied for our
sampling scheme. For the scheme considering smart
adversaries, the element returned from thek-th col-
umn of thei-th server will be of the form

|V|
∑
j=1

B[i]
[j ,k] f j (ci) (24)

Once we select the result of columnk at t +1 servers,
the result of this sum over the free term once interpo-
lation is performed, is given by:

|V|
∑
j=1

B[i]
[j ,k]a j ,0 =

|V|
∑
j=1

B[i]
[j ,k]v j = σk (25)

Which is the same value we expected to obtain in the
scheme using vector addition. If there are some nodes
returning different values, then a decoding procedure
that can find the errors can be applied to identify the
corrupt servers.

In terms of bandwidth usage, the advantage of
using a more general secret sharing scheme, is that
we only need to send|S| vectors to the servers and
we can determine what nodes are transmitting correct
values toP. In terms of security, it prevents corrupt
servers from performing attacks based onP’s reac-
tion to wrong responses. One instance of such attack

is presented in (Patterson and Sassaman, 2007) where
a covert channel for the servers is created. The disad-
vantage of this scheme is that we now need to evaluate
a polynomial of degreet+1, |S| times for every coor-
dinate of the secret vectorV. This makes the protocol
more computationally intensive forP.

5 SIMULATION

The simulation environment consisted of a Windows
8.1 machine with an Intel Corei7− 3770 CPU run-
ning at 3.4 GHz and 16 GB of RAM. The program-
ming environment was the Java JDK 1.7.0 release
21. We used the JDK’s BigInteger class for large
number arithmetic and set the prime for the field as
170141183460469231731687303715884105757, the
first prime number larger than 2128. The purpose of
this implementation was to show that the proposal is
practical, rather than provide an optimized version of
it.

We used a file with 32768 blocks of size 4 KB.
For this parameters, the matrix representation had
182 blocks per column. Each column had in total
e= 46592 elements each one of size 17 bytes. These
parameters correspond to a file with a length similar to
128 MB. We experimented with Shamir’s scheme in-
volving polynomial evaluation and the scheme where
vectors are added. Shamir’s scheme was considerably
slower, taking 2421 ms for 10 servers and 542 ms for
3 servers. The vector scheme took 990 ms and 400
ms respectively. The evaluation routine for Shamir’s
scheme was performed using Horner’s rule. The dot
product step on the matrix took 5172 ms, for an ef-
fective throughput of 24.74 MB/s. The total amount
of information needed to be transmitted to verify for
the 3-server scenario was 4.26 MB corresponding to
3.3% of the total file. The time needed to upload and
download the data was not included, since it varies
according to the network.

To compare our construction with an existing one,
we implemented the private verification scheme from
(Shacham and Waters, 2008). We set the transmis-
sion overhead to a constant at the cost of increasing
the storage at the server to twice the original size of
the file. This was done to compare against the most
transmission-efficient version of the scheme. The
field used for computations was the same. Through-
put on the server part was 12.1 MB/s given that the
server needs to generate random numbers. Genera-
tion of the challenge from the client is significantly
faster, since it only involves sending the seeds of a
random generator.

A�Multiple-server�Efficient�Reusable�Proof�of�Data�Possesion�from�Private�Information�Retrieval�Techniques

313

6 CONCLUSIONS

We presented two PDPs based on fast multi-server
PIR that have several desirable properties and whose
complexity is sublinear in the size of the file. We
showed that the proposals can detect data corruption
due to random failures with high probability. One of
the proposals can work with dynamic files and has a
very fast setup stage that only involves a hash func-
tion. Its drawback, is that it cannot detect corrup-
tion when an attacker modifies the servers in a coordi-
nated fashion. This drawback is solved in the second
scheme; however, the scheme pays a penalty when it
is used for dynamic files, by requiring an additional
read operation. The downside of both schemes is the
size of the transmitted information and lack of secure
public verifiability.

REFERENCES

Apon, D., Katz, J., Shi, E., and Thiruvengadam, A.
(2014). Verifiable oblivious storage. InPublic-Key
Cryptography–PKC 2014, pages 131–148. Springer.

Ateniese, G., Burns, R., Curtmola, R., Herring, J., Kissner,
L., Peterson, Z., and Song, D. (2007). Provable data
possession at untrusted stores. InProceedings of the
14th ACM Conference on Computer and Communica-
tions Security, CCS ’07, pages 598–609.

Ateniese, G., Di Pietro, R., Mancini, L. V., and Tsudik, G.
(2008). Scalable and efficient provable data posses-
sion. InProceedings of the 4th international confer-
ence on Security and privacy in communication net-
works, page 9. ACM.

Bowers, K. D., Juels, A., and Oprea, A. (2009). Hail: a
high-availability and integrity layer for cloud storage.
In Proceedings of the 16th ACM conference on Com-
puter and communications security, pages 187–198.
ACM.

Cash, D., Küpçü, A., and Wichs, D. (2013). Dynamic
proofs of retrievability via oblivious ram. InAdvances
in Cryptology–EUROCRYPT 2013, pages 279–295.
Springer.

Chor, B., Kushilevitz, E., Goldreich, O., and Sudan, M.
(1998). Private information retrieval.Journal of the
ACM (JACM), 45(6):965–981.

Corena, J. C. and Ohtsuki, T. (2013). Proofs of data posses-
sion and pollution checking for regenerating codes. In
Global Communications Conference (GLOBECOM),
2013 IEEE, pages 2717–2722.

Curtmola, R., Khan, O., Burns, R., and Ateniese, G. (2008).
Mr-pdp: Multiple-replica provable data possession.
In Distributed Computing Systems, 2008. ICDCS’08.
The 28th International Conference on, pages 411–
420. IEEE.

Dodis, Y., Vadhan, S., and Wichs, D. (2009). Proofs of
retrievability via hardness amplification. InTheory of
Cryptography, pages 109–127. Springer.

Goldberg, I. (2007). Improving the robustness of private
information retrieval. InSecurity and Privacy, 2007.
SP’07. IEEE Symposium on, pages 131–148. IEEE.

Hanser, C. and Slamanig, D. (2013). Efficient simultaneous
privately and publicly verifiable robust provable data
possession from elliptic curves. InSECRYPT 2013,
pages 15–26. SciTePress.

Le, A. and Markopoulou, A. (2012). Nc-audit: Auditing for
network coding storage. InNetwork Coding (NetCod),
2012 International Symposium on, pages 155–160.

Olumofin, F. and Goldberg, I. (2012). Revisiting the com-
putational practicality of private information retrieval.
In Financial Cryptography and Data Security, pages
158–172. Springer.

Patterson, M. L. and Sassaman, L. (2007). Subliminal chan-
nels in the private information retrieval protocols. In
Proceedings of the 28th Symposium on Information
Theory in the Benelux, NL.

Raphael, J. (2013). The worst
cloud outages of 2013 (so far),.
http://www.infoworld.com/slideshow/107783/the-
worst-cloud-outages-of-2013-so-far-221831. Ac-
cessed: April 9th 2014.

Shacham, H. and Waters, B. (2008). Compact proofs of
retrievability. InAdvances in Cryptology-ASIACRYPT
2008, pages 90–107. Springer.

Shamir, A. (1979). How to share a secret.Communications
of the ACM, 22(11):612–613.

Sion, R. and Carbunar, B. (2007). On the computational
practicality of private information retrieval. InPro-
ceedings of NDSS.

Tamassia, R. (2003). Authenticated data structures. In
Algorithms-ESA 2003, pages 2–5. Springer.

Trostle, J. and Parrish, A. (2011). Efficient computationally
private information retrieval from anonymity or trap-
door groups. InInformation Security, pages 114–128.
Springer.

Wang, C., Wang, Q., Ren, K., and Lou, W. (2010). Privacy-
preserving public auditing for data storage security in
cloud computing. InINFOCOM, 2010 Proceedings
IEEE, pages 1–9.

Xu, J. and Chang, E.-C. (2012). Towards efficient proofs of
retrievability. InProceedings of the 7th ACM Sympo-
sium on Information, Computer and Communications
Security, pages 79–80. ACM.

Zhu, Y., Ahn, G.-J., Hu, H., Yau, S. S., An, H. G., and Hu,
C.-J. (2013). Dynamic audit services for outsourced
storages in clouds.Services Computing, IEEE Trans-
actions on, 6(2):227–238.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

314

