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Abstract: In this paper the problem of two-player pursuit-evasion games with unmanned aerial vehicles (UAVs) in a
three-dimensional environment is solved. A game theoretic framework is presented, which enables the solution
of dynamic games in discrete time based on dynamic programming. The UAV agents taking part in the pursuit-
evasion game are two identical quad-rotors with the same non-linear state space model, while the evaders’
absolute velocity is smaller than the pursuers’. The convergence of the pursuit-evasion game is shown in
numerical simulations. Finally, the approach is simulated on an embedded computer and tested for real-time
applicability. Hence, the implementation and real-time execution on a physical UAV system is feasible.

1 INTRODUCTION

In recent years, pursuit-evasion games (PEGs) are
highly challenging problems in the research area of
optimal control theory and robotics. Generally, in
PEGs a pursuer (or a team) are supposed to cap-
ture an evader (or a team) that is trying to escape.
Many applications and areas of operations are con-
ceivable, e.g., search and rescue missions, cops and
robber games, patrolling, surveillance, and warfare.
In robotics, there exist two primary approaches for
solving PEGs: combinatorial and differential. The
former requires the environment being represented ei-
ther geometrically (e.g., with polygons) or topologi-
cally (e.g., by a graph). TheLion and Manproblem
is a famous example of PEGs. According to (Nahin,
2012), it is deemed to be one of the first (unpub-
lished) mathematically formulated PEGs, defined by
R. Rado in the 1920s. The problem was extensively
studied, e.g., by Littlewood (Littlewood, 1986) and
Sgall (Sgall, 2001). The former tackles the problem
in continuous time and space, while, on the contrary,
the latter analyzes it in discrete time.

The authors of (Chung et al., 2011) summarized
different approaches for solving PEGs, which are ap-
plicable in robotics. They aimed to survey methods
that are based on combinatorial approaches.

Earlier, LaValle and Hutchinson surveyed
(LaValle and Hutchinson, 1993) various applications
in robotics, which are applicable for game theoretic
formulation. The focus of their survey is how

game theory can be applied to robot navigation,
high-level strategy planning, information gathering
through manipulation and/or sensor planning, and
pursuit-evasion scenarios.

Game-theoretic approaches consider that the so-
lution of a problem does not only depend on the own
decisions but on the decisions of each agent involved.
Those problems are solved assuming rational decision
making by all players. PEGs can be formulated asdy-
namic non-cooperative games, while the evolution of
the game state depends on the dynamic constraints of
each agent. Such dynamic PEGs (differential games)
where introduced by Isaacs (Isaacs, 1965), e.g.,the
Homicidal Chauffeur Game. In this game a more ag-
ile but slower evader shall avoid to become run over
by a faster but curvature-bound pursuer. The agents
of such dynamic games are described by differential
equations, which characterize the agents’ dynamics.

The authors of (Vieira et al., 2009) published an
implementation of a PEG on mobile robots, where a
group of pursuers are supposed to catch a group of
evaders. They use game theory to solve the PEG. Un-
fortunately, the PEG is solved off-line and the cost of
the robots’ motions are stored as weights on a mathe-
matical graph. The motions of the robots are based on
the best path according to the edges’ weights between
the graphs’ vertices. This approach provides anopen-
loop solution, because the agents cannot respond to
unpredictable events.

As far as is known, there is hardly anything
done in research area of PEGs with UAVs in three-
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dimensional environment, thus, an implementation of
a PEG on real UAV systems seems not to be car-
ried out, yet. In this paper, a framework is pro-
posed, which provides aclosed-loopsolution of a
PEG with two UAVs based on game-theoretic meth-
ods in a three-dimensional environment. Since the so-
lutions (control actions of the UAVs) shall be calcu-
lated locally, the approach was implemented on an on-
board embedded computer, running a real-time oper-
ating system (RTOS). This set-up assures that the pre-
defined real-time specifications are satisfied. Hence,
the foundations for an implementation on a real UAV
system are laid.

In the next section the problem formulation is
stated and the corresponding solution approach is pre-
sented. In section 3, a brief system description of the
controlled UAV model is given. Section 4 introduces
the framework with whichN-player discrete-time de-
terministic dynamic gamescan be solved. Then, the
two-player UAV PEG formulation is given in section
5. After that, the implementation of the PEG on the
embedded computer is described in section 6. Finally,
the simulation results and some interesting aspects
and remarks are discussed in sections 7 and 8.

2 PROBLEM STATEMENT AND
SOLUTION APPROACH

2.1 Problem Statement

Two UAV agents (pursuer and evader) with the same
dynamic constraints are given. The pursuer is able
to move faster through the three-dimensional environ-
ment than the evader. Furthermore, both UAVs have
an attitude and velocity controller implemented. The
agents are in a conflict situation called PEG. PEGs de-
scribe a problem, in which an agent tries to catch an
adversarial agent, while the meaning of catch is the
fulfilment of one or more conditions.

A solution to this game is sought that fulfils the
following requirements:

• Considering that the solution depends on deci-
sions of the antagonist, while each agent is aware
of that.

• Being able to react to unexpected behavior of the
adversarial agent (closed-loopsolution).

• Computational time has to satisfy the determined
real-time specifications.

2.2 Solution Approach

Therefore, the following points were processed:

• Game-theoretical problem formulation astwo-
player discrete-time deterministic dynamic zero-
sum game.

• Consideration of feedback (perfect state) infor-
mation structure and on-line computation of opti-
mal strategies by calculating theclosed-loopNash
equilibrium in mixed strategies in each discrete
time step.

• Implementation of the approach on an embedded
computer with RTOS.

3 SYSTEM DESCRIPTION

3.1 Dynamical Model

For modeling the quad-rotor dynamics, the mechan-
ical configuration depicted in Figure 1 was assumed.
The body fixed frame and the inertial frame are de-
noted byeB andeI , respectively. The UAV is defined
as a point mass. To derive the equations of motions,
the following notations are necessary.PI = (x,y,z)T

is the position vector of the quad-rotors’ center of
gravity in the inertial frame,PB = (xB,yB,zB)

T is the
position vector of the quad-rotors’ center of gravity in
the body fixed frame,v = (u,v,w)T are the linear ve-
locities in the body fixed frame,ω = (p,q, r)T are the
angular rates for roll, pitch and yaw in the body fixed
frame andΘ = (φ,θ,ψ)T is the vector of the Euler
angles. A key component of the quad-rotor model is
the transformation between inertial and body frames.
Rigid body dynamics are derived with respect to the
body frame that is fixed in the center of gravity of the
quad-rotor. However, to simulate the motion of the
quad-rotor in the inertial frame, a transformation of
the coordinates is needed. If the quad-rotors’ attitude
is parameterized in terms of Euler angles, the trans-
formation can be performed using the rotation matrix
R(Θ), which is a function of roll, pitch and yaw an-
gles. Usings and c as abbreviations for sin(·) and

θ:Pitch
φ:Roll

ψ:Yaw

eIx

e Iy

e Iz

eBx

eBz
eBy1

F1F2

F3
F4

Figure 1: Mechanical configuration of a quadrocopter with
body fixed and inertial frame.
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cos(·), respectively, the linear velocities defined in the
inertial frame can be obtained as follows:
[

vx

vy

vz

]

=

[

cθcψ sφsθcψ−cφsψ cφsθcψ+sφsψ
cθsψ sφsθsψ−cφcψ cφsθsψ−sφcψ
−sθ sφcθ cφcθ

][

u

v

w

]

. (1)

The transformation of positions defined in the body
frame into the corresponding positions in the inertial
frame can be obtained by

[

PI

1

]

=

[

R(Θ) PI
B,org

0 1

][

PB

1

]

. (2)

The equations of motion are derived from the
first principles (Newton-Euler laws (Beatty, 2006))
to describe both the translational and rotational
motion of the quad-rotor, leading to the follow-
ing discrete-time non-linear state space model with
the state vectorx = [xk yk zk uk vk wk φk θk ψk pk qk rk]T =

[xk
1 xk

2 xk
3 xk

4 xk
5 xk

6 xk
7 xk

8 xk
9 xk

10 xk
11 xk

12]
T , while s and c are abbre-

viations for sin(·) and cos(·), respectively:
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∆t, (3)

with υ = (υ1,υ2,υ3,υ4)
T ,υ ∈ ϒ being the inputs for

altitude, roll, pitch and yaw,Ix, Iy, Iz are the inertia
aroundx,y,z-axes,Ir is the rotor moment of inertia,
L is the length between the center of gravity of the
UAV and the center of one rotor,g is the gravitation
constant,g(υ) is a function ofυ depending on the ro-
tors’ angular velocities and∆t is the sampling time.
The derivation of the model cannot be handled here
in detail. For more details on quad-rotor modeling
(Bouabdallah and Siegwart, 2007) can be consulted.
A closer look at the state space model reveals that the
angular accelerations depend only on the angular rates
and the input vectorυ and the linear accelerations de-
pend on the Euler angles andυ. Hence, the state space
model can be divided into two interlinked sub-models
M1 andM2. Table 1 lists the chosen parameters based
on (Voos, 2009). In this paper, all values without unit
are normalized to the SI units.

Table 1: Model parameters.

Parameter Value

m 0.5

L 0.2

Ix = Iy 4.85·10−3

Iz 8.81·10−3

IR 3.36·10−5

thrust factor 2.92·10−6

air drag factor 1.12·10−7

3.2 Attitude and Velocity Control

The model structure is suitable for a cascaded attitude
and velocity controller. The attitude controller, con-
trolling subsystemM1, is ordered in the (faster) inner
loop and the velocity controller, controllingM2 in the
(slower) outer loop. The control of attitude and veloc-
ity of quad-rotors are not part of this work; therefor,
refer to (Voos, 2009) and (Krstic et al., 1995) for more
details about the present controller. More than suffi-
cient reference reaction with the given control struc-
ture were derived in simulations (Alexopoulos et al.,
2013).

4 GAME-THEORETICAL
SOLUTION APPROACH

Game theory is an approach for strategic decision-
making, considering that the solution depends on the
decision of other agents, while everybody is aware of
that. This makes the solution process very complex,
especially if the number of players rises. Since PEGs
are highly competitive games, onlynon-cooperative
gamesare considered in this paper.Non-cooperative
gamestreat a conflict situation where increasing the
pay-off of one player results in decreasing that of an-
other. The following definition describes the class of
games considered in this work.

4.1 N-player Discrete-time
Deterministic Dynamic Games

A N-player discrete-time deterministic dynamic game
with a non-fixed terminal time can be defined by the
octuplet{N,K ,X,U, f , ι,Γ,L} with:

• A set of playersN = {1, . . . ,N}.

• A set K = {1, . . . ,K} denoting the stage of the
game.
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• An infinite setX, being the state space with the
statesxk ∈ X,∀ k∈ K ∪{K+1}.

• A setUk
i , with k ∈ K and i ∈ N being the action

space of playeri in stagek, where the elementsuk
i

are all admissible actions of playeri in stagek.

• A difference equationfk : X ×Uk
1 ×Uk

2 × ·· · ×

Uk
N→ X, defined for eachk∈ K , so that

xk+1 = f k(xk
,uk

1, . . . ,u
k
N),k∈ K (4)

with x1 ∈X as the initial state, describing the evo-
lution of a decision process.

• A finite setιk
i , defined for eachk ∈ K and i ∈ N,

is the information structure of each player, while
the collection of all players information structures
ι is the information structure of the game.

• A classΓk
i of functionsγk

i : X → Uk
i defined for

eachk ∈ K and i ∈ N are the strategies of each
player i in stagek. The classΓi is the collection
of all such strategies and is the strategy space of
playeri.

• A functionalLi : (X×U1
1×·· ·×UK

1 )×(X×U1
2×

·· · ×UK
2 )× ·· · × (X×U1

N × ·· · ×UK
N )→ ℜ de-

fined for eachi ∈ N and is called cost functional
of playeri.

The game stops as soon as the terminal setΞ ⊂
X × {1,2, ...} is reached, meaning for a given N-
tuple of actions in stagek, k is the smallest integer
with (xk,k) ∈ Ξ. With this definition it is possible to
describe the dynamic game in normal form (matrix
form). Each fixed initial statex1 and each fixed N-
tuple of admissible strategies{γi ∈ Γi ; i ∈ N} yield a
unique set of vectors{uk

i , γk
i (ιk

i ),x
k+1;k∈K , i ∈N},

due to the causality of the information structure and
the evolution of the states according to a difference
equation. Inserting this vector inLi (i ∈ N) yields
a unique N-tuple of numbers, reflecting the costs of
each player. This implicates the existence of the map-
ping Ji : Γ1× ·· · ×ΓN → ℜ for all i ∈ N, being also
the cost functional of playeri with i ∈ N. According
to that, the spaces(Γ1, . . . ,ΓN) and the cost functional
(J1, . . . ,JN) built the normal-form description of the
dynamic game with a fixed initial statex1.

Since this class of games can be described in nor-
mal form, all solution concepts fornon-cooperative
games, e.g., found in (Başar and Olsder, 1999), can be
used directly. For solving the later termed PEG with
UAV agents, the solution concept of Nash equilibrium
in mixed strategies (Nash, 1950) was used. Due to the
fact that the PEG in this work is formulated as atwo-
player zero-sum game(Thomas, 1984), the saddle-
point equilibrium in mixed strategies is sought, while
being equivalent to the Nash equilibrium inzero-sum
games.

4.2 Saddle-point Equilibrium

A tuple of action variables(u∗1,u
∗
2) ∈U,U =U1×U2

in a two-player game with cost functionalL is in
saddle-point equilibrium, if

L(u∗1,u2)≤ L(u∗1,u
∗
2)≤ L(u1,u

∗
2), ∀(u1,u2) ∈U. (5)

This means that the order of the maximization and
minimization done is irrelevant:

min
u1∈U1

max
u2∈U2

L(u1,u2) = max
u2∈U2

min
u1∈U1

L(u1,u2) = L(u∗1,u
∗
2) =: L∗ (6)

Note that if a value exists (a saddle-point exists), it
is unique, meaning if another saddle-point(û1, û2)
exists, L(û1, û2) = L∗ applies. Moreover(u∗1, û2)
and(û1,u∗2) constitute also a saddle-point. This fea-
ture does not hold for Nash equilibria (non-zero-sum
games). If there is no value in azero-sum game,

min
u1∈U1

max
u2∈U2

L(u1,u2)> max
u2∈U2

min
u1∈U1

L(u1,u2) (7)

holds. Hence, there is no saddle-point solution.
Therefore, we consider the saddle-point equilibrium
in mixed strategies with the following property:

Theorem 1 (Minimax-Theorem) Each finite two-
player zero-sum gamehas a saddle-point equilibrium
in mixed strategies (von Neumann and Morgenstern,
2007).

4.2.1 Saddle-point Solution in Mixed Strategies

If there is no saddle-point solution in pure strategies,
the strategy space is extended, thus, the players can
choose their strategies based on random events, lead-
ing to the so called mixed strategies. That means, a
mixed strategy for a playeri is a probability distribu-
tion pi over the action spaceUi . This holds also for
general games having no Nash equilibrium. To get
a solution in mixed strategies,Li is replaced by its
expected value, according to the chosen mixed strate-
gies, denoted byJi(p1,p2). A 2-tuple (p∗1,p

∗
2) is a

saddle-point equilibrium in mixed strategies of a two-
player game, if

J(p∗1,p2)≤ J(p∗1,p
∗
2)≤ J(p1,p∗2), ∀(p1,p2) ∈ P, P= P1×P2 (8)

holds, withJ(p1,p2) = Ep1,p2[L(u1,u2)]. Thus,J∗ =
J(p∗1,p

∗
2) is called the value of thezero-sum gamein

mixed strategies.

4.3 Discrete-time Dynamic Zero-sum
Games

4.3.1 Information Structure

It is assumed that a feedback information structure is
available to all agents during the gameιk

i = {x
k},k∈

K , i ∈ N.
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4.3.2 Stage-additive Cost Functional

The cost functional for thediscrete-time dynamic
gameis formulated as follows:

L(u1, . . . ,uN) =
K

∑
k=1

gk
i (x

k+1
,uk

1, . . . ,u
k
N,x

k), (9)

with u j = (u1
j
′
, . . . ,uK

j
′
)′. This cost functional for

playeri is called “stage-additive” and implies the ex-
istence of agk

i : X×X×Uk
1×·· ·×Uk

N→ℜ,k∈ K .

4.3.3 Dynamic Programming for Discrete-time
Dynamic Zero-sum Games

Since a stage-additive cost functional and a feed-
back information structure is assumed, dynamic pro-
gramming and thePrinciple of Optimality(Bellman,
1957) can be applied. Hence, the set of strategies
{γk∗

i (xk);k∈ K , i = 1,2} is for a two-player discrete-
time dynamic zero-sum gamea feedback-saddle-point
solution if, and only if a functionV(k, ·) : ℜn→ℜ,k∈
K exists, thus the following recursion is satisfied:

Vi(k,x) = min
uk

1∈Uk
1

max
uk

2∈Uk
2

[

gk
i

(

f k(x,uk
1,u

k
2),u

k
1,u

k
2,x

)

+V
(

k+1, f k(x,uk
1,u

k
2)
)]

= max
uk

2∈Uk
2

min
uk

1∈Uk
1

[

gk
i

(

f k(x,uk
1,u

k
2),u

k
1,u

k
2,x

)

+V
(

k+1, f k(x,uk
1,u

k
2)
)]

= gk
i

(

f k(x,γk∗
1 (x),γk∗

2 (x)),γk∗
1 (x),γk∗

2 (x),x
)

+V
(

k+1, f k(x,γk∗
1 (x),γk∗

2 (x))
)

;

V(K+1,x) = 0.
(10)

The value function is found by calculating the saddle-
point equilibria in mixed strategies recursively for
each stage of the game as described above.

5 PURSUIT-EVASION GAME
FORMULATION

The PEG between the two UAV systems is defined
with following characteristics:

• A set of two players{e, p}.

• A set K = {1, . . . ,K} with variable number of
stagesK. K is the timep needs to capturee, i.e.,
to minimize the distancedε to playere (e reaches
the terminal setΞ). Thus,K depends on the initial
states ofeandp.

• The terminal setΞ ⊂ X ×Y× Z× {1,2, . . .} is
the set of all elementsξ ∈ Ξ of a sphere around
the pursuers’ position(xp,yp,zp) with radiusdε in
stagek.

• A setX = X×Y×Z×U×V×W×Φ×Θ×Ψ×
P×Q×Rbeing the state space.

• Two finite discrete action spacesUp = Ue ⊂
U ×V ×W. Up andUe are steady during each
stagek of the game. They are defined asUp =
{

upu,1+ i
upu,2−upu,1

s
,upv,1+ j

upv,2−upv,1

s
,

upw,1+ l
upw,2−upw,1

s

}

, with i = 0, . . . ,s;

j = 0, . . . ,s; l = 0, . . . ,s and Ue = Up, while
(s+ 1)3 is the number of strategies available for
each player and[upu,1,upu,2] = [upv,1,upv,2] =
[upw,1,upw,2] = [ueu,1,ueu,2] = [uev,1,uev,2] =
[uew,1,uew,2] = [−1,1] are the continuous action
spaces.up andue are elements of the setsUp and
Ue, while u ∈Up×Ue.

• The state of the PEG between two UAVs in the
pursuers reference frame is defined as

xk = xk
e− xk

p =

































xk

yk

zk

uk

vk

wk

φk

θk

ψk

pk

qk

rk
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p

zk
e−zk

p

uk
e−uk
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(11)

with the difference functionxk+1 = f
(

xk,h(wk)
)

defined in equation 3, whilewk = uk
e− uk

p and
h : U ×V×W→ ϒ provides an input vectorυ =
(υ1,υ2,υ3,υ4)

T . Note that this state space model
describes the evolution of the PEG state relative
to the pursuerp.

• A feedback perfect state information structure
ιk
e = ιk

p = {x
k},∀k∈ K .

• The strategy spacesΓp =Up undΓe =Ue.

• A cost functional

J(pk
p,p

k
e) = E

[

K

∑
k=1

D( f
(

xk
,h(wk)

)

,xk)

]

, (12)

with D(·) being a function describing the change
in distance betweenp ande in one stagek, playing
the control action(uk

p,u
k
e).

• The value function

V(k,xk) = min
pk

p

max
pk

e

J(pk
p,p

k
e). (13)
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• pk∗ = (pk∗
p ,pk∗

e ) is the optimal solution of the
game in stagek. It is calculated by solving
the closed-loop saddle-point equilibrium in mixed
strategies. The optimal probability distributions
pk∗ = (pk∗

p ,pk∗
e ) over the action spaceUp×Ue in

stagek is given by

pk∗ = argV(k,xk),∀k∈ K . (14)

• The optimal control actionsuk∗ = (uk∗
p ,uk∗

e ) are
those where the probabilitiespk∗

p andpk∗
e are max-

imal. The reference velocities for the pursuers’
and evaders’ velocity controller are given by

vr,k
p = (uk

p,v
k
p,w

k
p)

T +(uk∗
p )T (15)

and

vr,k
e = (uk

e,v
k
e,w

k
e)

T +(uk∗
e )T

. (16)

Since the solution of the above described prob-
lem shall be computed in real-time, the embedded
computer and the implementation of the PEG are pre-
sented in the following section.

6 IMPLEMENTATION

The implementation of the pursuit-evasion problem
defined above on an embedded computer is briefly
described in this section. Firstly, the utilized em-
bedded computer is described. Then, an algorithm is
described, which enables the determination of Nash
equilibria in mixed strategies of N-player games. Fi-
nally, a pseudo code is given describing the overall
solution process of the PEG.

6.1 Embedded Computer

There are many low-power and small-size comput-
ers available, e.g., Raspberry Pi (Raspberry Pi Foun-
dation, 2014), Cubieboard (CubieTech Ltd., 2014),
BeagleBoard (Texas Instruments Inc., 2014a), and
some variants. Many of those single-board comput-
ers are open-source hardware, assembled with a low-
frequency processor. For this work a BeagleBone
Black (Texas Instruments Inc., 2014b) was utilized,
a community-supported development platform with a
TI Sitara AM335x 1GHz ARMCortex A8 processor
and 512MB DDR3 RAM. The embedded computer
runs with QNX 6.5, a RTOS enabling the implemen-
tation and execution of real-time applications written
in C programming language.

6.2 Algorithm for N-player
Nash-equilibrium in Mixed
Strategies

As described above, an optimal control action tuple
uk∗ = (uk∗

p ,uk∗
e ) for the agentsp ande in stagek of

the PEG is derived by the determination of the Nash
(saddle-point) equilibrium. The MATLAB -function
NPG (Chatterjee, 2010) is able to solve anN-player
finite non-cooperative gameby computing one Nash
equilibrium in mixed strategies. Thereby, the opti-
mization formulation of aN-player non-cooperative
gameaccording to (Chatterjee, 2009) is used for com-
putation. The function uses thesequential quadratic
programmingbasedquasi Newton methodto solve
a non-linear minimization problem with non-linear
constraints.

Since it is not feasible to generate C code of the
NPG function automatically, the algorithm to compute
one Nash equilibrium was implemented from scratch
in C to be applicable on the embedded computer.
Therefor, the NLopt package (Johnson, 2013) was uti-
lized to solve the non-linear minimization problem,
more precisely theSLSQP(Kraft, 1988; Kraft, 1994)
algorithm included there.

Algorithm 1 describes the overall solution process
of the PEG defined above. Firstly, in stagek each
control actionu = (up,ue) is simulated to calculate
the resulting statesxk+1

p andxk+1
e of both the pursuer

and the evader playing its control actionup andue,
respectively. The function callD( f (xk

,h(wk),xk) en-

Algorithm 1 : PEG between two UAVs with recursive call
of theValuefunction f .

1: function PEG(x1)
2: (valueK

,K)← VALUE (1,x1)
3: return (valueK ,K)
4: end function

5: function VALUE (k,xk)
6: if NORM((xk,yk,zk))≤ dε then
7: return 0,k
8: else
9: for all u = (up,ue) ∈Up×Ue do

10: w← ue−up

11: L(u)← D( f (xk,h(w)),xk)
12: end for
13: (pk∗

p ,pk∗
e )← NPG(L,Up×Ue)

14: Select(u∗e,u
∗
p) with MAX (pk∗

p ) andMAX (pk∗
e )

15: (valk+1
,κ)← VALUE (k+1, f (xk,h(w∗)))

16: valk← L(u∗)+valk+1

17: return (valk,κ)
18: end if
19: end function
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capsulates each of this steps and returns the change
of the Euclidean norm of each guessed position dif-
ference, according to equation 12. Those distance
changes are set as pay-offsL(u) of the regarding con-
trol actionu. Then, one Nash equilibrium in mixed
strategies is computed with the previously calculated
pay-offs, according to equation 14. Lastly, the opti-
mal control actionu∗ = (u∗p,u

∗
e) having the highest

probability within the resulting probability distribu-
tion, is executed by the agents.

7 SIMULATION RESULTS

To be able to analyze the implementation on the em-
bedded computer, a comparison with the solutions in
MATLAB has to be carried out. Therefore, following
assumptions were made for both simulations:

• Since the chosen optimal control actions repre-
sent a velocity change in three linear directions
of p ande, a maximum velocityvmax with vp

max=
[

15 15 3.5
]T

andve
max=

vp
max
1.5 and a maximal

absolute value ofvp
maxA= 15 for the pursuer and

ve
maxA= 10 for the evader was defined.

• The numerical solution of the PEG is computed
by solving it for each initial positions(x1,y1,z1)∈
X×Y×Z, while x1 andy1 take integer values in a
61x61 grid, withX = [−30,30] andY = [−30,30]
in the pursuers’ reference frame (pursuers’ posi-
tion is the origin). In each simulation, the initial
altitude of both UAVs is 20, i.e.,z1 = −20 . This
was necessary for the visualization of the value
function.

• s= 6 was chosen, i.e., each player has 73 strate-
gies available in each time stepk.

• The stage duration was chosen to be∆T = 0.1,
while the velocity control is sampled with∆t =
0.005. The real-time specification to be satisfied
by the embedded computer was∆T = 0.1s for one
stagek.

• A capture distancedε = 5 was chosen, since it
is the maximum change in distance, which can
be achieved in∆t = 1 regardingvp

maxA= 15 and
ve

maxA= 10.

Figure 2(a) depicts the value function over the re-
garded discretized state space computed by the em-
bedded computer. Regarding this solutions the con-
vergence of the PEG in three dimensions is given
everywhere, meaning that in this configuration the
evader can never avoid to be captured by the pur-
suer. Figure 2(b) depicts the difference of the value
of stages between the MATLAB simulation and the

simulation on the embedded computer. The differ-
ences are slightly in the whole state space. Moreover,
due to the very small differences (caused by possible
rounding errors and varieties in the minimization al-
gorithm implementation) between the MATLAB and
the embedded computer solution, the implementation
on the BeagleBone Black was accomplished success-
fully. The next important point was to check the real-
time applicability of the approach. The demanded
computational time of∆T = 0.1s for one stage of
the game was successfully satisfied. By configuring
the algorithm for the saddle-point computation of one
stagek, such that it stops after maximal 0.09s, the
minimization algorithm was still able to maintain the
demanded absolute tolerance of 10−6 for the mini-
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(a) Value of stages needed for capture.
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(b) Difference of value of stages needed for capture in MATLAB and on the

embedded computer.

Figure 2: Simulation Results.
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mum function value. The use of an RTOS assures
that the algorithm yields a solution within∆T = 0.1s,
thus the real-time specifications are satisfied.

8 CONCLUSIONS

The goal of this paper was to present a framework,
which enables the solution of a PEG with UAVs in
three dimensions. This framework, formulated in
a game-theoretical manner, does not only provide a
solution approach for the present problem, but for
all problems which can be formulated asN-player
discrete-time deterministic dynamic games. By ap-
plying this approach the convergence of the PEG in a
three-dimensional environment with UAV agents hav-
ing dynamic constraints was shown successfully. Fur-
thermore, the approach was implemented on an em-
bedded computer providing results equal to the MAT-
LAB implementation. Finally, the real-time applica-
bility of the approach was shown successfully in sim-
ulations. This paper forms the basis for a real UAV
system implementation of the presented approach,
which will be carried out next on the quad-rotor
systemL4-ME of HiSystems GmbH (MikroKopter,
2014).
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