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Abstract: Intention recognition (IR) is significant for creating humanlike and intellectual agents in simulation systems. 
Previous widely used probabilistic graphical methods such as hidden Markov models (HMMs) cannot 
handle unstructural data, so logical hidden Markov models (LHMMs) are proposed by combining HMMs 
and first order logic. Logical hidden semi-Markov models (LHSMMs) further extend LHMMs by modeling 
duration of hidden states explicitly and relax the Markov assumption. In this paper, LHSMMs are used in 
multi-agent intention recognition (MAIR), which identifies not only intentions of every agent but also 
working modes of the team considering cooperation. Logical predicates and connectives are used to present 
the working mode; conditional transition probabilities and changeable instances alphabet depending on 
available observations are introduced; and inference process based on the logical forward algorithm with 
duration is given. A simple game “Killing monsters” is also designed to evaluate the performance of 
LHSMMs with its graphical representation depicted to describe activities in the game. The simulation 
results show that, LHSMMs can get reliable results of recognizing working modes and smoother probability 
curves than LHMMs. Our models can even recognize destinations of the agent in advance by making use of 
the cooperation information. 

1 INTRODUCTION 

Intention recognition (IR) in simulation is to identify 
the specific goals that an agent or agents are 
attempting to achieve (Sadri, 2011). Since goals are 
always hidden in mind, they can only be inferred by 
analysing the observed agents’ actions and/or the 
changes in the state (environment) resulting from 
their actions. IR is significant for creating human-
like and intellectual agents in real time strategy 
games, artificial societies and other simulation 
systems. Agents who recognize intentions of 
opponents and/or friends can make counter and/or 
cooperative decisions efficiently.  

As an intersection of psychology and artificial 
intelligence, the IR problem has attracted many 
attentions for decades (Schmidt et al., 1978). Hidden 
Markov models (HMMs), which are special cases of 
dynamic Bayesian networks (DBNs), have been 
widely used to recognize intentions in different 
scenarios. For example, Zouaoui-Elloumi etc. built an 
autonomous system to detect suspicious ship in a 
port based on HMMs (Zouaoui-Elloumi et al., 

2010). Dereszynski etc. learnt probabilistic models 
of high-level strategic behaviour and recognized the 
adversarial strategies in a real-time strategy game 
(Dereszynski et al., 2011).  

One problem of HMMs is that the Markov 
assumption cannot always been satisfied. Thus, 
some refined models are proposed by modelling 
duration and transition of hidden states more 
accurately, or introducing hierarchical structures. 
For example, hidden semi-Markov models (HSMMs) 
improve the recognition performance by modeling 
duration explicitly (Yu, 2010). They have been used 
to infer complex agent motions from partial 
trajectory observations in the IR domain (Southey et 
al., 2007). The typical refined hierarchical models 
include hierarchical HMMs (Fine et al., 1998) and 
abstract HMMs (Bui et al., 2002). Thi Duong et al. 
further proposed Coxian switching hidden semi-
Markov model, which both built a hierarchical 
structure and introduced Coxian distribution 
modeling the duration of states to recognize human 
activities of daily living (Duong et al., 2009).  
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Another problem of HMMs is that they are 
actually propositional, which means they handle 
only sequences of unstructured symbols. Therefore, 
Kersting et al combined HMMs and first order logic 
and proposed Logical hidden Markov models, which 
belong to statistical relational learning methods 
(Kersting et al., 2006). Comparing with HMMs, 
LHMMs can infer complex relations and have fewer 
parameters by adding instantiation process. However, 
they do not consider relaxing Markov assumption, 
which will lead to a similar performance decline 
when long-term dependences between hidden states 
exist as HMMs. Thus, we presented logical hidden 
semi-Markov models (LHSMMs) by using the idea 
of HSMMs (Zha et al., 2013). Even though our 
previous work has proved the achievement of 
applying LHSMMs in IR, we only consider 
intentions of one single agent. However, most 
complex tasks have to be done by one or more 
teams. Agents always play different roles and 
cooperate to achieve their common goals. In this 
case, multi-agent intention recognition (MAIR) 
problems have to be solved, which means that we 
need to recognize not only the intentions of every 
agent, but also the composition and cooperation 
mode of teams (Pfeffer et al., 2009).  

Since LHSMMs inherit advantages of LHMMs 
and relax the Markov assumption, we will use 
LHSMMs to solve MAIR problem, as an extension 
to our previous work. Besides considering intentions 
of more than one agent, we will refine the previous 
models further in three aspects. First, logical 
predicates and connectives are used to present the 
working modes of the team. Second, Conditional 
transition probabilities are applied which make 
transition probabilities depend on previous 
observations. Third, the alphabet of instances are 
changeable during the inference, because the number 
of simulation entities may change because of dying, 
escaping and reinforcement. The former forward 
algorithm with duration variable (LFAD) which is 
the core of the inference is also adjusted according 
to the modification of models. A simple virtual game 
“Killing monsters” is designed to evaluate the 
performance of LHSMMs in MAIR. In this game, 
two warriors move around and kill monsters on a 
grid map, they can both act individually and 
cooperatively. In the simulation, we use lognormal 
distribution to model the duration of working modes 
(abstract hidden states), and compute the 
probabilities of working modes, monsters being 
chosen at each time. We will show that LHSMMs 
can correctly recognize working modes and 
intentions of warriors in the game. Additionally, 

LHSMMs can even recognize the destinations of the 
agent in advance by making use of the cooperation 
information. 

The rest of the paper is organized as follows: the 
next section will gives the formal definition of 
LHSMMs, the inference algorithm, and a directed 
graphical representation of a game is presented. 
Section 3 presents the simulation and results. 
Subsequently, we have a conclusion and discuss the 
future work in Section 4. In this paper, we will apply 
LHSMMs to recognize intentions of two agents and 
their working modes in a simple virtual game. 

2 LOGICAL HIDDEN SEMI-
MARKOV MODELS 

This section will introduce the LHMMs, which will 
be used to recognize intentions of agents and the 
working mode. We will give a formal description of 
models and the inference process in 3.1 and 3.2 
respectively. A multi-agent game is also designed to 
evaluate the models in 3.3. 

2.1 Model Definition 

LHSMMs extend LHMMs by modelling the 
duration of the hidden abstract states just as HSMMs 
extend HMMs. In this paper, we further refine our 
former models by redefining the logical alphabet, 
the selection probability and the transition matrix. 

A LHSMM is a five-tuple  , , , ,Ms  Σ μ Δ D , 

the { }t Σ  records possible instances for the 

variables in every abstract state at every time. Since 
the number of simulation entities may change 
because of dying, escaping or reinforcement, the Σ
depends on observations available up to time t, ( t  

is the logical alphabet at time t given 

 1: 1 2, , ,t tO O O O  ). { }tμ is a selection 

probabilityset over Σ ,thus it is also a function of 1:tO

. Δ is the transition matrix defining transition 
probabilities between abstract states. Abstract 
transition are expressions of the form : Op H B

where  0,1p , B , H and O are logic sentences 

which represents hidden states. A  is a substitution, 

and BB is one state of  G B , where  G B

represents the set of all ground or variable-free 
atoms of B  over the alphabet , so are H and O . 

We also use the idea of logical transition in 
Natarajan et al.’s LHHMMs (2008) and let the value 
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of p in Δ depend on instances and observations. 

Figure.1 gives an example of conditional transition 
probabilities from the abstract states A(X). 
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Figure 1: An example of conditional transitions from an 
abstract state. 

A(X), B(Y) and C(Z) are abstract states, X, Y 
and Z are objects in these predicates, 1

( ) ( )A X B Yp  ,
1

( ) ( )A X C Zp  are the probabilities of states switching 

from A(X) to B(Y) and C(Z) respectively when 
condition 1 is satisfied by current observations. The 
meanings of 2

( ) ( )A X B Yp  and 2
( ) ( )A X C Zp  are similar. Let

 BB G B  ,  B H BH G H   and

 B H O B HO G O     . Then the model makes a 

transition from state BB to B HH   and emits 

symbol B H OO   with probability 

   | |B H B B H O B Hp H H O O            (1) 

 is a set of abstract transitions encoding a prior 
distribution, which has a similar representation as Δ , 
except that any B in  is the start state with no 
instance. In addition, any self-transition probability 
in Δ is forced to be 0, and the duration distribution 
of hidden states will be defined in D . Let B be the 
set of all atoms that occur as body parts of 
transitions in Δ , D define the duration distribution 
and the corresponding emissions of every atom in B. 

Elements of D are representations : d

dp B BO ，

where dO  is the set of 1d  observations emitted 
between B ( B appears d times in this duration). 

In this paper, we will define  
1

( )
d

d d
p j f x dx


  , 

1, 2,d  ，where  f x is the probability density 

function of the lognormal distribution
log ( , , )norm    ,  and  indicate the mean and 

standard variance of  log x   respectively. And 

they both depend on js ，which is a instantiated 

hidden state.  is the threshold and we make it 0. 
Since  dp j  is usually small when d  is far from its 

expectation for js , lognormal distribution is more 

suitable to represent the lasting time of an intention 
than the geometric distribution.  

LHSMMs inherit the graphical representation 
from LHMMs. Every node in the directed graph 
represents an abstract state which is a predicate with 
one or more terms. The transition will begin from 
the Start node according to  . After reaching an 
abstract state, the node has to be instantiated using
Σ andμ . There are three kinds of edges representing 

transitions: the solid, the dotted and dashed ones. 
The detailed and formal descriptions of graphical 
models can be found in reference (Kersting, 2006) 
Actually, LSHMMs are special cases of LHMMs, 
when D only contains geometric distributions. 

2.2 Inference 

Online intention recognition is a filter problem 

computing  1:Pr | ,t j tS s O Ms , where js is the 

instantiated hidden abstract state at time t . The 
notion of js is similar with nodes in HMMs. It 

indicates the abstract state and corresponding 
instantiated results. The Ms is the parameter set. 
Since Ms is known in the process of inference, it 
will be neglected in this part for simplicity. And we 
can compute the posterior probability by 

   
 

 
 

1:

1:
1:

1:

1:

Pr ,
Pr |

Pr

Pr ,

Pr ,

t j t

t j t
t

t j t

t j t
j

S s O
S s O

O

S s O

S s O


 






 (2) 

For simplicity of notation in the following 
section, we also denote: 

1 2[ , ]t t jS s , js starts at time 1t and ends at 2t with 

duration 1 2 1d t t   . This also implies that the 

state at time 1 1t   and 2 1t  can not be js . 

1 2, ]t t jS s , js starts before time 1t and ends at 2t

with duration 1 2 1d t t   . This also implies that 

1 1t jS s  the state at time 2 1t  can not be js . 

1 2[ ,t t jS s , js starts at time 1t and will not end at

2t with duration 1 2 1d t t   . This also implies that 

2 1t jS s  the state at time 1 1t  can not be js . 

Since we do not know whether js will end at time

t , we have to compute the  1:Pr ,t j tS s O  by  
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   

 
1: ] 1:

max

[ , 1] 1:
1 2

Pr , Pr ,

Pr ,

t j t t j t

t d

t t d j t
t d t t

S s O S s O

S s O  
    

  

  
 (3)

The first part is the probability that the hidden state 
.the probability of this part will be 0; 

In LHSMMs, 1S is always the start state, whose 

duration is 1, so we can make 1t  and compute the 

 [ , 1] 1:Pr ,t t d j tS s O    by  

 
 

 

[ , 1] 1:

1] 1: 1

[ , : 1] 1: 1

Pr ,

Pr ,

Pr , | ,

t t d j t

t i t
i

t t j t t t i t

S s O

S s O

S s O S s O

  

  

    



 

 




 (4)

The meaning of  1] 1: 1Pr ,t i tS s O   is similar with

 ] 1:Pr ,t j tS s O ， and

 [ , : 1] 1: 1Pr , | ,t t j t t t i tS s O S s O      means that the 

hidden state switch is to js at time 1t  and the js

will last to time 1t  at least with observations

:t tO  .Since both :t tO  and [ ,t t jS s  are only 

determined by 1]t iS s  , we only need to compute 

 [ , : 1]Pr , |t t j t t t iS s O S s     as follows: 

 
   

   

[ , : 1]

1 1:

1 1:
1

Pr , |

| |

1 |

O

t t j t t t i

t j B t t B Hp H B

d

d t t t j
d

S s O S s

p s H O O

p j O s

    



  

   

   


 



  
 





 

 

(5)

B and H are results of  , imgu B s and  , jmgu H s

respectively, where mgu is the most general unifier 

(MGU) operation in first-order logic.  

   1 1| |t j B t t B Hp s H O O         is the 

probability that is transfers to js and emits tO  ,which 

is similar with equation (1), 

   1 1:
1

1 |
d

d t t t j
d

p j O s   


 
 

 
  is the probability 

that js lasts for more than d times and emits 1:t tO 

.Then, we will sum all B which satisfies is in Δ . 

Thus, the key problem is to compute 

 ] 1:Pr ,t j tS s O , which can be solved using a 

logical forward algorithm with duration (LFAD). In 
the LFAD, the forward variable

 [ 1, ] 1:Pr ,t d t j tS s O   is represented as  ,t i d , and 

,j dp indicates the probability of duration d for js . 

The pseudo-code of LFAD is given in Figure 2. 

After using LFAD,  ] 1:Pr ,t j tS s O can be obtained 

by  ,td
d j . 

2.3 Graphical Representation  

To evaluate the performance of LHSMMs using in 
MAIR, we design a simple game named “Killing the 
monsters”. There are 2 warriors and 4 monsters on a 
grid map. The warriors know the locations of 
monsters, and warriors’ mission is to find the 
shortest path to the chosen monster, get there and 
kill  it. The  map   and  location  information  can  be  

 

 
 

 
 

0

: 1

1:

2 : 1,2, ,

3 : 1:
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6 : max. . : . . ,

7 : . .

8 :

9 :

10 : ,

t d

t

j t d

O
B j

i B H B t d t B H

i t

t t i

t
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for t T do

for d t do

S

foreach s S do

foreach spec p H B s t mgu s B exists do

foreach s H G H s t O unifies with O

if s S then

S S s

i d



 

    







  








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 


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




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1:

0

11: , , , | |t t t d j d t d i B t d t d t B H
d t d

i d i d j d p p s H O O           
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      

 

Figure 2: The pseudo-code of the LFAD. 
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found in Figure 3 

 

Figure 3: Initial positions in the grid map. 

The red points are locations of monsters that will 
stay there and not move around. The green points 
are start points of the warriors, in each step, warriors 
may go into one of the four adjacent places or stay at 
current one. However, a warrior cannot get through 
the place where a live monster stands, except that 
the monster is chosen to be killed by him.  

WAGo(MX) and WBGo(MX) are predicates 
which mean Warrior A and Warrior B go to the 
destination MX respectively. Re(MX) is a function 
which returns the resembling point adjacent to MX. 
The abstract state 3 represents warriors act 
individually. The dotted lines from state 3 have the 
same meaning as they are in LHMMs, these lines 
imply that the abstract state from 4 to 5 cannot stay 
for a moment, their functions are changing the 
instance of destinations when state 3 terminates. The 
abstract state 2 means that warriors will go towards 
assembling points together. However, it is notable 
that results of Re(MX) are uncertain and are 
sampled from a known distribution. The conditional 
transitions are depicted in Figure 4(a)and Figure 4(b). 

 
Figure 4(a): Conditional transitions from abstract state 3. 

( , , Re( )) 1: 7
2

1: 3

if IsReached A B MX then

else then





  

Figure 4(b). Conditional transitions from state 2. 

( , )IsKilled A MX is a predicate which means 

Monster MX is killed by Warrior A. And 
( , , Re( ))IsReached A B MX means both A and B have 

reached the resembling point before going to kill 
their target MX. The observations are position series 
of warriors which can be used to judge whether the 
transition conditions are satisfied. The directed 
graphical representation of our game is depicted in 
figure 5. 

3 SIMULATION 

To evaluate the performance of LHSMMs using in 
MAIR, we set parameters manually and run the 
game. Since learning algorithm is not discussed in 
this paper, these parameters will be used directly. 
The conditional transition probabilities are given in 
Table 1. 

Table 1: The conditional transition probabilities. 

1
3,4p  1

3,2p  1
3,6p  2

3,2p  

0.6 0.4 0.6 0.4 

1
3,5p  2

3,2p  2
3,4p  3

3,2p  

0.6 0.4 0.6 0.4 

When the warrior is moving towards his 
destination, there may be more than one shortest 
path, and the warrior will choose one of them with 
an equal probability. Similarly, the assembling point 
is chosen by a uniform distribution. It is also 
assumed that the duration of abstract state 2 and 
state 3follow the same distribution.We collect the 
duration data and learn parameters of the 
log ( , , )norm    using distribution fitting tool. 

Then, the abstract self-transition probability p in 

LHMMs can be made equal to 1/  , since the 

expectation of  geo p is 1/ p . 

We select one typical set of traces of the warriors 
after several runs. The warriors both executed 
missions individually and cooperatively, and the 
working mode has even been terminated twice 
before the chosen monster was killed. The detailed 
information is shown in Table 2. 

 
 
 
 
 

  1
3,4

1 2 1
3,2

1
3,6

1 1 2
3,2

1
3,5

2 2 2
3,2

2
3,4
3
3,2

:4
( , ) ( , )

:2

:6
( , )

:2
3

:5
( , )

:2

:4

:2

p
if IsKilled A M IsKilled A M then

p

p
if IsKilled A M then

p

p
if IsKilled A M then

p

p
elsethen

p

  
 



  


 
 

   


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Figure 5: The directed graphical representation of the game. 

Table 2: The set of traces. 

No. Durations 
Abstract 

states 
Instances Interrupted 

1  1,1t  Start None No 

2  2,8t  State 2 M3: 4 Yes 

3  9,13t  State 3 
M1: 2, 
M2: 3 

No 

4  14,17t  State 3 
M1: 1, 
M2: 4 

Yes 

5  18,25t  State 2 M3: 3 No 

6  26,26t  State 7 M3: 3 No 

7  27,27t  End None No 

The first working mode chosen is working 
together and their target is the monster No. 4, but 
warriors changed their minds and decide to go to 
No. 2 and No. 3. After Warrior A completed his 
mission, their abstract state changed to state 6, 
which meant that both of them would have a new 
target. However, since state 6 could not stay and had 
to transfer to state 3, the records showed that 
warriors were staying in state 3. The fourth mission 
were interrupted again at t=17, and warriors decided 
to go to the monster No.3 together. In this time, the 
place which is in the north of the monster No.3 is 
regarded as the assembling point. According to the 
records, the Warrior B reached there earlier and he 
waited for Warrior B for 5 steps. Then, they went to 
kill the monster No.3 together and finished the 
game. We used LHSMMs and LHMMs to compute 
the probabilities of abstract state at each time 
respectively. The results are shown in Figure 6 and 
Figure 7. 

 

Figure 6: Probabilities of abstract states computed by 
LHSMMs. 

 

Figure 7: Probabilities of abstract states computed by 
LHMMs. 

We only show the probabilities of abstract state 
2, 3 and 7, because state 1 and 8 only exist at the 
first and the last step, state 4, 5 and 6 have 
transferred to state 3 during inference. The results 
prove that both of models can recognize the abstract 
at most times, but LHSMMs generally had a better 
performance: probabilities change more smoothly 
and LHMMs have a failed recognition at t=14. We 
also use LHSMMs to recognize monsters being 
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chosen by two warriors. The results are shown in 
Figure8 and Figure 9. 

 

Figure 8.Probabilities of monsters chosen by Warriors A. 

 

Figure 9: Probabilities of monsters chosen by warriors B. 

Comparing recognition results shown in Figure 8 
with the instance information in Table 2, we can find 
that LHSMMs have quite good performance to find 
the real monster chosen by Warrior A. Although 
there is a shake before t=20, the probability of 
Monster increases very fast and reach 1 at t=22, that 
is exactly the time when Warriors B is waiting him 
at the assemble point. Thus, even though Warrior A 
has not reach the assemble point we can still 
recognize his destination accurately. Figure 9 also 
shows the efficiency of recognizing intentions of 
Warrior B using LHSMMs. 

4 CONCLUSIONS 

In this paper, we analyze the history of intention 
recognition methods and advantages of LHSMMs 
using in MAIR. We further refine our former models 
by adding conditional transition probabilities and 
making the alphabet of instances changeable. 
According to these modifications, the inference 
process of MAIR based on the LFAD is depicted. 
We also design a simple game to evaluate the 
performance of LHSMMs. After using first order 

logic to describe the abstract states of the two 
warriors, we give the directed graphical 
representation of the game. The simulation results 
show that LHSMMs have a good performance on 
recognizing both working modes and missions of 
every warrior. In addition, we also find that the 
probability curves of abstract states computed by 
LHSMMs are smoother than LHMMs, and the result 
of working mode recognition is quite helpful to 
identify the goal of members in the team. In the 
future, we may do some research on modifying 
Viterbi and Baum-Welch algorithm in LHSMMs. 
Approximate inference algorithm which may need 
less computing time is also absorbing. 
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