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Abstract: In this paper we propose a framework for combination of classifiers using fuzzy measures and integrals that
aims at providing researchers and practitioners with a simple and structured approach to deal with two issues
that often arise in many pattern recognition applications: (i) the need for an automatic and user-specific se-
lection of the best performing classifier or, better, ensemble of classifiers, out of the available ones; (ii) the
need for uncertainty identification which should result in an abstention rather than an unreliable decision. We
evaluate the framework within the context of Brain-Computer Interface, a field in which abstention and inter-
subject variability have a remarkable impact. Analysis of experimental data relative to five subjects shows that
the proposed system is able to answer such needs.

1 INTRODUCTION

Multi-Classifier Systems (MCSs), one of the key ar-
eas of current machine learning research, constitute
a vast family of pattern recognition techniques which
have proved to be useful in increasing the overall clas-
sification accuracy and robustness; such approaches
are known in the literature with a plethora of terms,
e.g. classifier fusion, ensembles of learning machines,
combination of (multiple) classifiers, ensemble meth-
ods, mixture of experts (Kuncheva, 2001; Ranawana
and Palade, 2006). Traditionally, MCS have been
viewed as a means for improving classification ac-
curacy and reducing its variance. In this paper, we
propose the use of classifier combination in a differ-
ent fashion. Our study is motivated by two issues that
arise in many pattern recognition research and appli-
cation fields, e.g. human-machine interfaces:

i. There is often no evidence of a single classifier
outperforming all the others for all the users of
the system.

ii. Misclassification is more dangerous or has a
greater impact on performance and usability than
abstention.

The paper is concerned with the development of a
framework for combination of classifiers that can help
in dealing with issue i and ii and that can be applied
to a variety of systems with minimal effort and no
changes to their structure. We feel that:

� The use of multiple approaches and the automatic,
user-specific, selection of those that perform best
could be a step towards the realization machine
learning infrastructures ready to be used by dif-
ferent subjects.

� As it integrates decisions from different sources,
combination of classifiers is promising of being
better at uncertainty identification than a single
pattern recognition technique.

We evaluate the proposed framework within the con-
text of Brain-Computer Interface (BCI), a field in
which issue i and ii are of particular interest (see sec-
tion 5 for further information).

The rest of the paper is organized as follows. In
section 2 we introduce the basic principles and the
structure of a generic classifier combination system.
Section 3 is devoted to the presentation of the the-
oretical concepts on which the proposed strategy is
grounded. In section 4 and 5 are illustrated, respec-
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Figure 1: Logical schema of a classifier combination sys-
tem.

tively, the proposed framework and its application to
BCI. The results obtained in the offline analysis of
data from five subjects are presented in section 6,
which is followed by a discussion of experimental
findings and practical implementation issues. Finally,
we conclude and remark on future work.

2 FUNDAMENTALS OF
COMBINATION OF
CLASSIFIERS

Let C1; : : : ;Cn be the n classes of a pattern recogni-
tion task T and let D1; : : : ;Dk be k classifiers for T .
In this paper, with combination of classifiers system
(Figure 1), we denote a MCS that outputs the class Ci
to which an input feature vector is expected to belong
on the basis of the classification performed by the D j
( j = 1; : : : ;k) only. Moreover, the system may abstain
if some predefined criteria are not met, e.g. more than
half of the classifiers shall be in agreement. Through-
out the paper we will often refer to the D j as first level
classifiers.

The aggregation of first level classifiers output de-
pends on the information they provide. If a classifier
returns only the label of the chosen class, then com-
bination typically reduces to some form of voting; in-
stead, if a classifier assigns to each class a value repre-
senting the extent to which it believes the input vector
belongs to that class, then more sophisticated tech-
niques, such as weighted averaging or fuzzy integrals,
can be used (Kuncheva, 2001).

In order for the combination to be successful, the
first level classifiers should be different (Ranawana
and Palade, 2006). There is no general agreement in
the scientific community about the definition of the
concept of diversity among classifiers, here we say
that two classifiers are different if at least one of the
following holds:

� They belong to different pattern recognition ap-
proaches, e.g. one is a Support Vector Machine
and the other is an Artificial Neural Network.

� They work in different feature spaces.

� Even if they belong to the same pattern recogni-
tion approach, they have been configured differ-
ently.

� They have been trained on disjoint subsets of the
available data.

More formal definitions and measures of diversity in
classifier ensembles lie beyond the scope of this pa-
per and the interested reader is referred to (Ranawana
and Palade, 2006). The terminology introduced in this
paragraph will be used hereafter.

3 THEORETICAL BACKGROUND

Given our perspective, the following theoretical in-
troduction will be limited to finite spaces; for an ex-
tensive coverage of fuzzy measures and integrals see
(Grabisch et al., 1995) and references therein. We
adopt the following notation and conventions: /0 de-
notes the empty set; jX j indicates the cardinality of set
X , and P (X) denotes its power set; 0! = 1, as usual.

3.1 Fuzzy Measure and Integral

Given a system with n inputs x1; : : : ;xn, a typical way
to express the worth of each input and of each possible
coalition of inputs with respect to the overall output of
the system is to define a measure on X = fx1; : : : ;xng.
However, the additivity of the measure often turns
out to be quite restrictive, as it does not allow us
to model all those scenarios in which the sources
manifest positive or negative synergy when put to-
gether into a coalition. As a solution to that rigid-
ness, Sugeno introduced the concept of fuzzy measure
(Sugeno, 1974).

Definition 1. Let X be a finite set. A fuzzy measure µ
on X is a set function defined on P (X) satisfying the
following axioms:

i. µ( /0) = 0 (vanishes at the empty set).
ii. 8A;B2X : A�B) µ(A)� µ(B) (monotonicity).

If, in addition, µ(X)= 1 then the fuzzy measure is said
to be normalized.

Having extended the measure we also need to ex-
tend the integral. Various definitions of integral oper-
ators with respect to fuzzy measures have been pro-
posed (Murofushi and Sugeno, 2000), the most used
in practical applications being the so called Sugeno in-
tegral (Sugeno, 1974) and Choquet integral. Among
these, the one originally due to Choquet (Choquet,
1953) is the only proper generalization of the ordi-
nary integral, i.e. the Lebesgue integral is recovered
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whenever the fuzzy measure is additive. For a char-
acterization and discussion of the two integrals we re-
fer the reader to (Grabisch et al., 1995; De Campos
and Jorge, 1992; Grabisch, 1996). The Choquet in-
tegral is the one of choice in this study because of its
mathematical properties, both from a theoretical point
of view and from a practical perspective. In fact, as
it will be shown in section 4.2, it allows us to ex-
press the learning task in terms a convex quadratic
program, which can be solved efficiently by means of
well known algorithms.

Definition 2. Let X be a finite set of n elements, and
let µ be a fuzzy measure on X. Let f : X ! R+. Per-
mute the elements of X so that f (x1) � �� � � f (xn)
where x1 is the first element of X permuted, x2 the
second, and so on. The Choquet integral of f with
respect to µ is defined as:

n

å
i=1

( f (xi)� f (xi�1))µ(Ai) (1)

where f (x0) = 0 and Ai = fx 2 X j f (x)� f (xi)g.

3.2 Shapley Value and Interaction
Index

Once we have a fuzzy measure on the set of avail-
able information sources, it would be interesting to
estimate the contribution that each of them brings to
the task at hand; for such a purpose the Shapley value
(Shapley, 1953) can be used.

Definition 3. Let X = fx1; : : : ;xng be a finite set, and
µ be a fuzzy measure on X. The Shapley value, or
importance index, of element xi with respect to µ is
defined as

å
A�Xnfxig

(n�jAj�1)! jAj!
n!

Dxi (A) (2)

where Dxi (A) = µ(A[fxig)�µ(A).

Although the Shapley value provides us with
precious information about the importance of each
source, it does not give us clues about their pair-
wise interaction. With that objective, Murofushi and
Soneda introduced the interaction index (Murofushi
and Soneda, 1993). Given two sources xi and x j, the
interaction index, Ixi;x j , is such that:

� If the two sources manifest a positive synergy
when working together, then Ixi;x j > 0.

� If the two sources hamper each other, then Ixi;x j <
0.

� If the two sources do not gain neither lose any-
thing from being together, then Ixi;x j = 0.

Grabisch extended the interaction index to coalitions
of any number of elements (Grabisch, 1997).

Definition 4. Let X = fx1; : : : ;xng be a finite set, and
µ be a fuzzy measure on X. The extended (or general-
ized) interaction index, IS, of the coalition S� X with
respect to µ is defined as:

å
A�XnS

(n�jAj� jSj)! jAj!
(n�jSj+1)! å

B�S
(�1)jSj�jBj µ(A[B)

(3)

It can be shown (Grabisch, 1997) that the extended in-
teraction index is a proper generalization of the afore-
mentioned concepts of importance and interaction,
i.e. the Shapley value and the pairwise interaction in-
dex are recovered whenever the coalition is made up
of, respectively, one or two elements.

4 PROPOSED FRAMEWORK

In the following we assume that each of the first level
classifiers, for each feature vector in input, provides
a vector of n values whose i-th entry indicates the
“score” assigned to class i, the highest value being
the one corresponding to the class the learner believes
the input vector belongs to. Note that such an as-
sumption is not much restrictive, as many of the most
widely used classifiers readily provide such informa-
tion, e.g. for a Bayesian classifier the “scores” are the
a-posteriori probabilities.

4.1 Overview

Figure 2 depicts the structure of the proposed frame-
work. From the k available classifiers D1; : : : ;Dk, we
build n class-specific logical ensembles E1; : : : ;En of s
classifiers each (1� s� k). The coalition Ei will con-
sist of those classifiers that best cooperate for recog-
nition of inputs belonging to class Ci. In section 4.4
we describe how to build the logical ensembles from
training data in a completely automatic way.

As each of the first level classifiers assigns scores
to classes in its own way (e.g. for a Bayesian classi-
fier the scores are probabilities, whereas for a SVM
they could be distances), direct combination of the
information they provide is not legitimate. We need
a transformation procedure (DRI box in Figure 2) to
map values from the output domain of each classi-
fier into a common, classifier-independent, space. For
each classifier Di

j of each logical ensemble Ei, we

FCTA�2014�-�International�Conference�on�Fuzzy�Computation�Theory�and�Applications

16



x

D1
1 DRI

...

D1
s DRI

...

Dn
1 DRI

...

Dn
s DRI

CI

µ1

CI

µn

COMPARISON

Abstention
Threshold

Ci
or abstention

Figure 2: Logical schema of the proposed framework for class specific combination of classifiers. The flow of information
and the meaning of the blocks is described in detail in section 4.1.

compute a value, DRIi
j, where DRI stands for Deci-

sion Reliability Index, that can be regarded as the de-
gree of belief in the proposition “The input vector x
belongs to class Ci”, according to classifier Di

j and
depending on the reliability of its decision. That value
lies in the unit interval and has the following interpre-
tation: DRIi

j = 1 indicates absolute certainty that the
input belongs to class Ci; DRIi

j = 0 indicates absolute
certainty that the input does not belong to class Ci;
DRIi

j 2 (0;1) expresses an intermediate degree of be-
lief between the two aforementioned extremes. Fur-
ther details on the transformation are given in section
4.3.

For each logical ensemble Ei, let fi be the function
that assigns to each classifier in the ensemble its deci-
sion reliability index for class Ci, i.e. fi

�
Di

j

�
= DRIi

j

( j = 1; : : : ;s). We integrate fi using the Choquet in-
tegral (CI box in Figure 2) with respect to the fuzzy
measure defined on Ei, i.e. µi. All fuzzy measures
are learned from data in the training phase (section
4.2). Let pi denote the result of the integration. The
response of the framework is either the class Ci hav-
ing the maximum pi (i = 1; : : : ;n) or an abstention. In
particular, our policy for rejection is as follows. Let
p f irst and psecond denote, respectively, the first and the
second maximum value of pi. Let t be an absten-
tion threshold. If p f irst � psecond � t, then it is safer
to abstain rather than providing a not enough reliable
decision.

4.2 Training

The ensemble specific fuzzy measures µ1; : : : ;µn are

learned from data by means of an approach grounded
on least squares optimization. In particular, for each
class Ci, the error criterion to minimize is:

T

å
t=1

�
yt

i�CIµi

�
f t
i
��2 (4a)

subject to:

µi (A)� µi (B) whenever A� B� Ei (4b)

where:

� T is the number of trials.

� CIµi ( f t
i ) indicates the Choquet integral of f t

i with
respect to µi.

� yt
i represents the desired output for trial t and is

equal to the maximum (resp. minimum) value that
the Choquet integral can assume if trial t belongs
(resp. does not belong) to class Ci.

Due to the peculiarities of the Choquet integral, it is
possible to express the constrained least square opti-
mization problem in terms of a convex quadratic pro-
gram, which is easier and more efficient to solve. See
(Grabisch et al., 1995) for further details.

A common issue in supervised learning algo-
rithms is the minimum amount of training data re-
quired to involve all model coefficients. For fuzzy
measure identification, we have the following lower
bound (Grabisch et al., 1995), where s denotes the
number of elements of the set on which we want to
define the fuzzy measure, i.e. the size of the class-
specif ensembles of classifiers in our framework:

Tmin =
s!� s

2

�
!
� s

2

�
!

(5a)
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if s is even;

Tmin =
s!� s�1

2

�
!
� s+1

2

�
!

(5b)

if s is odd. Note that if T � Tmin then it is not guar-
anteed that all fuzzy measure coefficients will be in-
volved, but if T < Tmin some of them will certainly
not be used.

4.3 Decision Reliability Index

The transformation of classifier outputs into decision
reliability indexes (DRIs) involves two consecutive
steps: firstly a linear normalization and afterwards a
non-linear mapping into the degree of belief space.
Let ddd be the n-dimensional vector containing the out-
put of a first-level classifier, with its i-th entry indi-
cating the score the classifier assigned (for the feature
vector in input) to the i-th class. We linearly project
ddd into [�1;1]n so to obtain a new vector, dddp, that lies
in a space that is independent from the output domain
of the classifier. Next, we nonlinearly map dddp into the
degree of belief space using a sigmoid function:

sig(x) =
1

1+ e�a(x�c)
(6)

where a 2 [0;¥) is the slope factor and c 2 [�1;1] is
the crossover point.
For each dddp we estimate a and c by means of non-
linear optimization. The objective function is given
by the following consideration: since the input vec-
tor has to belong to one of the classes of the pattern
recognition task, than the sum of the DRIs shall equal
certainty, i.e.

ksig(dddp)k1 = 1 (7)

In addition, we impose that:

i. c shall lie in the interval given by the first and the
second maximum value of dddp.

ii. a shall be upper-bounded.

These constraints arise to penalize decisions taken
with considerable uncertainty and reward those that
instead reflect good discrimination by the classifier.
Firstly, it should be noted that as a increases the sig-
moid function tends to 1 if x > c, to 1=2 if x = c, and
to 0 if x < c. Such an extreme behavior should be
avoided as, with the aforementioned boundary con-
ditions on c, it impairs the DRI significance: we
would assign complete certainty to the class chosen
by the classifier, neglect of the presence of the oth-
ers and of the uncertainty hidden in every decision.

By graphic inspection we have found that a reason-
able upper bound for a is 20. To realize how the
constraints penalize uncertain decisions, consider the
case in which two classes appear both probable for the
input vector to belong to; in such a situation the clas-
sifier would assign a high and similar measurement to
both of them. It is easy to see that, limiting c and a
as previously specified, also the DRIs relative to those
classes will be similar and approximately around 1=2.
Moreover, the DRIs relative to the other classes will
probably be not negligible and therefore, to enforce
(7), we will have to lower the DRIs relative to the
overall, uncertain decision.

4.4 Classifier Selection

To identify the logical ensemble of classifiers Ei that
is best at recognition of trials belonging to class Ci,
we rely on the following intuitive observation: a good
team is composed of players being themselves good
players and that positively collaborate towards the
achievement of a common goal. Between those two
not necessary correlated criteria, i.e. individual skill
and group interaction, we believe the latter is the
one that influences the strength of an ensemble most.
Such considerations led us to the following classi-
fier selection strategy (Algorithm 1): initially take the
best classifier and then incrementally grow the ensem-
ble by including the classifier that best interacts with
those already in. We use the generalized interaction
index (3) to estimate synergy among members of a
coalition. Recall that such an index is a proper gener-
alization of the Shapley value (2), thus the first classi-
fier selected will be the one with the highest Shapley
value, i.e. the most important in terms of contribution
to the pattern recognition process.

4.5 Abstention Threshold Selection

Typically, there exists a trade-off between misclassi-
fication and abstention. If we increase the absten-
tion threshold, then we reduce the number of mis-
classifications to the detriment of the amount of ab-
stentions, and vice-versa. Depending on the applica-
tion, we may assign to each error a penalty value we,
which represents the cost of misclassification from the
point of view of system performance, usability, safety.
Similarly, we may assign to each abstention a penalty
value wa. In general, wa � we. In such a model, given
a training dataset, the subject-specific optimal absten-
tion threshold is the one that minimizes:

T

å
t=1

Rt (xt) (8a)
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Algorithm 1: Classifier selection.

Data: Class Ci-specific fuzzy measure µi on the
set D = fD1; : : : ;Dkg of all available
classifiers; µi is learned from data in a
preliminary training phase. The number
s of classifiers to select.

Result: Class Ci-specific logical ensemble Ei of
classifiers.

Ei = /0;
while jEij< s do

foreach D j 2 D do
I j = generalized interaction index of the
ensemble Ei[

�
D j
	

;
end
Dbest = argmax

D j2D
I j;

Ei = Ei[fDbestg;
end

with:

Rt (xt) =

8><>:
0 if byt (t) = yt

wa if byt (t) = abstention
we otherwise

(8b)

subject to:
0� t < 1 (8c)

where:

� T is the number of trials.

� xt is the t-th input feature vector.

� byt (t) is the response of the framework, using ab-
stention threshold t, to xt .

� yt is the desired response.

Even though there are techniques for solving non-
linear programs as the one above, given the fact that
the interval for the only free variable t is limited
and extreme precision is not fundamental, we suggest
to pursue an approximate solution using grid-search,
which is much easier to implement and faster to exe-
cute.

5 APPLICATION TO BCI

A Brain-Computer Interface (BCI) system is an As-
sistive Technology device that allows to translate
brain activity into commands towards an output pe-
ripheral (Wolpaw et al., 2002). It is mainly intended
for severely disabled people who, after traumas or
neurodegenerative diseases (e.g. amyotrophic lat-
eral sclerosis), have lost control of their muscles and

therefore any possibility to communicate towards the
external (Sellers et al., 2010; Hochberg et al., 2012).
A BCI system records brain activity by means of sen-
sors, the most diffuse technique being the electroen-
cephalography (EEG), and translates signal variations
(originating from the execution of a mental task) into
an output command that can be fed into different de-
vices, e.g. a spelling interface, a cursor on a screen, a
wheelchair, a robotic hand.

The classification of mental states is a crucial step
in the BCI chain. First of all, despite the remarkable
number of articles related to this issue, an optimal
classifier, that could be adapted in the most perform-
ing way to different subjects, has not yet emerged.
Moreover, an accurate detection process is fundamen-
tal for the whole BCI system, especially when the fi-
nal application is not just devoted to a simple commu-
nication task, by means, e.g., of a spelling interface
(Krusienski et al., 2008), but when the BCI pilots a
wheelchair (Rebsamen et al., 2010) or a robotic hand
(Muller-Putz and Pfurtscheller, 2008).

5.1 Ensemble of Classifiers and
Abstention in BCI

Ensemble of classifiers were already used in BCI, and
proved to be among the most powerful classification
techniques. For example, in (Rakotomamonjy and
Guigue, 2008) the authors considered an ensemble of
SVMs to classify data from the BCI Competition III
(http://www.bbci.de/competition/iii/), achieving very
high accuracy at the cost of a huge amount of required
training data. In (Faradji et al., 2008), instead, the au-
thors used an ensemble of radial basis function neu-
ral networks for recognition of intentional control/no
control states in order to activate a self-paced BCI
switch; whereas in (Johnson and Krusienski, 2009) an
ensemble of SWLDAs was the classification choice
for a P300 speller BCI. Despite the high accuracies
achieved, all the mentioned studies involve ensembles
of classifiers of the same kind and do not take into ac-
count the advantages of abstention-capable strategies.
A classification method that considers the abstention
alternative was implemented in (Schettini et al., 2014)
and (Aloise et al., 2013), where it was stated that a
closer to reality evaluation of BCI systems should in-
clude the contribute of abstentions among the perfor-
mance assessment criteria.

5.2 The P300-based Speller

One of the most diffused protocol in BCI research
is the one based on the so called matrix speller, or
P300 speller (Farwell and Donchin, 1988). The sub-
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ject faces a computer screen that displays a matrix of
alphabet letters and other symbols, e.g. single digit
numbers, space and undo commands. In a trial, each
row and column flash randomly for F times; each
flash or stimulus lasts N ms and there is an Inter-
Stimulus Interval of ISI ms. The subject is asked
to count how many times the symbol he/she wants to
communicate flashes. Each flash of the desired sym-
bol elicits the P300 component of an event-related po-
tential and it is therefore possible to infer from the
registered brain electrical activity which character or
command the user was focusing on.

5.3 Experimental Setup

We evaluated the proposed framework within the con-
text of a P300 speller. An EBNeuro Mizar System
(Florence, Italy) was used for EEG recording. Signal
preprocessing and first level classification were per-
formed by means of the NPXLab Suite (Bianchi et al.,
2009), whereas the proposed framework was imple-
mented as a set of dynamic libraries in the C program-
ming language. The settings of the matrix speller pro-
tocol we refer to are quite standard and have been al-
ready used in (Bianchi et al., 2010): F = 15, N = 100
ms and ISI = 80 ms. The EEG activity was recorded
using 61 sensors positioned according to the 10-10
international system, at a sampling rate of 256 Hz,
with reference electrode positioned between AFz and
Fz and ground between Pz and POz. After acqui-
sition, data was band-pass filtered between 0:5 and
30 Hz and artifact (e.g. eye-blinks) removal was
performed by an expert neurophysiopathology tech-
nician. Six of the most used classifiers in the ma-
trix speller protocol (Krusienski et al., 2006) were
considered: Bayesian classifier, Artificial Neural Net-
work (ANN), Shrunken Regularized Linear Discrim-
inant Analysis (SRLDA), Stepwise Linear Discrim-
inant Analysis (SWLDA), Support Vector Machine
with linear kernel (SVM-LIN) and with radial basis
function kernel (SVM-RBF). The size of the class-
specific ensembles was limited to 4 classifiers to avoid
excessive computational complexity.

6 RESULTS

Five healthy subjects (3 men and 2 women, aged from
22 to 43 years) participated in the experiments. For
each subject, 6 sessions were recorded. A small break
separated two consecutive sessions and each of them
was concerned with the communication of 6 different
symbols. The first level classifiers and the framework
were trained, respectively, on the first 12 characters

and on data from the third session. Testing involved
the last 18 symbols.

To evaluate performance we introduce the notion
of weighted accuracy:

WA = 1�ER�0:5�AR (9)

where ER is the error-rate and AR is the abstention-
rate. In the weighted accuracy, errors are assigned
a penalization factor that is double of that of absten-
tions, this is because correcting a wrongly classified
symbol requires (correct) recognition of the “undo”
command and re-communication of the desired one,
whereas an abstention induces the need to perform
only the latter of these two steps.

Table 1 shows the weighted accuracy achieved, on
the test set, by the first level classifiers and by the
framework. To facilitate visualization of relationships
between the classifiers and the framework, the same
data is also reported in Figure 3.

Firstly, it is possible to notice that the same classi-
fier does not perform equally well for all the subjects.
For example, the artificial neural network, which is
quite good for subject A, D and E, performs poorly
for subject B. Even the Bayesian classifier, which is
the best of the available ones for most of the users, is
surpassed by SVM-LIN when considering the fourth
subject.

Secondly, the proposed framework leads to a
weighted accuracy that, for each subject, is similar to
or higher than that of the best of the available clas-
sifiers. To further investigate on this, Table 1 also
reports the percentage improvement achieved by the
framework with respect to the average and the best of
the first level classifiers.

Finally, by direct look at the confusion matrices
(which we do not report for the sake of brevity) we
could note that the improvement the proposed frame-
work leads to often comes from its ability to identify
uncertain situations and turn them from misclassifica-
tion into abstentions, thus making the overall system
safer and more pleasant to use.

7 DISCUSSION

Experimental evidence shows that the proposed
framework is able to deal with the two issues that
motivated our study. In particular, it reaches a level
of performance similar to or greater than that of the
best first level classifier, which, nevertheless, is not
the same for all subjects. Hence, the framework elim-
inates the need for a preliminary configuration phase
in which an expert has to either find a classifier that
performs well for most of the subjects or select the
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Table 1: Weighted accuracy, as defined in (9), of the first level classifiers and of the proposed framework; percentage im-
provement achived by the framework with respect to the average (column Iavg) and the best (column Ibest ) of the first level
classifiers. Bayesian denotes the Bayesian classifier; ANN stands for Artificial Neural Network; SRLDA represents Shrunken
Regularized Linear Discriminant Analysis; SWLDA indicates StepWise Linear Discriminant Analysis; SVM-LIN and SVM-
RBF denote Support Vector Machine with, respectively, linear and radial basis function kernel.

Subject Bayesian ANN SRLDA SWLDA SVM-LIN SVM-RBF Framework Iavg Ibest
A 0.863 0.853 0.803 0.823 0.858 0.848 0.868 3.2 0.58
B 0.782 0.651 0.590 0.697 0.641 0.742 0.767 12.17 -1.93
C 0.729 0.681 0.688 0.688 0.737 0.659 0.725 4.07 -1.50
D 0.757 0.747 0.722 0.681 0.762 0.742 0.790 7.43 3.64
E 0.919 0.904 0.813 0.909 0.909 0.893 0.939 5.38 2.19

best one in a subject-specific manner. This can help
in building the pattern recognition system for the task
at hand: one could simply use all the algorithms the
literature suggests, or the ones he/she has at disposal,
and then let the framework perform a subject and
class specific adaption that would probably lead to an
optimal level of performance. Moreover, by taking
into account the output of class-specific ensembles of
classifiers, in many situations the framework is bet-
ter at uncertainty identification than a single classifier
alone. Vague decisions are often turned from misclas-
sification into abstentions, a property that is of partic-
ular importance in safety-critical applications.

7.1 Classifier Selection, Training and
Computation Complexity

Throughout the paper, we have assumed the need to
build ensembles of s classifiers out of the k available
(1 � s � k). Nevertheless, it would be reasonable
to ask oneself: if we have at our disposal k classi-
fiers, why do we not use them all? The reason is
twofold: firstly, richness in information comes at the
cost of increased computational complexity and, sec-
ondly, the relationship between input information and
discriminatory capability is, roughly speaking, influ-
enced more by the quality than the quantity of infor-
mation. Those issues are not specific to the proposed
framework but rather typical of many pattern recog-
nition approaches. In fact, building those ensembles
can be regarded as a particular case of the well-known
problem of feature selection. In addition, a relevant
issue is the trade-off between the number s of clas-
sifiers to select and computational tractability of the
combination process. As a fuzzy measure on a set of
s elements requires 2s� 2 coefficients to be defined,
we have to deal with an exponential number of vari-
ables in the training procedure and therefore s should
be limited to a small value, e.g. a reasonable empiri-
cal bound is 8.

Given the previous observations, it may seem con-
tradictory that in the proposed classifier selection pro-

cedure (Algorithm 1) we use the fuzzy measure µi on
the entire set of available classifiers. There is no in-
consistency in that, and to explain why we need to
introduce the notion of k-additive fuzzy measure (Gra-
bisch, 1997).
A k-additive fuzzy measure combines the power of
the fuzzy measure with the simplicity of the ordinary
measure, thus resulting in a good trade-off between
expressiveness and computational tractability. A k-
additive fuzzy measure limits interaction to subsets
of cardinality � k, and the values of the fuzzy mea-
sure for the remaining subsets are completely prede-
termined by the additivity constraints. It follows that
to define a k-additive fuzzy measure on a set of n el-
ements, we do not need 2n� 2 coefficients but only
å

k
i=1
�n

i

�
. The process of learning a k-additive fuzzy

measure from data is similar to that presented in sec-
tion 4.2, see (Miranda and Grabisch, 1999) for further
details.
Since in the classifier selection algorithm we use the
fuzzy measure µi on the entire set of available clas-
sifiers only to estimate interaction between up to s
classifiers, we do not actually need the full power of
a fuzzy measure, a s-additive fuzzy measure is suf-
ficient. This makes the proposed approach compu-
tationally feasible in most of the practical situations,
e.g. for s = 4 and 10 available classifiers, the number
of parameters to identify is 385, instead of the 1022
that characterize the corresponding fuzzy measure.

Even though we have not provided a formal anal-
ysis of space and time requirements of the proposed
approach, it should be clear that the most burdensome
procedures are those related to fuzzy measure learn-
ing. Notwithstanding, with classifier selection it is
possible to limit the exponent to a small value, e.g.
4 in our matrix speller application, and thereby the
aforementioned complexity will not significantly af-
fect performance. For example, each of the test de-
scribed in the results section took about a second on a
laptop running Windows 7 with an Intel Core i5 CPU
(2.4 GHz) and 4 GB of RAM. In addition, it should
be noted that combination of classifiers by means of
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Figure 3: Weighted accuracy, as defined in (9), of the first level classifiers and of the proposed framework for each subject.
Bayesian denotes the Bayesian classifier; ANN stands for Artificial Neural Network; SRLDA represents Shrunken Regularized
Linear Discriminant Analysis; SWLDA indicates StepWise Linear Discriminant Analysis; SVM-LIN and SVM-RBF denote
Support Vector Machine with, respectively, linear and radial basis function kernel.

the proposed framework is highly parallelizable. Ob-
viously, first level classifiers can operate in parallel;
moreover, since each class-specific ensemble is in-
dependent of the others, the implementation of the

proposed method can be almost entirely parallelized.
Finally, once the class-specific ensembles have been
built and the fuzzy measures have been learned, clas-
sification of a new trial requires a negligible compu-
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tational time and therefore we argue that the proposed
approach is suitable for real-time application too.

8 CONCLUSION

Our study has been motivated by two issues that arise
in many pattern recognition applications:

i. There is often no evidence of a single classifier
outperforming all the others for all the users of
the system.

ii. Misclassification is more dangerous or has a
greater impact on performance and usability than
abstention.

To address such issues we have proposed a framework
for combination of classifiers that is able to:

� Automatically select the best performing ensem-
ble of classifiers for each subject and each class of
the problem.

� Better identify vague situations by taking advan-
tage of the information provided by many differ-
ent sources, instead of a single one.

The framework is based on a general paradigm of in-
formation fusion by means of fuzzy measures and in-
tegrals (Kuncheva, 2001; Grabisch et al., 1995) and
presents novel solutions for what concerns the over-
all architecture, the process of classifier selection and
the normalization of their output. Moreover, it is ap-
plicable as a “black-box” to any domain, without the
need to change or adapt the pattern recognition sys-
tem the experimenter has set up, a feature which we
feel is important in order to speed up the process of
constructing a valid configuration for the problem of
interest.

We have performed a preliminary validation of
the proposed method within the context of a P300-
based matrix speller Brain-Computer Interface. Even
though only a restricted number of subjects partici-
pated in the experiments, we were nevertheless able
to point out the importance of issue i and ii and the
prompt response of the framework. Results show that
the proposed method is able to reach, for each sub-
ject, a level of performance significantly greater than
the average of the available classifiers and similar to
or greater than that of the best one.

To further validate the proposed approach, more
tests are needed, and this is part of our future work.
We would like to apply the framework into different
contexts, to confirm the positive outcomes obtained in
this study and/or evidence possible drawbacks. More-
over, we are interested in comparing the proposed
approach with other popular ensemble methods, e.g.

Boosting, Mixture of Experts, Error-Correcting Out-
put Codes, Stacking (Alpaydin, 2009). Finally, we
would like to compare the proposed classifier selec-
tion algorithm to the ones already present in the liter-
ature.
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