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Abstract: State-of-the-art distributed computational environments requires increasingly flexible and efficient 
workflow scheduling procedures in order to satisfy the increasing requirements of the scientific community. 
In this paper, we present a novel, nature-inspired scheduling approach based on the leveraging of inherited 
populations in order to increase the quality of generated planning solutions for the occurrence of system 
events such as a computational resources crash or a task delay with the rescheduling phase .The proposed 
approach is based on a hybrid algorithm which was described in our previous work and includes strong 
points of list-based heuristics and evolutionary meta-heuristics principles. In this paper we also 
experimentally show that the proposed extension of hybrid algorithms generates more effective solutions 
than the basic one in dynamically heterogeneous computational changing environments. 

1 INTRODUCTION 

Today, scientific progress dramatically depends on 
the achievements of high performance 
computational (HPC) researches. One of the most 
important aspects of HPC environment operability is 
task-scheduling management. There are several 
features which commonly have to be taken into 
consideration for almost all HPC environments 
during the task-planning operation, they are: (a) 
distributed infrastructure peculiarities, (b) 
heterogeneity of computational resources, 
computational models, and storage nodes, (c) price 
policies, and (d) dynamically variable system state 
during run-time. Because of the fact that most 
present scientific problems require complicated 
complex multistep computations, the workflow 
formalism is chosen as an easy-to-use and 
convenient way to represent scientific tasks in the 
executed HPC environments. Currently, a lot of 
workflow management systems exist in the scientific 
field (Xhafa et al. 2008, Yang and Xin 2008) and all 
of them include task scheduling functionality. A 
commonly used form of scientific workflow 
representation is a directed acyclic graph (DAG). In 
DAG, nodes correspond to computational tasks that 
should be executed in the system and edges 
correspond to data dependencies (due to data 

transfers). Further information and the detailed 
definition of the DAG workflow formalism can be 
found in Sinnen (2007). As optimal workflow (task) 
scheduling is an NP-complete problem, the scientific 
community is motivated to investigate new 
approaches for more efficient planning in HPC 
environments.  

The main criterion in workflow-scheduling 
optimization that should be minimized is makespan, 
i.e. overall execution time (Casanova et al.). 
Moreover, during makespan optimization the 
scheduling algorithms must take into account many 
aspects, such as data transfer overheads, 
dynamically changing workload, and the user’s 
specified constraints. Data transfer overheads are 
especially significant for data-intensive 
computations. This may lead to situations in which 
one less-powerful resource used for the execution of 
two or more related tasks can overcome several 
powerful separated resources because of a reduction 
of data-transfer cost. Constraints which may be 
required by users can include limitations on cost of 
transfer and computations, deadlines (especially for 
early warning systems), resource preferences, and 
different priorities. 

State-of-the-art distributed computational 
environments increases the complexity of scheduling 
algorithms by including the heterogeneous aspects 
of the resources employed, such as computational 
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performance, network bandwidth, access policies for 
different users, and installed software. Moreover, 
sets of resources may change during the execution 
process, i.e. some failures can occur or new 
resources can be added or excluded from the 
environment. Also the stochastic nature of the 
computational environment makes it impossible to 
predict precisely the amount of computational or 
transfer time, even for a single task. 

As mentioned previously, the goal of the 
scheduling is to minimize makespan. In our previous 
work, we identified the following requirements for 
workflow scheduling(Nasonov et al. 2014): (a) 
processing of dynamic workload without pausing for 
rescheduling of operations, (b) consideration of extra 
scheduling for incoming workflows without 
changing the existing applied plan, (c) operation in a 
dynamic distributed environment where resources 
can be added at runtime and crashes can occur, (d) 
consideration of task execution delays, (e) 
processing of workflows’ priorities, and (f) 
providing a better solution than traditional heuristics 
can generate. 

In order to satisfy these requirements, 
traditionally two classes of algorithms are used. The 
first class is a list-based heuristic such as HPS, 
CPOP, PETS, or HEFT(Arabnejad, 2013 and 
Topcuoglu, 2002). With some differences, all of 
these algorithms of this class perform two main 
steps: prioritize and sort all workflow tasks and then 
schedule them in ‘task-by-task’ manner according to 
assigned priority. The fact that speed of execution 
and satisfied quality of solution can be addressed is 
one of the advantages of this class. 

 The second class is meta-heuristics algorithms 
such as GRASP, GA, PSO, and ACO (Singh, Singh, 
2013). They search through all of solution space and 
thus are able to generate final solutions with much 
higher quality than list-based heuristics (Rahman et 
al., 2013), but in contrast to the previous class they 
require much more time to generate solutions with 
better quality than list-based algorithms can propose 
in similar situations. 

The hybrid algorithm proposed in our previous 
work combines the advantages of both classes but 
still needs to improve convergence in order to be 
able to generate better solutions in a hard-limited 
time. The extended algorithm will be described in 
detail later. Our goal in this work is to investigate 
and demonstrate how the convergence and the 
performance can be improved with a proposed 
novel, nature-inspired approach based on reusing the 
inherited population in subsequent runs of the 
scheduling algorithm. It is inspired by the idea of 

inheritance and survival of populations in the natural 
environment when subject to different changes. We 
have extended our previously developed hybrid 
algorithm with this technique and use multiple 
population in order to improve the quality of 
generated solutions and to leverage possibilities for 
parallelization and increased reliability of GA. 

This paper is organized into the following 
sections. In Section 2 a review of related works is 
presented. Section 3 is concerned with a description 
of GAHEFT, the new approach and its application to 
the workflow scheduling problem; the multi-
population modification of GAHEFT algorithm 
called MPGAHEFT, which leverages potentialities, 
is presented there. Section 4 contains an 
experimental study of the proposed approach and the 
performance of the MPGAHEFT algorithm. In 
Section 5 conclusions and future works are 
discussed. 

2 RELATED WORKS 

By our investigations, at the present time, there is no 
research that has been completed in the field of 
scheduling algorithms in which was addressed the 
reuse of inherited populations with an inconsistency 
that was produced by some system changes, such as 
computational resource fail. We made a review of 
works which are the most closely related to our 
work. 

Rahman et al. (2013) investigated how different 
topologies of workflow influence performance of 
different kinds of algorithms, including list-based 
and meta-heuristics. The authors proposed the idea 
of a hybrid algorithm which uses GA to correct the 
deadlines of single tasks before DCP-G start, than 
DCP-G corrects scheduling during the execution 
process; however, there has not been any 
experimental study of this technique. There is no 
further improvement on the runtime of the generated 
solution by the meta-heuristic algorithm.  

Xhafa et al. (2008) presented a modification of 
cellular memetic algorithm (cMA) to deal with 
rescheduling. The algorithm shows good quality of 
generated solutions and short execution time that can 
be considered suitable for the rescheduling 
procedure. But, the proposed approach is adapted 
only for batch jobs and can't be applied for 
workflows. Also, the executing process pauses each 
time there scheduling procedure is performed. 

Liu X. et al.(2010) proposed a modification of  
ant colony-based(ACO) method and use this strategy 
for rescheduling under temporal violations. The 
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rescheduling procedure is applied only for the part 
of the workflow that has been affected by the 
system. The approach does not take into 
consideration the entire structure of the workflow; in 
some situations it may show worse performance than 
rescheduling with the rest of the workflow. Also, the 
rescheduling procedure is not immediate that leads 
to execution process pausing. Also, ACO 
rescheduling may take a prolonged period which 
means significant loss of time and delays in 
execution of workflows. 

 Jakob et al.(2013) proposed a hybrid two-stage 
scheme for workflow rescheduling. But, 
ideologically, it is absolutely different from the one 
we use. The authors apply several simple heuristics 
to form an initial population for an evolutionary 
algorithm and search for the solution while the 
execution process is stopped. By comparison, we 
almost immediately create and apply an initial 
planning solution generated by the HEFT heuristic. 
Then we form several populations (a population 
generated by a random heuristic, an adapted 
inherited population, and a HEFT-based initial 
population) to improve the proposed solution of the 
remaining part of the queued-for-execution tasks in 
the hard-limited time. Such approaches release us 
from task-execution interruptions that can be 
unacceptable in some cases of real workload: for 
example, for workflows with small execution time. 
In this case, very frequent interruptions due to the 
rescheduling procedure may lead to resource 
underutilization. 

Cochran et al. also use a two-stage approach for 
scheduling. The distinguishing feature of this work 
is using regular GA for the first stage and then using 
a final population in multi-population GA for 
exploring different areas of solution space. 
Compared with our approach, this work operates 
only with batch jobs and does not employ 
rescheduling at all. The usage procedure for the 
inherited population is significantly different from 
ours, since the authors do not anticipate multiple 
runs caused by changing environment events, for 
which inherited populations have to adapt to these 
changes.  

In the field of evolutionary dynamic 
optimization, there are works dedicated to reusing 
individuals and to population management. 
Rohlfshagen and Xin (2010) investigate reusing 
previously found global optima in order to acquire a 
closer starting point than random populations can 
provide toward the new global optimum. But the 
main goal of the authors is to study how genotype 
distance impacts the performance of a solution that 

is applied on the set of test problems, while our goal 
is to create a practical approach for solving a 
discrete optimization problem in the workflow-
scheduling field. Also, the authors do not consider a 
situation when the previously found optimal solution 
is no longer valid, whereas our work proposes an 
approach to make the solutions consistent and reused 
in the next generation. The paper does not contain 
any experimental study of the discrete dynamic 
optimization problem. 

Yang and Xin(2008) proposed an associative 
memory-based scheme in order to record good 
solutions in different points of the search space and 
recall the values when the environment changes. 
Compared to our work, the paper does not consider 
preparation of invalidated previous solutions for the 
next generation.  

Given this analysis of prior works, there is no 
existing approach that can efficient satisfy the 
proposed above requirements for the rescheduling 
procedure. 

3 ALGORITHM SCHEME 

3.1 Problem Definition 

The workflow scheduling problem can be 
formulated in the following way. Let us assume that 
we have a workflow W(T, E) that consists of a set of 
tasks T = {T1, T2, … Tn} and set of dependencies 
between tasks E = {<Ta1, Tb1>,…,< Tak, Tbk>}. Each 
task requires computational time to be executed. 
Given the set of available computational resources R 
= {R1, R2, …, Rm} we build a mapping among tasks 
and resources (T and R) in the form of a schedule, 
where each task Ti will be executed on a resource Rj; 
it also has a start time and includes an estimated end 
time. The final mapping must accept all 
dependencies of E, and execution intervals of 
different tasks that are scheduled on the same 
resource should not overlap each other and should 
have makespan as minimal as possible. Also, there 
can appear different violations such as are (a) 
resource crash, (b) adding a new resource to the 
system, and (c) workload changes, all of it need to 
be handled by a scheduler with 
rescheduling(recreating previously generated 
schedule). Finally, we have a NP-complete single-
objective optimization problem.  

3.2 GAHEFT Scheme 

In  our  previous  research  (Arabnejad, 2013)  we 
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proposed a hybrid algorithm called GAHEFT which 
combines, on the one hand, small execution time for 
the generation of an initial suitable solution and, on 
the other hand, tries to improve it with the use of a 
meta-heuristic in a dynamically recalculated period 
of time. The conceptual scheme of GAHEFT can be 
viewed in Fig. 1. 

GAHEFT consists of two main stages: 
generation of the initial solution with a fast, list-
based heuristic and improving it with a more precise 
meta-heuristic while the first part of the generated 
schedule on the first stage is executing. The whole 
procedure is the following. When rescheduling is 
needed because of the generation of some event, 
such as resource crash (the ‘Event received’ block in 
Fig 1.), the scheduler updates information about the 
state of the environment (‘Get actual state of 
resources’), then it executes HEFT which generates 
an initial solution (‘Run HEFT’). There are 
situations when GA has been started because of a 
previous event occurrence and has not reached a 
sufficiently good solution at the present time; in this 
case we interrupt its execution (‘Stop GA’) and run 
the HEFT procedure (‘Run HEFT’). 

  

 

Figure 1: GAHEFT scheme. 

HEFT execution is a very cheap operation in 
terms of execution time and takes almost nothing in 
comparison with meta-heuristics like GA. On the 
next step, the scheduler applies HEFT’s plan to 
workflows execution, determines the time available 
for GA performance, sets the state to unchangeable 
for all the tasks which are started in the determined 
time window(‘Determine period for GA execution 
and fixed window’),and runs GA to improve the 
schedule for the tasks out of the fixed window(‘Run 
GA in background’). With the term ‘fixed window’ 
we mean the time interval which starts with the 

resuming of interrupted workflow execution until 
the point of some task finishing. It should be noted 
that GA is running in the background, i.e. in parallel 
with the execution of computational tasks on 
resources, and every iteration it saves the best found 
solution to storage(‘Periodically save data to 
storage’) as it can be interrupted in the middle of the 
current generation computation because of the end 
of the fixed window. In this case, an appropriate 
event will be generated and the algorithm will pass 
by the block ‘Is it a signal to GA solution?’If a fail 
occurs during execution of any fixed task in the 
fixed window, GA will be interrupted and the 
scheme will be started again (as explained 
previously).When the final task of the fixed window 
is finished, GA is stopping and the best solution is 
extracted from storage (‘Get result of GA from 
storage’). It will be applied if it is better than the 
HEFT solution generated during the first stage. As it 
was shown in our previous work, use of this hybrid 
algorithm may lead to makespan improvement up to 
25% in comparison to standard HEFT algorithm and 
up to 10% in comparison to GA. For GA, we use 
two-dimension chromosomes. The first dimension 
represents computational resources where tasks of 
the workflow have to be executed and the second 
dimension is the order sequence of the workflow 
tasks. Because of the existence of the tasks’ 
precedence order and transfer costs between related 
tasks, it is important to have representation of a 
second dimension and be able to manage it. Detailed 
information about chromosome structure and other 
genetic operators can be found in Yu and Buyya 
(2006). 

3.3 IGA 

Despite all of the advantages of the proposed 
GAHEFT algorithm, there remains a critical point to 
provide a better solution as quickly as possible. 
Since GA has only hard-limited time to find 
improved solutions and may be interrupted on any 
iteration when this time is expired, it must be revised 
in order to increase convergence speed to deliver a 
more suitable solution faster. To resolve this 
problem we propose the following nature-inspired 
approach. Different kinds of environmental changes 
— e.g., failures of resources, task fails, adding new 
resources, and excess of estimated execution or 
transfer times — can be seen as disasters of different 
scales like ones that occur in nature. Populations in 
nature under such circumstances, and depending on 
the scale of a disaster, either adapt to new conditions 
and change, lose features of their individuals or get 
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replaced by populations of other more fit 
species(Graham, 1994). An example of the first way 
in nature is described in (Zimmer and Douglas, 
2013),. The essence of it is the following. The 
poison for defence of seeding from insects kills huge 
amounts of insects, but there is some amount of the 
insects that do not get enough of the poison to be 
killed or which have specific genes to effectively 
resist the poison. Such individuals of the population 
will gain a significant edge on their fellows and 
increase their proportion in the population in 
subsequent generations, providing a resistance to the 
poison. For the second way there is the classic 
example of dinosaurs and mammals. Graham (1994) 
highlights that survived dinosaurs could not find 
their usual food to eat after the meteor strike because 
it had been destroyed; whereas mammals could eat 
insects and aquatic plants, which were relatively 
intact. 

So, in our case we can take the last population 
from the previous run of the algorithm and try to 
adapt it to new conditions. When changes are not so 
dramatic— for example, we lose resources with a 
relatively small number of scheduled tasks — it may 
happen that a modified inherited parent is closer to 
the optimal solution than the new generated ones. It 
means that acceptable-by-quality solutions can be 
found in several generations and provides significant 
performance for algorithm execution time. In 
contrast, if resource with many tasks fails, then this 
procedure will serve as a randomized heuristic for 
creating an initial population. Currently, we do not 
consider impact of workflow structure on the 
performance of this procedure and leave that to our 
future works. Pseudo code of our adaptation 
procedure for resource failures and our proposed 
approach are shown on Fig. 2. 

 
INPUT: storage s, finished tasks fsts , failed tasks flts, alive 
  nodes alns, added nodes addns, failed nodes fns. 
OUTPUT: initial population for the next run. 
# get the population of previous GA execution 
GET inherited population ip FROM s; 
      FOREACH individual ind IN ip DO: 
REMOVE fsts and flts FROM ind; 
# handle the nodes which didn’t exist 
          in resource set for previous GA run 
FOREACH node n IN addns  DO: 
 ADD n to the chromosome of ind       
       # move left tasks from failed nodes to available nodes 
FOREACH node n IN fns DO: 
          tasks = GET all tasks scheduled TO n  
FOREACH task IN tasks DO: 
               K = RANDOM node FROM alns or addns; 
    M = RANDOM new place IN order seq of node K; 
MAP task to node K IN position M; 
RETURN inherited population; 

Figure 2: Chromosome adaptation procedure. 

Depending on the circumstances of the 
environment at the moment of the failure, it may 

happen that the time available for rescheduling is 
enough to run GA without providing temporary 
solutions. An example of such situation is illustrated 
on Fig. 3. In the end of T9 task execution, the R2 
resource crash has occurred and tasks T7 and T10 
have to be remapped on other computational 
resources as their resource is no longer available. 
The algorithm has determined the duration of a fixed 
window from the red line to the green line(the block 
‘Determine period for GA execution and fixed 
window’ in Fig. 1) that is illustrated in Fig. 3. In this 
time interval no task will be finished so the 
algorithm can run GA without generating a temporal 
HEFT schedule. 

 

Figure 3: Rescheduling example without HEFT. 

3.4 IGAHEFT Scheme 

As described earlier, adaptation can be applicable 
for the GAHEFT algorithm, too. Indeed, in order to 
make it possible to use the proposed procedure for 
GAHEFT, we only need to account for changes 
made by HEFT’s fixed window. In order to do this, 
we have to remove all tasks of HEFT’s fixed 
window from chromosome of each individual of the 
inherited population and account for tasks which 
have been scheduled by HEFT to newly added 
resources. The modified adaptive procedure is 
presented in Fig. 4. 

 
INPUT: storage s, finished tasks fsts , failed tasks flts,  
alive nodes alns, added nodes addns, failed nodes fns,  
heft’s fixed window hw. 
OUTPUT: initial population for the next run. 
# get the population of previous GA execution 
GET inherited population ip FROM s; 
FOREACH individual ind IN ip DO: 
REMOVE fsts and flts FROM ind; 
REMOVE all tasks OF hw FROM ind; 
SAVE info about scheduled tasks FROM hw to account it by 
fitness function; 
# handle the nodes which didn’t exist in resource set for previous GA run 
FOREACH node n IN addns  DO: 
ADD n to the chromosome of ind       
       # move left tasks from failed nodes to available nodes 
FOREACH node n IN fns DO: 
          tasks = GET all tasks scheduled TO n  
FOREACH task IN tasks DO: 
                K = RANDOM node FROM alns or addns; 
                M = RANDOM new place IN order sequence of node 
K; 
MAP task to node K IN position M; 
RETURN inherited population;

Figure 4: Chromosome adaptation for GAHEFT. 
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This approach is based on the following rationale. If 
workload is large enough and HEFT’s fixed window 
touches only a relatively small amount of tasks, then 
the impact produced by HEFT may be relatively 
small and adaptation of chromosomes of the 
inherited population will not change it too much. 
Applicability of this scheme may be higher if we 
have workload consisting of several different 
workflows. 

3.5 MPGAHEFT Scheme 

During our investigations we also tried to reduce 
algorithm execution time and increase the reliability 
of the scheduling process from failure of 
computational resources where the scheduler is 
executed. Also, Nguyen et al. (2012) highlight that 
multi-populational schemes are increasing in 
popularity and receiving much attention from the 
scientific community of evolutionary dynamic 
optimization. 
 

 

Figure 5: MPGAHEFT scheme. 

Firstly, we divide the whole population of GAHEFT 
into three subpopulations and evaluate them 
separately from each other. Using this approach 
provides a possibility to parallelize GA through 
several computational resources and allow the whole 
evolution process to continue its running if any 
failure occurs. Also, it may help to discover different 
areas of searched space and make the final solution 
better; i.e., it can serve the purpose of increasing an 
individual’s diversity. Randomly chosen 5% of 
individuals for every subpopulation migrate each 10 
generations. Secondly, we made the initial 
generation for every subpopulation different. The 
first subpopulation is randomly initialized as it is 
done in the GAHEFT algorithm. The second 

subpopulation is initialized from adapted best 
individuals of the inherited population. The inherited 
population for every algorithm’s run is formed by 
the following scheme: all final subpopulations are 
collected in one, then the individuals are sorted by 
decreasing fitness values and the best representatives 
are taken to the new run. For the third 
subpopulation, we take the solution generated by 
HEFT and apply random mutations. The scheme of 
the modified algorithm is presented in Fig. 5. 

The scheme is almost the same as for the 
regular GAHEFT case, but several blocks are added. 
After the end of the first stage (‘Determine period 
for GA execution and fixed window’) MPGAHEFT 
gets new populations from initializers which run in 
parallel and create populations in the separated 
islands (‘Determine initializers’, ‘Random 
initializer’, ‘Inherited population initializer’, and 
‘HEFT-based initializer’). The rest of the scheme is 
the same as GAHEFT's one.  

4 EXPERIMENTS 

In order to verify our approach, three experiments 
were done for the case of resource crashing as it is 
the most frequent reason of changes in such 
environments. GA parameters are: population 
size,50; generations count, 100; crossover 
probability, 0.8; replacing mutation probability, 0.5; 
sweep mutation probability, 0.4; selection, 
tournament 4 individuals. We tested our algorithms 
on the well-known Montage workflow (Deelman et 
al., 2004) with different task counts: 35, 50, 75, 100. 
For our experimental study we determine 
computational cost of every task in the workflow as 
a content of runtime attribute from the xml 
multiplied by a constant value (20). For any two 
different resources, transfer cost is a constant greater 
than zero. No one task can be parallelized; it is 
computed only on one computational resource at one 
single moment of time. Every computational 
resource has a predefined value of power in flops 
unit per unit of time. For experiments, the set of 
resources consists of four resources with the 
following characteristics of computational power: 
10, 15, 25, and 30. The specification of the computer 
used for the experimental study is: Intel core 2 
Q6600 2.4 GHz, 6GB RAM, Windows 7 64bit. 

4.1 GA and IGA Case 

In the first experiment, we compared the GA 
algorithm with IGA, which uses inherited population 
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for initialization step. The results are presented in 
the Fig.6.a. In this experiment, Montage with 100 
tasks (m100) was used. Several tasks of m100 were 
chosen (0, 10, 20, 40, 50, 70, 90) and failures of 
random computational resources were simulated. 
Every point on the presented graphs corresponds to 
the average value of 100 runs. 
 

 

Figure 6.a: IGA makespan improvement in comparison 
with regular GA (ID 00-70). 

 

Figure 6.b: IGA(red) and GA(green) makespans. 

The graphs show that IGA has a higher 
convergence rate than regular GA provides. The 
results generated by IGA on the 20th iteration are 
better in most cases than the same generated by 
regular GA. On the other hand, solutions generated 
by IGA even on the 5th–10th iteration can be 
applied to the scheduling by acceptable makespan 
values (see Fig.6.b). It has more than 97% of the 
optimal value for the ID00 case and more than 
98.5% for ID20. For the failed ID00 case, the result 
of GA becomes close enough to the IGA solution 
only on the 50th iteration. For the ID70 case, the 
result achieves the same values only on the 90th 
iteration; for the ID40,after the 30th iteration. For 
failures simulated on the ID90 step, GA-generated 
results are better than IGA has, but the final 
difference is approximately1–2%and IGA results are 
still good enough to be used. This can be explained 
by the fact that, when failure occurs on the ID90, 

there are only a few tasks that still should be 
rescheduled and random diversity in the initial 
population can produce closer solutions to the 
optimal one than the population with inheritance. 

The generation of initial solutions and adapting of 
inherited population take small time in comparison 
with the evolution process and equals approximately 
50–100 ms. For example, for ID00(Fig. 6.a) it can be 
seen that the performance of GA and IGA becomes 
equal only approximately 18–20 s from the start. 
Thus, the result gained by IGA with 25 iterations 
after 8.2 s can be achieved by GA only with 60 
iterations after 19.8 s .Execution time decreases with 
increasing task number because of the fact that it 
depends on the count of tasks that need to be 
scheduled. 

For an experiment with a bigger workflow 
Montage with 250 tasks we used a different 
configuration of computational resources: 2x10, 
2x15, 2x25, and 2x30, due to the fact that a crash of 
any resource in the previous configuration leads to 
very dramatic changes in the schedule because of the 
workflow size.  

 

 

Figure 7: IGA makespan improvement in comparison with 
regular GA(Montage 250). 

The approach shows better performance in 
comparison with regular GA (see Fig. 7). 

4.2 GAHEFT and IGAHEFT Case 

In the second experiment, the GAHEFT algorithm, 
which uses a randomly generated initial population, 
and modified GAHEFT, which takes a previously 
generated population for its initialization, are 
compared. The results are presented in Fig.8 

For the GAHEFT algorithm, the high speed of 
convergence is an important aspect. So, it is 
preferred to generate as good a result as possible on 
the first iterations. The experiment shows that the 
results which are generated by GAHEFT with the 
inherited population (IGAHEFT) on the 20th 
iteration are better than the ones generated by 
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GAHEFT. Also, for most cases GAHEFT could 
achieve as good a result as IGAHEFT only on the 
25th–30th iteration. GAHEFT with random initial 
population generates better results for the ID00 case. 

 The final difference is about 5%, so the results 
on this task generated by IGAHEFT are still good 
enough to be used. As in the previous experiment, 
for the ID90 case IGAHEFT does not outperform 
GAHEFT because of the relatively small search 
space, where the randomized heuristic output is 
closer to the optimal one. 

 

 

Figure 8: IGAHEFT makespan improvement in 
comparison with regular GAHEFT(ID 00–70). 

The results of makespan improvement for 
IGAHEFT in most cases are worse than the ones for 
GAHEFT, especially for the tasks that are closer to 
the beginning of workflow execution. This can be 
explained by the fact that when the failures of the 
resource occur at the beginning of the workflow 
there is a high possibility that many other tasks have 
been scheduled on the failed resource. In contrast, 
when a resource with the task from the middle of 
workflow execution fails, fewer tasks need to be 
moved to the other resources. In the case of 
GAHEFT we have a “fixed window, which can be 
dynamically or statically set. In the case of a 
predefined static interval equal to 6, the results 
show3.5–4 % of profit on ID 10, 20, 40, 70 against 
regular GAHEFT in this limited time. Also, if the 
interval is shorter, then the profit is higher. 

For demonstration purposes we allowed the 
evolution process to continue for 100 iterations. On 
ID 50 (as well as ID 90), the difference between 
IGAHEFT and GAHEFT at the point of deadline is 
not sufficient. But, in the case of a dynamic “fixed 
window,” when the interval depends on the 
remaining part of work, it can decrease and provide 

better performance in comparison with regular 
GAHEFT too. 

For larger workflow Montage with 250 tasks we 
got better performance too (see Fig. 9). 

 

 

Figure 9: IGAHEFT makespan improvement in 
comparison with traditional GAHEFT(Montage 250). 

4.3 Multi-populational Case 

Also, we compared our multi-populational algorithm 
with regular GAHEFT. We chose several tasks and 
simulated failures of random resources and applied 
the both algorithms to reschedule. The notation 
AxB, for example 20x3, means that MPGAHEFT 
uses 3 subpopulations and each one has 20 
individuals whereas GAHEFT uses a single 
population with 60 individuals. The simulation was 
repeated 100 times for every chosen task for each 
workflow and then the mean value of all obtained 
results for every workflow is calculated. The 
migration scheme is circular with random choice of 
migrants. The results are on Fig.10. MPGAHEFT 
shows improvement for all cases varying from 
4.15% to 16.42%. The experiment demonstrates an 
efficient growing trend with decreasing of number of 
tasks in the workflow: from m100 (max=7.95%) to 
m35 (max=16.42%). This can be explained by the 
fact that the dimension of the solution space is 
smaller for workflow with 35 tasks and it is easier to 
find a better solution. The second emphasized trend 
is increase of the makespan improvement with the 
decrease of the count of individuals.  
 

 
Figure 10: MPGAHEFT makespan improvement in 
comparison with regular GAHEFT. 

Evolutionary�Inheritance�in�Workflow�Scheduling�Algorithms�within�Dynamically�Changing�Heterogeneous�Environments

167



For the 50x3 configuration, with a total 150 
individuals, the improvement ranged from 4.15% to 
11.25% while for 20x3 configuration the 
improvement ranged from 7.95% to 16.42%. By our 
investigations, this fact is also connected with the 
dimension of searching space and size of generated 
populations. 

5 CONCLUSION 

In this paper, various hybrid algorithm schemes for 
workflow scheduling in dynamically changing 
distributed computational environments are 
presented. They are modifications of GAHEFT 
hybrid algorithm, combining the best features of a 
list-based heuristic HEFT and meta-heuristic GA. 
The experiments show that the new algorithms are 
more effective than basic GAHEFT and can achieve 
better results up to16%. The experiments show that 
our nature-inspired approach based on reusing of 
inherited populations may lead to speed up in 
convergence and even help to generate better results. 
High rate of convergence is especially required in 
hard-limited time constraints, for example, in early 
warning systems scenarios. 
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