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Abstract: In this paper, mathematical aspects of stability, convergence and numerical implementation of two-

dimensional differential problem for incompressible fluid equations in “stream function, vorticity” variables
defined on a symmetrical template of finite-difference grid studied by method of a priori estimates are consid-
ered. Approximate boundary conditions for the vorticity are chosen in the form of Woods formula. In case
of a linear Stokes problem, it is shown that the numerical solution of the difference problem converges to the
solution of the differential problem with second order accuracy and two algorithms of humerical implemen-
tation, for which the rates of convergence obtained, are considered. In the case of non-linear Navier-Stokes
equations, estimates of the convergence of a solution of the difference problem to the solution of the differen-
tial problem, as well as estimation of the convergence of a considered iterative algorithm with the assumption

that the condition is equivalent to the condition of uniqueness of nonlinear difference problem are obtained.

1 INTRODUCTION the Tom’s formula for the calculation of incompress-
ible fluid flow (Li and Wang, 2003). In the paper

Sufficient number of scientific publications is de- (Voevodin, 1993) the absolute stability of the classi-

voted to the problems of numerical solution of two- cal implicit difference schemes for two-dimensional
dimensional boundary value problems for incom- Stokes equations is proven and stable direct and iter-
pressible fluid equations in “stream function, vortic- &tive methods for solving difference boundary value
ity” variables. Descriptions of the most well-known Problems by the method of operator inequalities are
computing technologies are used during the compu- Proposed.  In the paper (Voevodin and Yushkova,
tational experiments to study various flows of incom- 1999), on the basis of the method of splitting into
pressible fluid can be found in monographs (Chuhg, physical processes, the numerical method for solving
2002), (Hirsch, 2002), (Kwak and Kiris, 2013). As initial-boundary value problems for the Navier-Stokes
is known, the main difficulties encountered in the nu- €guations written in “stream function, vorticity” vari-
merical solution of the Navier-Stokes equations for an @bles is proposed. To solve systems of implicit dif-
incompressible fluid, associated with the implementa- ference equations, a modification of “two-field” cal-
tion of the boundary conditions for the vorticity. Gen- culation of the stream function and vorticity values is
erally, in practice, to find the values of the vorticity on US€d. The investigation of stability is conducted using
the boundary, formulas approximating the conditions the linear approximation of differential schemes. In
of adhesion and impermeability of the velocity com- the paper (Voevodin, 1998), using the method of & pri-
ponents in the physical formulation of the problems ©riestimates, itis shown that the solution of the differ-
considered are used (Danaev and Smagulov, 1991)€nce scheme converges to the solution of differential
(Vabishchevich, 1983), (Weinan and Liu, 1996). The equations on asymmetricgl grid pattern with the ordgr
most famous among them are Tom and Woods for- 0O(h%?) in the case of choice of the boundary condi-
mulas (Tom and Aplt, 1964) having first and second tion for the vorticity in form of Tom'’s formula on the
order accuracy, respectively, for determining the vor- boundary, wherér = maxy,hz), hy,h, are steps
ticity on the boundary. Sufficient number of papers of finite differential grid. Mathematical justification

devoted to theoretical and practical aspects of using of implicit iterative methods for their numerical im-
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plementation is given. Review of existing literature On the border
shows that in the case of selecting Woods formula to
calculate the values of the vorticity at the boundary
theoretical studies are virtually absent. Issues of con- Wo=Wen, =0, ke TN —1 @)
vergence of difference schemes have not been inves- - ' - ]
tigated. There are no estimates of the rate of conver-for the vorticity, boundary conditions are selected in

gence of iterative algorithms for numericalimplemen- the form of Woods formula (Rouch, 1980), for exam-

Ll-’()’m = LPNl,m = 0, me 1, N2 — 1,

tation of solutions of corresponding grid equations or Pl
existing studies cover only the case of linear differ-
ence schemes (Danaev and Amenova, 2013).

2 STATEMENT OF THE
PROBLEM AND
FINITE-DIFFERENTIAL
EQUATIONS

In adomaimD = {0 < x,y < 1} two-dimensional sys-
tem of stationary Navier-Stokes equations for an in-
compressible fluid of the following form is considered
(Rouch, 1980):

(Q%_L;>X_ <Q%_L:>y =VvAQ + f(xy), (1)

AY=Q, (xy) €D, )
with boundary conditions
oV
W= a_n - 07 (Xay) € aDa (3)

whereri is the outward normal to the boundary of the
domain,A is the two-dimensional Laplace operator,
Y is the stream functiorQ is the vorticity,v is a vis-
cosity factor, and (x,y) is a given function.

For approximation of equations (1), (2) in the
computational domain

Dh:{(khl,mhg), ke IN1—1 me l,Nz—l},

whereh; andh; are steps of the finite-differential grid
in the directions ok andy, respectively, the differen-
tial scheme on the symmetrical template of the fol-
lowing form is considered:

Lh(Q)W=vArQ+ f, 4)
MY =Q, (5)
where the differential operatdf, corresponds to the

approximation of convective terms of equations (1)
and is given in the form

L (Q)W = (ng) 4 (ng)g, (6)
here and furtheHJg, Y, means symmetrical differ-

ence derivatives in the directions wfandy, respec-
tively.
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3
—Wyom..., me LN — 1.

o ®)

1
QO,m + EQLm =

3 LINEAR DIFFERENTIAL
STOKESPROBLEM

Study of the stability and convergence of iterative al-
gorithms of numerical implementation of solving the
Navier-Stokes grid equations for an incompressible
fluid (4)-(8) is essentially based on the results which
can be obtained for the case of a linear Stokes prob-

lem.
AQ =f(x)y), 9)
AP =Q, (xy)eD, (10)

with boundary conditions of the form (3). Here, for
simplicity, we assume that= 1.

In this case relations (4),(5) can be presented in
the following form:

Qiy1,m— 2Qkm+ Qkfl,m_i_

AQxm =

ha2k.m h%

Q —-2Q Qxm
" K,m1 h12<,m+ km-1 _ fiem, (11)
2
Ahlpk,m _ LIJk+:L,m— ZLEIZQm‘i‘ LPkfl,m_’_
1

Y —2¥ W me

n k,m+1 km+ Fkm-1 — Qum, (12)

h3
kel,Nij—1 mel N,—1.

Hereinafter, the following well-known inequali-
ties will be used (Samarski, 1989)

2 2
Sol |u[[ < [|Enul[*, Sof [ul] < [[Anul],

8
h2

[[8nul}? <

|| Onul |2, (13)

0
which hold for any grid functiomu € Qp,, whereh =
min(hy, h2), & > 0 is minimal eigenvalue of the dif-

0
ference Laplace operatd@®,(Dy,) is the space of grid
functions with zero boundary values defined at the
grid Dy,.
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Let us investigate the stability of a solution of dif- 3.1 On the Convergence of Linear

ference problem (11),(12) with the boundary condi- Difference Stokes Problem
tions of the form (7),(8). The relation (11) is mul-
tiplied by W mhihz summed over the internal nodes  agqyming that the solution of differential problem

of grid Dy, next, using the formulas of summation by (9),(10) with the boundary conditions (3) has a suf-
E?Q;ts_gggt,tthe boundary conditions (7) we have the en-ficient smoothness required for our analysis, we will
yi iy

Np—1
Z (QomWxo,m— Qng,mWPxng,m) o+

m=1

Np—1
+ Z (QuoWyko — Qun, Wrikn, ) i+
K=

AP = (f,W).

Hereinafter,|| || is the norm of the grid function in
the spacé., (D).

Hence, using the boundary conditions of the form
(8), after simple transformations, we have

a2+ == 3 (1Qoml +1On.af%) +
m=

Ny —1

+ 5 (|Quol®+ |Qk,N2|2)> -
&

g

Np—1
D2(3 (P 0w anPle ()
m=1

Np—1
+ 5 (19 + D) )+
k=1

hih
e

No—1
1 ( zl ((Qo.m +Q1m)? + (Qnym+ QNl—l,m)2> +
e

N;—1
+ > <(Qk.0+Qk.l)2+(Qk.NzJFQk,Nz—l)Z)) =(f,¥).
K=1
Therefore, we can write
11
“ZARW|? < | (f,W)].
Sllanw|2 < |(f,w)

Hence, using the Cauchy-Bunyakovsky’s inequal-
ity, we obtain the estimation

18] < col| -

Here and below, we will designate the bounded posi-
tive constants non-dependent from the grid parameter

h1,hz by co.

study the order of convergence of the difference prob-
lem (7),(8),(11),(12) to the solution of the differential
problem.

Let us designate discrepancy of differential equa-
tions (11),(12) a, andQy, respectively, i.e.

Rh :Ath_ f (va)a

Qnh = LpWh—Qn, (Xy) € Dn,

where solutions of differential problem (3),(9),(10) in
nodes of finite-differential grid are designatediag
Qp.

Obviously, since chosen approximation formulas
for derivatives are symmetrical,

Rh=0(h?), Qn=0(h?), h=maxhy,hy).

Let us introduce the following designations:

P=WY—¥Y Z2=0,-Q.

Then for solution errors we have the following re-
lations:

DhZ = Ry, (15)
A® =Z+Qp (16)

with boundary conditions
P(x,y) =0, (X,y) € 0Dp, 17)

1 3
Zom+ zZ1m= —Pxom+Tom, - (18)

2 hy

m=1,N,— 1,

wherergm = rn,m = o = ren, = O (h?).

To obtain an estimate of convergence, let us mul-
tiply the relation (15) bydh;h, and sum over the in-
ternal nodes of gridDy,. In this case, the main energy
identity considering conditions (17) has the form

Np—1
(Z,Ah(D) + Z (ZO,mq)x,O,m - ZNl,m(D)T,Nl,m) h2+

m=1
N1
+ 5 (ZoPyko — Zn, Py, ) 1 = (Rn, ®).
=

Considering the relation (16) and the boundary
conditions (18) we will get:

) hy Np—1 ( 1
(An® — On, Ap®P +§ z [Zo,m Zom+ ézl,m—
m=1

1
=ZNj—1m— er,m)} ho+

—fo,m) + Zny m(Zng m+ >
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hy Ni—1 1
+3 z [Zk,o(zk,o + ézk,l — o)+

=
1
+ZN, (Zin, + 52Ny ~1— rk,Nz)] hy = (Rh, ®).

Applying simple transformations, we have:

Zk N,

11 2 % 2 2
IPIP< G F (Foml+[rnnf)hzt
. leqr 2+ |ren, 1) ha+
= k.0 kN 1
6 & ’
+1(Qn, 8n®)[ + [(Rn, ®)].
Using the %" inequality and relations (13), we
will get the inequality which holds for any positive
€1,&2:

&= €2) [ 8n® || < o (7~ thn2 |\Rh|\2)+

11
(5~
hih Np—1
162("g<rr0m|2+rrmmr £3 (ol + I )
Choosinggy, €2 satisfying condltlon

11

12
considering the order of smallness of values
Rn, Qn, fom, 'ngm, ko, fkN,, We finally have

3| An®|| < coh?,

—€1—6>0>0,

that is
|8n®]| < coh?,

which means that the solution of the difference
scheme convergesto the solutions of differential prob-
lem with the second order of accuracy.

3.2 Study of Convergence of Iterative
Algorithm |

For the numerical solution of equations
(7),(8),(11),(12) first we will consider iterative
algorithm of the following form (Algorithm I)

Qn+1 _ QE

T = B QR iy — fiems (19)
DRI = Qi (20)
with boundary conditions
W =0, (xy) € 0Dp, (21)
1 3 -
QL EQ”“ = h—wgglm, .meIN; -1 (22)

Hereinafter, for iterative algorithms, we assume that
initial values assignment for stream function is ex-
pected.
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Let us introduce designations
d)” = LP” m— Pms ZQm:Q”
whereW}

km Qi are solutions of differential prob-
lem (19)-(22) Lle m, Qim are solutions of differential
problem (7),(8),(11),(12).

Then for iteration errors we have the following re-
lations:

- Qk.n"h

Zn+1 _z7n
KM ANZE (23)
D@y =200 (24)
with boundary conditions
@™ =0, (xy) € 0D, (25)
1 3 -
Z(r)1+1+ 2Zn+1 _ h_cp%lm, m=1N,—1 (26)

We multiply the relation (25) by 1ZD”+1h1h2 and
sum over internal nodes of the gridy,. Considering
boundary conditions , we have

ITR®™ 42— [Ta®" |2+ | On(@™HE = O |2+
Nz—1 1 1
( z (ZO CDQJ(S,m — 2Ny, mcDQJlr\ll m) ho+
N3 1 1
+ z (Z¢o®lko — Zin, Phicns,) hl) +
+21(Ap®", Apd™ ) = 0, (27)
where

Ni—1 N

N1
10|12 = (z z D+ T Y [@gxml?)hahe,
k=1 k=1 m=1

0
V& € Qp(Dp).
Let us rewrite (27) in the following form

| @212 — || Cp®" 2+ | (@™ — @) 2+
No—1
+21( S (2B ®om — Zhy mPiny )2
m=1

Np—1
+ Z (ZRo®PYx0— ZQ,qu’%k,Nz)hl)JF

Np—1

+2T( Z (Z(r;,m(q)rHl - q)n)x,o,m—
m=1 :
_Z{\“l’m(q)nﬂ . ch)K,Nl,m) hy-+
Ny -1
—|—2T( z (leo(cbnﬂ ") 40—
k=1
—ZRp, (@™ — 0N, ) e+

+21(Ap®", Apd™ ) = 0. (28)
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Transforming the corresponding terms in the equation
(28) as in the case of the relationship (14) and consid-
ering known inequalities (13) after simple transforma-
tions we will get

10t
" 324 (1 1) On( @7 — )2

51
— 10"+ 5 (a0 2+ 20 "2) <

ot Nt
<2 >

1 m=1

+](P"F1— q’”)le,mlz) hiho+

(| (chJrl _ ¢n)x,0,m|2+

21 N1 -1

t5 )

hs &
H(@ME = dMgien, °) heha.

Therefore, under condition
10t
S~
the following inequality holds

IBA®™ | — (| Dh®"||*+

(1@ = @")ygicol+

>0, (29)

+ 20 (ohe™ 2+ [0h" ) <0
ie.
[On®™ | < qf| Ohe"|
where
1—'[[3 580
a= \/ 1+ 1B <L B=7%

Hence, we can conclude that when condition (29)
holds iterations by Algorithm | converge at a geomet-
ric rate with denominatog < 1. Thus, it is possible
to ensure that valug” < €, wheree the number char-
acterizing iteration accuracy if

1

2

3.3 Study of Convergence of Iterative
Algorithm [

n>np(€) =~ O( )In%.

Further, let us consider iterative algorithm of the fol-
lowing form (Algorithm I1)

Qn+1 _Qn
km - km BaQp = fim, (30)
DW= QL (31)
with boundary conditions
Wl — 0, (x,y) € dDp, (32)

3 yn

ntl
_L'Jx,o,ma .
h1

1 B
0vm+592’+ml= .meITN;—1. (33)

For iteration errors we have relationships

B B _ Dz, (34)
DRt =Z0 (35)
with boundary conditions
®"1 =0, (x,y) € aDy, (36)
2+ 320 = Sl METRGTL (37)

In this case, considering boundary condition (36)
the main energy identity has the form

1B 4|2 — [| O 4 || On(@™ 1 — ) 2

Np—1

213 (i hoh — ZR R )Nt
m=1
Nt 1 1 1 1
N+1 g+ n+1pn+
+ kzl (Zko PYxo— Zk,qu))T,k,Nz)hl) +

+2t)|ap@™ 12 = 0.

Considering boundary conditions (37) and trans-
forming it, we will get the inequality

2t
ITA®™H[? — || Tp "2 + (1 p)HDh@”*L o)+
11t
+?|\Ah¢”+1|\2 <0.
Consequently, under the condition
2t

we have that
[Op®™ | < [|0ne"]),
where

q= _ 1 <1

14+ 3% 7
i.e. we can conclude that when condition (38) holds,
iterations by Algorithm Il also converge at a geomet-
ric rate with ratioq < 1 and forng(g) the following
relation holds
1

n>no(€) ~ O(i%

1
)Ing.

0.
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4 STUDY OF BOUNDARY VALUE
PROBLEM FOR NON-LINEAR
NAVIER-STOKES EQUATIONS

Note that for the differential operatds, the fol-
lowing relations are valid (Danaev and Amenova,
2013)

[ (Ln(w)u, V)| < col| ][ [[Anull{|Anv], — (39)

(Lh(w)u,u) =0, Yu,v e §02h(Dh), (40)

wherecy is a uniformly bounded constant.

Due to the fact that the equation (40) holds, pro-
ceeding as in the case of the linear problem, we will
have a priori estimate of the solution for the solution
of the differential problem (4)-(8):

ViAWl < cof -

4.1 Uniqueness Condition of Solutions
Non-linear Differential
Navier-stokes Equations

Let us show that under the COﬂditimH—sz

solution of the problem (4)-(8) is unique.

Assume that there are two solutioftg1, Q1) and
(W2,Q2). Then for differencesp =W, — WY, Z =
Q; — Qp, we have the differential problem:

< 1, the

Lh(Q1)® + Ln(Z)W2 = VARZ,
A® =7,

with the following boundary conditions:

3 _
_(Dx,O,m, ...me 1, N2— 1.

1
®=0, Zom+ ézl,m e

We have

V[ 2|2 < |(Ln(Z)W2, ®)| < col An®[|?[anWo ||,

(v — coll AnWal|) [ An®|1* < O.

Hence, if

wlfll _,

V_COHAhLPZH >07 V2 )

(41)
then it should be
[An®]| =0,

i.e. the solution is unique.

418

4.2 Study of Convergence of Non-linear
Difference Equations

Assuming sufficient smoothness of solutions of the
differential problem (1)-(3), we will study the con-
vergence of the solution of grid equations (4)-(8).

Let us designate discrepancy of the differential
scheme (4) for the equation of motionRg and dis-
crepancy of the differential relation (5) &

Rh=Ln (Qn) Wh—VvAQh+ f (X,y), (XY) € D,

Qn = Bp¥h— Q.

where solutions of the differential problem (1)-(3)
in nodes of finite-differential grid are designated as
Wh, Qh.

Obviously, because chosen approximation tem-
plates of derivatives are symmetrical

Ra=0(n*), Qu=0(M"),

whereh = max(hg, h2).
Let us introduce

P=Wh—W Z=0Q,-Q.

Then for solution error we have following relation-
ships:

Lh (Qn) P +Ln(Z)W=VAZ+Ry,  (42)
Ap® =Z+Qp, (43)
with boundary conditions
®(x,y) =0, (x,y) € 0D, (44)
1 3 -
Zom+ 5Zim= —Pxom+Trom,... Me LN — 1,

2 hy
(45)
wherergm = rn,m = o = rkn, = O (h?).

In order to obtain estimation of convergence, we
multiply the relation (42) by® and sum by internal
nodes of gridD,. Then we apply Green'’s difference
formula, take into account the given condition (44),
and as a result, we have the following main energy
identity:

Np—1
V(Z20®)+ Y (Zom®rom— ZnymPngm) o
mM=1
Np—1
+ 5 (ZoPyko — Zin, Py, ) ot
K=1

+(Ry,®) = (La(2)W, ®).
Considering the relation (43) and boundary condi-
tions (45), we will get:

A O ) 1 S L,
V(ApD — Qn, A )-l-? ngl [Zo,m(zo,m—FE 1m—
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1
—rom) + Znym(Zng,m+ SZNy—-1m— er,m)} ho+

2
vhy Ni—1 1
+3 k; [Zk,o(Zk,o + Ezk,l —1k0) + ZicN, (ZicN,
1
+5 71 o) [+ (Re, @) = (Ln(@)W, ).

Hence, we will get inequality:

11 2 vhihy No—1 2 2
12180017 < =2 (5 rouml?+Irnenf®)+

Ni—1
+ 5 (Ireol®+ Ifk,Nzlz))+
k=1

V[ (Qn, L0 @) | + [ (Rn, @)[ + [(Lh(Z) W, ®).
Applying the ‘€” -inequality and the inequality
(39) for the operatolcy,, we have

11
(1—2v Ver — g2 = Coll AW (1 +€3) ) [ nJ2 <

AW
Q24 R 24 o LM
4ez €3

_48 H

h]_h2 — N;—1
+T( S rom + Inwm) + T (ko2 + Irkngl?)):
m=1 k=1

Choosing positive parameteasg ¢, €3 satisfying the
inequality

11
1—2v ver — €2 — Co||ApW||(1+-€3) > 6> 0,

we have

(46)

3| Ap||?> < Mh*,

where 0< M < o uniformly bounded constant non-
dependent from grid steps.
Therefore,
18n®|| < coh?

i.e. under the condition (46) which is equivalent to

the unigueness condition (41), the solutions of differ-
ential equation (4)-(8) converge to the solution of the
differential problem as in the case of the linear Stokes

problem with the second order of accuracy.

4.3 Study of Convergence of Iterative
Algorithm for Non-linear Problem

To find a numerical solution of the differential prob-
lem (4)-(8), let us consider the iterative algorithm of
the following form:

Qn

Qn+1 _
FLa( QMY =vAQ" + f,  (47)

Qn+1

AW = (48)

with boundary conditions

qJO(Xv y) = LPO(Xa y) = 07 (Xa y) S Dh
W =0, (xy) € oDp, (49)
Qi+ Q“+1 = hiw;‘glm, meLN;—1 (50)

Let us show that the solution of differential
scheme (47)-(51) converges to the solution of the dif-
ferential problem (4)-(8) and we obtain estimation of
the convergence rate.

For iteration errors, we have the relations:

Zn+1 _zn
+Lh(Q)®" + Ln(Z")® = vAnZ", (51)
ApmL — z+ (52)
Wl _ 0 (xy) € dDp, (53)
1 3 TN
2t 22n+1 - =R, meTN,— 1. (54)

We multiply (51) by 20"*! and sum by nodes
of the grid.. Considering conditions (53) we have the
following identity

IBA®™ 22 = [ Oh®"|2 + || Dn(@" — )|+

+TV(An®", A ™)+
No—1

+2W( Z (Z&mq’%}m B

m=1

Zpll,mq)%Tﬂi,m) h2+

N -1
1 1
+ z Zkoq’gto ZE,qu);T( Nz)hl) =

+21(Lp(ZM)W, ™),

Considering boundary conditions (54), applying
simple transformations, and applying known inequal-
ities (13) we will get

IBA®™ 2 — || D" 2+

5tv

+ V]| A" 2 4 == [ An0" |2~

B 10tv

—(I-T

Np—1
(3 (@ = @Myom|*+
(nzl(‘ xOm’
n+1_ pny_ 2y Nt N+l _ pn 2
(@M al®) + T ([(@F - 0"ykof*+
k=1

+‘ (CDn+l — (Dn))T,k,Nz ‘2) hihy+

gry [M-2No-1
+1-T 5 S 10k - Ohnl?)+
k=2 m=1
Ny —1Np—2
+5 > (l‘Dﬁlm {%k,m|z)}h1h2§
k=2 m=1
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< 21Co/|Bn W [[an®" [ [[An®™ .
Therefore, under the condition

10tv

1=

we have the following inequalities

IBA®™ | — [ Dh®"||*+

>0, (55)

5w
6
< ol AW (18n®™ 2+ [[an®" ),

+1V||AnP" Y12+ == || and"|1? <

|On®™ 12 — || Ond" ||+
+T(v — Col| AW ) || An®™ 2+

5 n
v — <
(v~ colln ) 24" <0,
(24 180(v — coflan]) 30" <
5
< (1—r60(év—co|\AhLP|))|Dh¢”||2.
Assume that

5
2y~ coll W] = 5> 0,

5 (56)

then
[Ta®@™ | < qf| One"|

1—T505
9=\ 15w <t

Therefore, when condition (55) at chosen param-
eterst, h and the inequality (56) both hold iterations

where

converge at a geometric rate with denominator less

than one and fomp(€) as in the case of the linear prob-
lem following relationship is valid

1.1
n>np(€) ~ O(ﬁ)ln =

5 CONCLUSION

In the paper, the study of the differential scheme writ-

ten on a symmetrical grid pattern and methods of their

numerical implementation for an incompressible fluid
for equations in case of the choice of boundary con-
ditions for grid values of the vorticity at the boundary
by Woods formula are conducted. It is shown that the

order of accuracy of the differential scheme in case of

the choice of the Woods formula is better in compari-
son with the case of using the Tom’s formula. For the
Stokes difference problem, two algorithms for the nu-
merical implementation of the solution of the differ-

boundary conditions on the iteration layers is studied.
In the case of the non-linear Navier-Stokes problem
for the considered iterative algorithm, it is shown that
the assumption of certain conditions which are equiv-
alent to the uniqueness condition of the differential
problem, the convergence rate coincides with the con-
vergence rate in the case of the linear Stokes problem.
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