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Abstract: Although artificial neural networks can be a very effective classification method, one of the drawbacks of
their use is the need to manually prescribe the neural network topology. Recent work has introduced the
ANN-Miner algorithm, an Ant Colony Optimization (ACO) technique for optimizing the topology of arbitrary
FFNN’s, i.e. FFNN’s with multiple hidden layers, layer-skipping connections, and without the requirement
of full-connectivity between successive layers. In this paper, we explore the use of several classification
quality evaluation functions in ANN-Miner. Our experimental results, using 30 popular benchmark datasets,
identify several quality functions that significantly improve on the simple Accuracy quality function that was
previously used in ANN-Miner.

1 INTRODUCTION

Feed-Forward Neural Networks (FFNN) are a popular
and effective pattern classification technique. How-
ever, one drawback of FFNN’s is the need to manually
prescribe the neural network topology. Even if one’s
attention is restricted to three-layer FFNN’s with full-
connectivity between successive layers and no layer-
skipping connections, then one only needs to select
the number of neurons in the single hidden layer. If
one allows for arbitrary feed-forward topologies, then
optimizing the network topology becomes more chal-
lenging.

Recent work has introduced the ANN-Miner algo-
rithm (Salama and Abdelbar, 2014), an Ant Colony
Optimization (ACO) technique for optimizing the
topology of arbitrary FFNN’s, i.e. FFNN’s with mul-
tiple hidden layers, layer-skipping connections, and
without the requirement of full-connectivity between
successive layers. In this paper, we explore the use
of several classification quality evaluation functions
in ANN-Miner. Our experimental results, using 30
popular benchmark datasets, identify several quality
functions that significantly improve on the simple Ac-
curacy quality function that was used in the original
work on ANN-Miner (Salama and Abdelbar, 2014).

2 FEED-FORWARD NEURAL
NETWORKS

Feed-forward neural networks (FFNN) are widely ac-
knowledged as being one of the most popular methods
for pattern classification. The most common FFNN
topology is a three-layer topology in which neurons
are arranged in an input layer, a hidden layer, and an
output layer. Commonly, there are connections be-
tween every neuron in a layer to all the neurons in the
succeeding layer.

Most commonly, each neuroni is a simple com-
putational unit which acceptsr inputso1, . . . ,or , and
produces a single outputoi :

neti =
r

∑
i=1

wi j o j +θi , (1)

oi = σ(neti) = a · tanh(b ·neti) , (2)

where each inputo j is the output of a neuron in the
previous layer, the weightwi j represents a real-valued
weight between neuronj and neuroni, θi represents
a weight associated with neuroni itself called the
neuron’s “self-bias,” andσ is anactivation function
that is most commonly selected to be the sigmoidally-
shaped logistic function shown in Eq. (2).

A FFNN with n input neurons andm output neu-
rons computes a mappingRn 7→ Rm. In a classifica-
tion problem, the training setT consists of a number
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of labelled patterns. Each training patternx is ann-
dimensional input vector of real values, and the label
is an m-dimensional output vectory. The k-th ele-
ment iny that represents the class of patternx is set to
1, while the other(m−1) elements iny are set to 0.
The aim is to train a FFNN, given the training setT ,
to be able to correctly classify (predict the label of)
a new unlabelled pattern. For that, each training pat-
ternx is, in turn, applied to the input layer of the net-
work, the signal is allowed to propagate through the
network, and the output of the network, denotedy′,
is compared to the desired outputy to determine the
error of the network for that pattern, denotedEx. A
common error function is the simple Sum of Squared
Error (SSE) function, defined as:

Ex =
1
2

m

∑
i=1

(y− y′)2 , (3)

where the total error is simply:E = ∑x Ex.
Perhaps the most popular neural network training

algorithm is the gradient descent based Backward Er-
ror Propagation (BP) algorithm which is based on re-
peatedly applying the training set to the network (each
full pass through the training set is called anepoch),
computing the errorE, and then modifying each ele-
ment of the weight vector according to:∆wi =−η ∂E

∂wi
,

whereη is the learning rate parameter. Commonly,
FFNN applications use a simple three-layer network
topology, with full connectivity between layers.

3 ANT COLONY OPTIMIZATION

Swarm intelligence is a branch of soft computing
in which a wide variety of biological collective be-
haviours are applied to solve optimization problems.
Ant Colony Optimization (ACO) was defined as a
meta-heuristic for combinatorial optimization prob-
lems (Dorigo and Stützle, 2004), inspired by the be-
haviour of natural ant colonies. The basic principle of
ACO is that a population of artificial ants cooperate to
find the best path in a graph, analogously to the way
that natural ants cooperate to find the shortest path be-
tween two points like their nest and a food source.

In ACO, each artificial ant constructs a candidate
solution to the target problem, represented by a com-
bination of solution components in the search space.
Ants cooperate via indirect communication, by de-
positing pheromone on the selected solution com-
ponents for a candidate solution. The amount of
pheromone deposited is proportional to the quality of
that solution, which influences the probability with
which other ants will use that solution’s components
when constructing their solution. This contributes to

the global search aspect of ACO algorithms. The pop-
ulation of ants searches for the best solution in par-
allel, thus exploring possibly different regions of the
search space at each iteration of the algorithm. This
increases the chances of finding a near-optimal solu-
tion in the search space.

ACO has been successful in tackling the clas-
sification problem of data mining. A number of
ACO-based algorithms have been introduced in the
literature with different classification learning ap-
proaches. Ant-Miner (Parpinelli et al., 2002) is the
first ant-based classification algorithm, which dis-
covers a list of classification rules in the form of
IF-Conditions-Then-Class. The algorithm has
been followed by several extensions in (Parpinelli
et al., 2002; Salama et al., 2011; Salama et al., 2013;
Otero et al., 2009; Otero et al., 2013).

ACDT (Boryczka and Kozak, 2010; Boryczka and
Kozak, 2011) and Ant-Tree-Miner (Otero et al., 2012)
are two different ACO-based algorithms for inducing
decision trees for classification. Salama and Freitas
(2013a; 2013b) have recently employed ACO to learn
various types of Bayesian network classifiers.

As for learning neural networks, the ACO meta-
heuristic was utilized in two works. Liu et al. (2006)
proposed ACO-PB, a hybrid of the ant colony and
back-propagation algorithms to optimize the network
weights. It adopts ACO to search the optimal combi-
nation of weights in the solution space, and then uses
the BP algorithm to further fine-tune the ACO solu-
tion. Blum and Socha applied ACOR, an ant colony
optimization algorithm for continuous optimization
(Socha and Dorigo, 2008; Liao et al., 2014), to
train feed-forward neural networks (Socha and Blum,
2007).

4 THE ANN-Miner ALGORITHM

As discussed previously, the three-layer fully-
connected FFNN topology is the most commonly
used FFNN topology. ANN-Miner (Salama and Ab-
delbar, 2014), a recently proposed ACO algorithm for
learning FFNN topologies, allows connections to be
generated between hidden neurons and other hidden
neurons — under the restriction that the topology re-
mains acyclic — as well as direct connections be-
tween input neurons and output neurons. This allows
producing networks with a variable number of layers,
as well as arbitrary connections that skip over layers.

As for the problem at hand, a candidate solution
is a network topology, and the solution components
are the possible connections (between input and hid-
den neurons, between hidden and output neurons, be-

ECTA�2014�-�International�Conference�on�Evolutionary�Computation�Theory�and�Applications

138



tween input and output neurons, and connections be-
tween different hidden neurons). Each potential con-
nectionc= i→ j, connecting between neuronsi and
j, has two solution components in the construction
graph:Dtrue

c , representing the decision to include con-
nection i → j in the current candidate topology be-
ing constructed by the ant, andD f alse

c , representing
the decision not to include the connection. There-
fore, the construction graph can be represented as a
two-dimensional 2× |C| array, where 2 refers to the
Boolean solution components, andC is the set of the
available connections.

The number of input neurons and output neurons
depends on the dataset and the representation that is
used for the attributes of the dataset, while the total
number of hidden neurons is an external user-supplied
parameter. Suppose the total number of neurons isN,
with Ni input neurons,No output neurons, andNh po-
tential hidden neurons.Ni ×Nh, Nh×No andNi ×No
are the number of available connections between in-
put and hidden neurons, hidden and output neurons,
and input and output neurons, respectively, in the total
available number of connections|C|. This means that,
for instance, an ant can select (or unselect) a connec-
tion between any input neuron and any hidden neuron.
The same applies for the two other connection types.

However, the available connections between the
hidden neuronsNh are defined as follows. In order to
ensure that the topology is acyclic, we impose the re-
striction thati → j is not available ifi ≥ j. In other
words, each hidden neuron has a numeric index, and
we only allow connections from a given hidden neu-
ron ni to a higher-numbered neuronn j . It is well-
known that any directed acyclic graph is isomorphic
to a graph where the nodes are lexicographically or-
dered and for all arcs(u,v) in the graphu precedesv
in the lexicographic order. Hence, the number of the
available connection between theNh hidden neurons
is: (Nh−1)+ (Nh−2)+ ...+1+0= Nh(Nh−1)/2.

The overall process of ANN-Miner is illustrated in
Algorithm 1. In the initialization step of ANN-Miner
(line 3), the amount of pheromone assigned to each
solution componentDa

c – wherea can be true or false
– in the construction graph is initialized with the value
0.5. Hence, for each connectionc, the probability of
including i → j (i.e. selectingDtrue

c ) in the topology
equals the probability of not includingi→ j (i.e. se-
lectingD f alse

c ).
In the innerfor-loop (lines 6-12), eachanti in the

colony creates a candidate solutionNNi , i.e. a com-
plete neural network (line 7). Then the quality of the
constructed solution is evaluated (line 8). The best
solutionNNtbest produced in the colony is selected to
update the pheromone trail according to the quality

Algorithm 1: Pseudo-code of ANN-Miner.

1: Begin
2: NNbs f = φ; t = 1;
3: InitializePheromone();
4: repeat
5: NNtbest= φ; Qtbest= 0;
6: for i = 1 → colony size do
7: NNi = anti .CreateSolution();
8: Q(NNi) = EvalQuality(NNi,Tv);
9: if Q(NNi)> Q(NNtbest) then

10: NNtbest= NNi ;
11: end if
12: end for
13: U pdatePheromone();
14: if Q(NNtbest)> Q(NNbs f) then
15: NNbs f = NNtbest;
16: end if
17: t = t +1;
18: until t = max iterations or Convergence();
19: NNf inal = PostProcessing(NNbs f);
20: return NNf inal ;
21: End

of its solutionQ(NNtbest). After that, the algorithm
compares the iteration-best solutionNNtbest with the
best-so-far solutionNNbs f (the if statement in lines
14-16) to keep track of the best solution found so far
during the algorithm execution.

After the outerrepeat-until loop terminates (lines
4-18), the best-so-far neural network undergoes a
post-processing step to produce the final neural net-
work NNf inal to be returned by the algorithm. Ba-
sically, the algorithm learns the final weights of the
connections in the neural networkNNbs f — which
represents the best topology found during the ACO
search process. The standard BP procedure, described
in Section 2, is used to trainNNbs f and learn its fi-
nal weights. The only difference is that, instead of
having BP work on the conventional three-layer fully-
connected network topology, it works on the arbitrary
topologies constructed by ANN-Miner.

The process of an ant creating a new candidate so-
lution (neural network) is described in Algorithm 2.
The procedure starts with an empty (edge-less) neu-
ral network (line 2) to be constructed throughout the
procedure. In addition, an empty arraySLN, which
represents the ant trail in the construction graph and
its selected solution components, is initialized. This
data structure is necessary for the pheromone update
procedure, as described later. For each connectionc
in the available set of connectionsC, the ant selects
Da

c to decide whether to include this connection in the
candidate networkNN or not (line 4) — by either se-
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lecting solution componentDtrue
c or D f alse

c . The selec-
tion of the solution component at each step is based on
the following probabilistic state transition formula

p(Da
c) =

τ(Da
c)

τ(Dtrue
c )+ τ

(

D f alse
c

) , (4)

wherep(Da
c) is the probability of selecting decision

Da for connectionc, andτ(Da
c) is the current amount

of pheromone associated withDa
c. Every selected so-

lution componentDa
c (wherea = true or a = f alse)

is added to the data structureSLN (line 5). How-
ever, only if Da

c = Dtrue
c , that is, the ant selected the

decision to include connectionc in the topology, the
corresponding connection(i→ j)c is appended to the
candidate networkNN (the if statement in lines 6-
8). After the ant visits all the available connections
in the construction graph and performs the include-
or-not decision, the network topology ofNN is now
complete.

Algorithm 2: Pseudo-code of solution creation.

1: BeginCreateSolution()
2: NN← φ ; SLN← φ;
3: for c= 1 → |C| do
4: Da

c = SelectDecisionComponent();
5: SLN= SLN∪ Dc;
6: if Da

c == Dtrue
c then

7: NN= NN∪ (i→ j)c;
8: end if
9: end for

10: InitNetwork(NN,NNbs f);
11: TrainNeuralNetwork(NN,Tl );
12: return NN;
13: End

The weights of the neural networkNN are then
initialized (line 10) as follows. For each connection
i → j in the topology of theNN network, if the con-
nectioni→ j is also present in the topology ofNNbs f
— the best trained neural network encountered so far
— then the weightwji associated with the connection
i → j is initialized with the value that it has in the
trained networkNNbs f. On the other hand, if the con-
nectioni → j is not present inNbs f, then the weight
wji is randomly initialized.

The idea here is to start the training of each
newly-created topology by building on the weights
of the best network we have generated so farNNbs f.
If the new network, after training, performs better
thanNNbs f, it will replaceNNbs f and its connection
weights will be used as initial values for performing
BP on subsequent networks. Of course, some connec-
tions in NN may not exist inNNbs f, in which case,

they are randomly initialized, as mentioned above.
Further, some connections inNNbs f may not exist
in NN. Such a diversion in the topologies maintains
the exploration aspect of the algorithm, while the ex-
ploitation aspect is realized by building on the best
weights learned in previous iterations.

After NN is initialized, it is trained (line 11) using
the BP procedure, with a relatively large learning rate
and a small number of epochs (see Table 1 for param-
eter settings). These are intended as “quick and dirty”
parameter settings meant to allow us to obtain a com-
plete neural network and evaluate its pattern classifi-
cation quality. The classification quality evaluation is
discussed in the next section.

5 EXPLORING DIFFERENT
QUALITY FUNCTIONS

A key objective of a classification algorithm is to learn
models with good generalization, that is, models that
are able to accurately predict the class labels ofnew
unknown patterns. Overfitting occurs when the in-
duced model reflects good classification performance
(fit) on the training (in-sample) data used in the learn-
ing process, yet shows bad predictive performance
(generalization) involving new/testing data.

Therefore, we split the training setT at the be-
ginning of the algorithm into two mutually exclusive
parts: 1) the learning setTl , which contains 80% of
the training set and is used to learn the neural network
topology and weights (line 11, Algorithm 2); and 2)
the validation setTv, which contains 20% of the train-
ing set and is used to evaluate the quality of the model
(line 8, Algorithm 1).

In this paper, we investigate several quality eval-
uation functions to be used in line 8 of Algorithm 1.
First, let us establish some notation. Letmdenote the
number of classes, ˆc denote the true (correct) class
for a given patternx (the element in the label vectory
where the value=1), andc denote the class that is pre-
dicted by the neural networkNN. We will assume that
the output of the network is anm-dimensional vector
y′ = o1,o2, . . . ,om of real values. The output vector of
NN can be transformed into a vectorp of class prob-
ability scores through a simple normalization:

pk = ok/
m

∑
j=1

o j . (5)

Hence, the predicted classc will be the labelk of the
output of theNN with the highest probability score
pk. We will use the notationf (NN|x) to refer to the
value of the classification measuref onNN given pat-
tern x, andQf (NN|Tv) as the quality ofNN, using
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classification measuref , on the full validation setTv.
Note thatQf (NN|Tv) is the actual pheromone amount
to be deposited in the pheromone update step (line 13,
Algorithm 1); the higher the value ofQf (NN|Tv), the
better the quality ofNN. Recall that the amount of
pheromone deposited is proportional toQ(NNtbest),
as follows:

τ(Da
c) = τ(Da

c)+ [τ(Da
c)×Q(NNtbest)] ∀D

a
c ∈ |SLNtbest|.

(6)
Note that, for quality functionf , if Qf is computed to
be less than zero, it is adjusted to zero, in order not to
allow negative pheromone values.

Example 1— suppose we have a patternx where
m= 3 andĉ= 1. Consider three candidate NNs with
the following probability score vectors given pattern
x: NN1(x) = (0.9,0.1,0), NN2(x) = (0.6,0.4,0) and
NN3(x) = (0.6,0.2,0.2). This example will be used
in the following subsections.

5.1 Accuracy

A simple, and perhaps the most widely used, classifi-
cation measure is accuracy. This is the quality mea-
sure that was used in previous work on ANN-Miner
(Salama and Abdelbar, 2014). For a given patternx,

Acc(NN|x) =

{

1 if ĉ= c,
0 if ĉ 6= c.

(7)

For an entire validation setTv,

QAcc(NN|Tv) =
1
|Tv|

∑
x∈Tv

Acc(NN|x). (8)

The deficiency of the accuracy measure is that, in the
three NNs of Example 1,Acc(x) will be equal to 1 for
all three probability vectors. However, it is obvious
that NN1 should receive a better quality preference
thanNN2 andNN3, since it produces a higher prob-
ability for the true class.

5.2 Class Probability Error

An alternative to the accuracy measure is the true
Class Probability Error (CPE) measure. For a given
patternx,

CPE(NN|x) = 1− pĉ. (9)

Let us again consider Example 1. Here,
CPE(NN1|x) = 0.1, while CPE(NN2|x) =
CPE(NN3|x) = 0.4. In this case,CPE prefers
NN1 over NN2 and NN3, but does not differentiate
betweenNN2 andNN3.

For an entire validation setTv,

QCPE(NN|Tv) = 1−
1
|Tv|

∑
x∈Tv

CPE(NN|x). (10)

5.3 Variations of theCPE Measure

We consider two variations ofCPE that differ primar-
ily in their handling of outlier patterns. First,CPEk is
defined as follows. For a single patternx,

CPEk(NN|x) = (1− pĉ)
k. (11)

In this paper, we focus on the case wherek= 2. Sup-
pose we have a datasetT1 consisting of three patterns
with individual pattern error values of: 0.1, 0.2, 0.3,
and another datasetT2 with pattern error values of:
0.1, 0.15, 0.35. UnderCPE, these two datasets would
have equal error values. But, underCPE2, the second
dataset would have a higher error value (0.155 ver-
sus 0.14). Thus,CPE2 is less tolerant of outliers than
CPE; a small number of outlier patterns can dominate
the CPE2 function much more easily than theCPE
function.

Another variation ofCPE is CPEm which is even
more tolerant of outliers thanCPE. For a single pat-
ternx, CPEm(NN|x) =CPE(NN|x). However, for an
entire validation set:

QCPEm(NN|Tv) = 1−median{CPE(x) : x∈ Tv}.
(12)

For the two dataset scenarios described above,T1
(with pattern errors 0.1, 0.2, 0.3) would have a smaller
error value underQCPEm thanT2 (with pattern errors
0.1, 0.15, 0.35), becauseQCPEm would simply com-
pare 0.2 to 0.15.

5.4 Quadratic Loss Function

The Quadratic Loss Function is another widely used
error measure. For a given patternx:

QLF(NN|x) = (1− pĉ)
2+

m

∑
k:k6=ĉ

(pk)
2. (13)

In Example 1, the three probability vectors would
haveQLF values of: 0.02, 0.32, and 0.24. Thus, the
QLF error measure would preferNN1, followed by
NN3, followed by NN2. Thus, not only doesQLF
favour the models that produce a higher probability
for the true class, but it also favours the models that
produce the lowest probabilities for the other classes.

Note that, for a two-class problem (i.e.m= 2),

QLF(NN|x)≡ 2 ·CPE2(NN|x) . (14)

For an entire validation setTv,

QQLF(NN|Tv) = 1−
1
|Tv|

∑
x∈Tv

QLF(NN|x). (15)
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5.5 Cross Entropy

For a given patternx, the cross entropyCE measure is
defined as:

CE(NN|x) =−
m

∑
k=1

yi ln pi , (16)

wherey is the target vector. Sinceyĉ = 1 andyk = 0
for all k 6= ĉ, Eq. (16) reduces to:

CE(NN|x) =− ln pĉ . (17)

Thus, CE is somewhat similar toCPE: both are
monotonically decreasing functions ofpĉ. They differ
only in their respective response curves aspĉ varies
from 0 to 1.

For an entire validation setTv,

QCE(NN|Tv) = 1−
1
|Tv|

∑
x∈Tv

CE(NN|x). (18)

5.6 Bayesian Information Reward

For a given patternx, we use a variation of Bayesian
Information RewardBIR, defined as:

BIR(NN|x) =
1
m

m

∑
c=1

IRc(NN|x) (19)

IRc(NN|x) =

{

1− log(pc)
log(p′c)

if c= ĉ (reward),
log(1−pc)
log(1−p′c)

if c 6= ĉ (penalty).
(20)

where p′c represents the prior probability of classc,
which is the ratio of the number of patterns in the
learning set with class labelc to the total number of
patterns in the learning set, andm is the total number
of the classes. Note that the first branch in the con-
ditional Equation (24) is the reward value, where the
predicted classc is the same as the true (correct) class
ĉ, while the second branch is the penalty value, where
the predictedc is not the same as the true class ˆc.

Not only does the Bayesian Information Reward
measure respect the probability of the true classpĉ, it
also respects the prior probabilityp′c of the predicted
class in the dataset. This makes BIR more robust to
class imbalance situations, where one (or more) class
values have high occurrence in a given dataset com-
pared to the other values. That is, the lower the fre-
quency of the correctly predicted class in the dataset,
the higher the reward. Similarly, the higher the fre-
quency of the misclassified class in the dataset, the
higher the penalty.

For an entire validation setTv,

QBIR(NN|Tv) =
1
|Tv|

∑
x∈Tv

[φ1+BIR(NN|x)/φ2] .

(21)

Table 1: Parameter settings used in experiments.

No. Parameter Value

1 max iterations 1000

2 colony size 10

3 conv iterations 10

4 Ant BP Learning Rate 0.05

5 Ant BP Epochs 10

6 3L-BP Learning Rate 0.01

7 3L-BP Epochs 1000

The parametersφ1 andφ2 are used to adjust the actual
amount of pheromone to be deposited. The first pa-
rameter makes sure that theQBIR value is greater than
0, while the second parameter scales theQBIR value.
In our experiments, we setφ1 = φ2 = 50/m.

6 COMPUTATIONAL RESULTS

The experiments were carried out using the well-
known stratified 10-times 10-fold cross-validation
procedure, which works as follows. First, the target
dataset is divided into 10 mutually exclusive parti-
tions (or folds), with approximately the same number
of patterns in each partition. Then, for each of the 7
different quality measures used for candidate-solution
evaluation and pheromone updating in this work, a
version of ANN-Miner using that measure is run 10
times, where each time a different partition is used as
the test set and the other 9 partitions are merged and
used as the training setT for the algorithm. Note that
T is itself further divided during algorithm execution
into Tl andTv as discussed in Section 5.

The predictive performance associated with each
quality measure is computed as the average value
of the accuracy on the test set across the 10 runs.
In addition, we ran ANN-Miner with each of the 7
quality measures 10 times – using a different ran-
dom seed to initialize the search each time – for each
cross-validation fold. Thus, the accuracy associated
with each quality measure is actually averaged over
100 values (10 cross-validation folds times 10 runs
per fold). We also report the results for the stan-
dard three-layer fully-connected Neural Network with
Back-Propagation (3L-BP) as a baseline.

The performance of classification quality mea-
sures was evaluated using 30 public-domain datasets
from the well-known University of California at
Irvine (UCI) dataset repository. The parameter set-
tings of ANN-Miner used are shown in Table 1. The
number of the hidden neurons is set equal to the num-
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Table 2: Predictive Accuracy Results.

Dataset 3L-BP ANN-Acc ANN-CPE2 ANN-CPE ANN-CPEm ANN-QLF ANN-CE ANN-BIR

balance 96.50 91.33 96.83 98.67 94.67 97.33 96.67 99.10

breast-l 72.29 68.80 69.09 68.29 70.22 69.84 71.64 70.84

breast-p 68.26 75.21 76.79 75.76 76.32 77.29 77.29 77.61

breast-t 32.64 57.55 67.03 60.73 58.36 63.46 57.73 64.38

breast-w 93.86 95.43 94.74 96.14 95.79 96.32 94.91 96.49

car 90.29 98.19 98.66 99.01 97.78 98.31 97.84 96.83

credit-a 84.35 82.75 85.76 83.04 84.49 85.80 85.19 85.76

credit-g 74.00 71.90 74.33 71.00 74.40 74.67 74.33 74.40

ecoli 79.53 84.86 83.67 86.08 86.33 86.94 85.46 85.18

glass 46.30 48.46 58.99 57.56 60.39 52.38 54.68 54.70

hay 60.01 75.45 74.26 77.67 76.43 77.60 71.26 77.87

heart-c 57.46 55.43 58.43 55.47 56.46 58.41 58.08 57.19

hepatitis 83.79 81.92 79.92 81.88 80.00 82.58 83.25 81.34

horse 76.04 78.94 81.67 79.77 82.01 79.14 81.42 77.32

ionosphere 89.67 93.38 92.53 93.40 91.10 91.68 91.08 93.54

iris 87.28 90.67 93.95 92.57 94.62 95.28 93.95 92.54

liver 57.40 64.08 67.49 64.07 64.38 64.86 64.98 67.31

monks 54.25 42.20 77.36 77.70 70.80 69.63 67.33 71.36

parkinsons 75.78 75.13 85.62 85.68 83.03 85.71 82.03 82.53

pima 55.71 42.86 76.20 75.91 76.56 76.17 75.51 74.60

pop 81.11 81.85 52.68 50.54 68.21 68.39 65.71 56.15

s-heart 94.16 92.74 83.71 81.85 83.70 83.33 84.07 81.90

segmentation 70.56 93.16 93.84 93.21 93.16 92.66 93.68 94.35

thyroid 86.10 89.78 90.37 88.85 89.80 89.78 87.99 92.30

transfusion 70.56 72.60 74.76 73.66 72.75 74.45 72.58 75.67

ttt 76.63 98.00 98.31 98.00 98.21 98.84 95.26 98.36

vehicle 64.90 60.90 75.00 72.69 71.63 71.98 72.11 71.27

voting 93.89 94.90 94.12 94.86 92.91 94.59 94.52 94.75

wine 94.41 94.38 95.52 93.86 94.38 96.04 94.97 94.44

zoo 81.25 97.50 96.50 96.07 96.07 94.64 96.07 96.75

Average Rank 6.5 5.7 3.5 4.6 4.4 3.3 4.6 3.5

ber of input attributes plus the number of class values
(output units) for each dataset. Note that the learning
rate and the number of epochs used in BP in each ant
solution creation step (line 11, Algorithm 2) are in-
dicated in parameters 4 and 5, respectively, while the
learning rate and the number of epochs used in the BP
post-processing step (line 19, Algorithm 1) are indi-
cated in parameters 6 and 7, respectively.

Table 2 shows the average predictive accuracy re-
sults of the ANN-Miner algorithm with the 7 different
classification quality functions, as well as the conven-
tional BP algorithm, where the best result obtained
for each algorithm is shown in boldface. The results
reported are the average of the 100 runs of the strati-
fied 10-times 10-fold cross-validation procedure. The
last row of the table shows the average ranking of
each algorithm. The average rank for a given algo-

Table 3: Results of Friedman statistical significance test
with Holm post hoctest.

Comparison p Holm

3L-BP vs. ANN-QLF 5.5E-07 0.00179

3L-BP vs. ANN-BIR 1.6E-06 0.00185

3L-BP vs. ANN-CPE2 1.8E-06 0.00192

ANN-Accvs. ANN-QLF 2.3E-04 0.00200

ANN-Accvs. ANN-BIR 5.0E-04 0.00208

ANN-Accvs. ANN-CPE2 5.6E-04 0.00217

3L-BP vs. ANN-CPEm 9.9E-04 0.00227

3L-BP vs. ANN-CPE 0.0020 0.00238

3L-BP vs. ANN-CE 0.0024 0.00250

rithm g is obtained by first computing the rank ofg on
each dataset individually, with a rank of 1 represent-
ing the best performance and a rank of 8 representing
the worst performance. The individual ranks are then
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averaged across all datasets to obtain the overall aver-
age rank.

As shown in Table 2, the Quadratic Loss Func-
tion (ANN-QLF) obtained the best overall ranking of
3.3, followed closely by Bayesian Information Re-
ward (ANN-BIR) and Squared Class Probability Er-
ror (ANN-CPE2), both of which had an overall rank-
ing of 3.5.

The non-parametric Friedman statistical test with
the Holm’s post-hoc test was applied, at the conven-
tional 0.05 significance level, to the predictive accu-
racy results reported in Table 2—an all-pairs multiple
comparison on the 8 algorithms under evaluation. The
results of the statistical significance test are reported
in Table 3; for space limitations, results are reported
only for the cases where there is a statistically sig-
nificant difference. The results indicate that all seven
measures are significantly better than the baseline 3L-
BP, and four of the measures are also significantly
better than ANN-Acc (the measure that was used in
the original work on ANN-Miner): ANN-BIR, ANN-
QLF, ANN-CPE2, and ANN-CPEm.
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