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Abstract: The specific signal in real sound and electromagnetic waves frequently shows some very complex 
fluctuation forms of non-Gaussian type owing to natural, social and human factors. Furthermore, the 
observed data often contain fuzziness due to the existence of confidence limitation in measuring 
instruments, permissible error in experimental data, and the variety of human response to phenomena, etc. 
In this study, by introducing the probability measure of fuzzy events, static and dynamic signal processing 
methods based on fuzzy observations are proposed for specific signal in the sound and electromagnetic 
environment with complex probability distribution forms. The effectiveness of the proposed theoretical 
method is experimentally confirmed by applying it to estimation problems in the real sound and 
electromagnetic environment. 

1 INTRODUCTION 

The Probability distribution of a specific signal in 
the real sound and electromagnetic environment can 
take various forms, not necessarily characterized by 
a standard Gaussian distribution. This is due to the 
diverse nature of factors affecting the properties of 
the signal (Ikuta et al., 1997). Therefore, it is 
necessary for the estimation of the evaluation 
quantities such as the peak value, the amplitude 
probability distribution, the average crossing rate, 
the pulse spacing distribution, and the frequent 
distribution of occurrence etc. of the specific signal, 
to consider the lower order statistical properties of 
the signal such as mean and variance as well as the 
higher order statistics associated with non-Gaussian 
properties. 

On the other hand, the observed data often 
contain fuzziness due to confidence limitations in 
sensing devices, permissible errors in the 
experimental data, and quantizing errors in digital 
observations (Ikuta et al., 2005).  For reasons of 
simplicity, many previously proposed estimation 
methods have not considered fuzziness in the 
observed data under the restriction of Gaussian type 
fluctuations (Bell and Cathey, 1993; Kalman, 1960; 
Kalman and Buch, 1961; Kushner, 1967; Julier, 
2002). Although several state estimation methods for 

a stochastic environment system with non-Gaussian 
fluctuations and many analyses based on Gaussian 
Mixture Models have previously been proposed 
(Kitagawa, 1996; Ohta and Yamada, 1984; Ikuta et 
al., 2001; Orimoto and Ikuta, 2014; Guoshen, 2012), 
the fuzziness contained in the observed data has not 
been considered in these studies. Therefore, it is 
desirable to develop a method that is flexible and is 
applicable to ill-conditioned fuzzy observations. 

In this study, a new estimation theory is 
proposed for a signal based on observations with 
non-Gaussian properties, from both static and 
dynamic viewpoints by regarding the observation 
data with fuzziness as fuzzy observations.  

First, a static signal processing method 
considering not only linear correlation but also the 
higher order nonlinear correlation information is 
proposed on the basis of fuzzy observation data, in 
order to find the mutual relationship between sound 
and electromagnetic waves leaked from electronic 
information equipment. More specifically, a 
conditional probability expression for fuzzy 
variables is derived by applying probability measure 
of fuzzy events (Zadeh, 1968) to a joint probability 
function in a series type expression reflecting 
various correlation relationships between the 
variables. By use of the derived probability 
expression, a method for estimating precisely the 
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correlation information based on the observed fuzzy 
data is theoretically proposed. On the basis of the 
estimated correlation information, the probability 
distribution for a specific variable (e.g. 
electromagnetic wave) based on the observed fuzzy 
data of the other variable (e.g. sound) can be 
predicted. 

Next, a dynamic state estimation method for 
estimating a specific signal based on fuzzy 
observations with the existence of background noise 
is proposed in a recursive form suitable for use with 
a digital computer. More specifically, by paying 
attention to the power state variable for a specific 
signal in the sound environment, a new type of 
signal processing method for estimating a specific 
signal on a power scale is proposed. In the case of 
considering the power state variable, a physical 
mechanism of contamination by background noise 
can be reflected in the state estimation algorithm by 
using the additive property between the specific 
signal and the background noise. There is a 
restriction for power state variables fluctuating only 
in the non-negative region (i.e., any fluctuation 
width around the mean value has necessary to tend 
zero when the mean value tends zero), and it is 
obvious that the Gaussian distribution and Gaussian 
Mixture Models regarding the mean and variance as 
independent parameters are not adequate for power 
state variables. The proposed method positively 
utilizes Gamma distribution and Laguerre 
polynomial suitable to represent the power state 
variable, which fluctuates only within the positive 
region (Ohta and Koizumi, 1968). 

The effectiveness of the theoretically proposed 
static and dynamic fuzzy signal processing methods 
for estimating the specific signal is experimentally 
confirmed by applying those to real data in the 
sound and electromagnetic environment. 

2 STATIC SIGNAL PROCESSING 
BASED ON FUZZY 
OBSERVATIONS IN SOUND 
AND ELECTROMAGNETIC 
ENVIRONMENT 

2.1 Prediction for Probability 
Distribution of Specific Signal from 
Fuzzy Fluctuation Factor 

The observed data in the real sound and 
electromagnetic environment often contain fuzziness 

due to several factors such as limitations in the 
measuring instruments, permissible error tolerances 
in the measurement, and quantization errors in 
digitizing the observed data. In this study, the 
observation data with fuzziness are regarded as 
fuzzy observations. 

In order to evaluate quantitatively the 
complicated relationship between sound and 
electromagnetic waves leaked from an identical 
electronic information equipment, let two kinds of 
variables (i.e. sound and electromagnetic waves) be 
x and y , and the observed data based on fuzzy 

observations be X  and Y  respectively. There exist 
the mutual relationships between x and y , and 

also between X  and Y . Therefore, by finding the 
relations between x and X , and also between y  

and Y , based on probability measure of fuzzy 
events (Zadeh, 1968), it is possible to predict the 
true value y  (or x ) from the observed fuzzy data 

X  (or Y ). For example, for the prediction of the 
probability density function )(yPs  of y  from X , 

averaging the conditional probability density 
function )|( XyP  on the basis of the observed fuzzy 

data X , )(yPs  can be obtained 

as: Xs XyPyP  )|()( . The conditional 

probability density function )|( XyP  can be 

expressed under the employment of the well-known 
Bayes’ theorem: 

)(

),(
)|(

XP

yXP
XyP  .                      (1) 

The joint probability distribution ),( yXP  is 

expanded into an orthonormal polynomial series on 
the basis of the fundamental probability distribution 

)(0 XP  and )(0 yP , which can be artificially chosen 

as the probability function describing approximately 
the dominant parts of the actual fluctuation pattern, 
as follows: 
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   yXA nmmn  ,                       (2) 

where <･> denotes the averaging operation with 
respect to the random variables. The information on 
the various types of linear and nonlinear correlations 
between X  and y  is reflected in each expansion 

coefficient mnA . When X  is a fuzzy number 

expressing an approximated value, it can be treated 
as a discrete variable with a certain level difference. 
Therefore, as )(0 XP , the generalized binomial 

distribution with a level difference interval  Xh   can 
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be chosen (Ikuta et al., 1997): 
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where XM  and XN  are the maximum and 

minimum values of X . Furthermore, as the 
fundamental probability density function  yP0  of 

y , the standard Gaussian distribution is adopted: 
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The orthonormal polynomials  Xm  and  yn  

with the weighting functions )(0 XP  and  yP0  can 

be determined as (Ikuta et al., 1997) 

 
m
X

m

X

X

m

X

XX
m

hp

p
m

h

MN
X

11
! 

22

1
)(








 




















 




  

    













m

j

jm

X

Xjm

p

p

jjm

m

0 1
1

!  ! 

! 
     

    j
X

jm
X MXXN   , 

         1 ,  1 0  XhnXhXXX XX
n , 

(5) 

  








 


y

y
nn

y
H

n
y





! 

1
; Hermite polynomial.  (6) 

Thus, the predicted probability density function 
)(yPs  can be expressed in an expansion series form: 
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2.2 Estimation of Correlation 
Information based on Fuzzy 
Observation Data 

The  expansion  coefficient   mnA   in  (2)  has  to  be 

 estimated on the basis of the fuzzy observation data 
X  and Y , when the true value y  is unknown. Let 

the joint probability distribution of X  and Y  be 
),( YXP . By applying probability measure of fuzzy 

events (Zadeh, 1968), ),( YXP  can be expressed as: 

         dyyXPy
K

YXP Y  ,
1

,  ,            (8) 

where K is a constant satisfying the normalized 
condition:   1, 

X Y
YXP . The fuzziness of Y  can 

be characterized by the membership function 

  })(exp{( 2YyyY   ,  ; a parameter).  

Substituting (2) in (8), the following relationship 
is derived. 
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The conditional N -th order moment of the fuzzy 
variable X  is given from (9) as 
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After expanding NX  in an orthogonal seri es 
expression, by considering the orthonormal 
relationship of  Xm , (10) is expressed explicitly 

as 
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The right side of the above equation can be 
evaluated numerically from the fuzzy observation 
data. Accordingly, by regarding the expansion 
coefficients mnA  as unknown parameters, a set of 

simultaneous equations in the same form as in (11) 
can be obtained by selecting a set of N  and/or Y  
values equal to the number of unknown parameters. 
By solving the simultaneous equations, the 
expansion coefficients mnA  can be estimated. 

Furthermore, using these estimates, the probability 
density function )(yPs  can be predicted from (7). 
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3 DYNAMIC SIGNAL 
PROCESSING BASED ON 
FUZZY OBSERVATIONS IN 
SOUND ENVIRONMENT 

3.1 Formulation of Fuzzy Observation 
under Existence of Background 
Noise 

Consider a sound environmental system with 
background noise having a non-Gaussian 
distribution. Let the specific signal power of interest 
in the environment at a discrete time k  be kx , and 

the dynamical model of the specific signal be: 
                kkk GuFxx 1 ,                       (12) 

where ku  denotes the random input power with 

known statistics, and F , G  are known system 
parameters and can be estimated by use of the 
system identification method (Eykhoff, 1984) when 
these parameters cannot be determined on the basis 
of the physical mechanism of system. 

The observed data in the real sound environment 
often contain fuzziness due to several factors, as 
indicated earlier. Therefore, in addition to the 
inevitable background noise, the effects of the 
fuzziness contained in the observed data have to be 
considered in developing a state estimation method 
for the specific signal of interest. From a functional 
viewpoint, the observation equation can be 
considered as involving two types of operation: 

1. The additive property of power state variable 
with the background noise can be expressed as: 

                          kkk vxy  ,                     (13) 

where it is assume that the statistics of the 
background noise power kv  are known in advance. 

2. The fuzzy observation kz  is obtained from ky . 

The fuzziness of kz  is characterized by the 

membership function )( kz y
k

 . 

3.2 State Estimation based on Fuzzy 
Observation Data 

To obtain an estimation algorithm for the signal 
power kx  based on the fuzzy observation kz , the 

Bayes’ theorem for the conditional probability 
density function can be considered (Ohta and 
Yamada, 1984). 
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where )),...,,(( 21 kk zzzZ   is a set of observation 

data up to a time k . By applying probability 
measure of fuzzy events (Zadeh, 1968) to the right 
side of (14), the following relationship is derived. 
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The conditional probability density function of kx  

and ky  can be generally expanded in a statistical 

orthogonal expansion series. 
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where the functions )()1(
km x  and )()2(

kn y  are the 

orthogonal polynomials of degrees m  and n  with 
weighting functions )|( 10 kk ZxP  and 

)|( 10 kk ZyP , which can be artificially chosen as 

the probability density functions describing the 
dominant parts of )|( 1kk ZxP  and )|( 1kk ZyP . 

These two functions must satisfy the following 
orthonormal relationships: 
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By substituting (16) into (15), the conditional 
probability density function )|( kk ZxP  can be 

expressed as: 
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Based on (20), and using the orthonormal 
relationship of (18), the recurrence algorithm for 
estimating an arbitrary N -th order polynomial type 
function )( kN xf  of the specific signal can be 

derived as follows: 
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where NmC  is the expansion coefficient  determined 
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by the equality: 
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In order to make the general theory for 
estimation algorithm more concrete, the well-known 
Gamma distribution is adopted as )|( 10 kk ZxP  and 

)|( 10 kk ZyP , because this probability density 

function is defined within positive region and is 
suitable to the power state variables. 
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Then, the orthonormal functions with two weighting 
probability density functions in (24) can be given in 
the Laguerre polynomial (Ohta and Koizumi, 1968): 
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As the membership function )( kz y
k

 , the following 

function suitable for the Gamma distribution is 
newly introduced. 
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where )0(  is a parameter. Accordingly, by 

considering the orthonormal condition of Laguerre 
polynomial (Ohta and Koizumi, 1968), (21) can be 
given by 
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where nrd  ( r =0, 1, 2, …, n ) are the expansion 

coefficients in the equality: 
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Especially, the estimates for mean and variance can 
be obtained as follows: 
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Finally, by considering (12), the prediction step 
which is essential to perform the recurrence 
estimation can be given by 
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By replacing k  with 1k , the recurrence 
estimation can be achieved. 
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4 APPLICATION TO SOUND 
AND ELECTROMAGNETIC 
ENVIRONMENT 

4.1 Prediction of Sound and Electric 
Field in PC Environment 

By adopting a personal computer (PC) in the real 
working environment as specific information 
equipment, the proposed static method was applied 
to investigate the mutual relationship between sound 
and electromagnetic waves leaked from the PC 
under the situation of playing a computer game. In 
order to eliminate the effects of sound from outside, 
the PC was located in an anechoic room (cf. Fig. 1). 
The RMS value (V/m) of the electric field radiated 
from the PC and the sound intensity level (dB) 
emitted from a speaker of the PC were 
simultaneously measured. The data of electric field 
strength and sound intensity level were measured by 
use of an electromagnetic field survey mater and a 
sound level meter respectively. The slowly changing 
non-stationary 600 data for each variable were 
sampled with a sampling interval of 1 (s). Two kinds 
of fuzzy data with the quantized level widths of 0.1 
(v/m) for electric field strength and 5.0 (dB) for 
sound intensity level were obtained.  

Based on the 400 data points, the expansion 
coefficients mnA  were first estimated by use of (11). 

Furthermore, the parameters of the membership 
functions in (8) for sound level and electric field 
strength with rough quantized levels were decided so 
as to express the distribution of data as precisely as 
possible, as shown in Figs. 2 and 3. Next, the 200 
sampled data within the different time interval which 
were non-stationary different from data used for the 
estimation of the expansion coefficients were 
adopted for predicting the probability distributions 
of (i) the electric field based on sound and (ii) the 
sound based on electric field. 

 

 

Figure 1: A schematic drawing of the experiment. 

The experimental results for the prediction of 
electric field strength and sound level are shown in 
Figs. 4 and 5 respectively in a form of cumulative 
distribution. From these figures, it can be found that 
the theoretically predicted curves show good 
agreement with experimental sample points by 
considering the expansion coefficients with several 
higher orders. 
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Figure 2: Membership function of sound level. 
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Figure 3: Membership function of electric field. 

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Electric Field Strength                               [v/m]

C
u
m

u
la

ti
ve

 D
is

tr
ib

ut
io

n

1stApprox. 
2ndApprox. 
3rdApprox. 
True values

 

Figure 4: Prediction of the cumulative distribution for the 
electric field strength based on the fuzzy observation of 
sound. 

For comparison, the generalized regression 
analysis method (Ikuta et al., 1997) without using 
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fuzzy theory was applied to the fuzzy data X  and 
Y . The prediction results are shown in Figs. 6 and 7. 
As compared with Figs. 4 and 5, it is obvious that 
the proposed method considering fuzzy theory is 
more effective than the previous method. 
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Figure 5: Prediction of the cumulative distribution for the 
sound level based on the fuzzy observation of electric field. 

 

Figure 6: Prediction of the cumulative distribution for the 
electric field strength by use of the extended regression 
analysis method. 

 

Figure 7: Prediction of the cumulative distribution for the 
sound level by use of the extended regression analysis 
method. 
 

4.2 Estimation of Specific Signal in 
Sound Environment 

In order to examine the practical usefulness of the 
proposed dynamic signal processing based on the 
fuzzy observation, the proposed method was applied 
to the real sound environmental data.  The road 
traffic noise was adopted as an example of a specific 
signal with a complex fluctuation form.  Applying 
the proposed estimation method to actually observed 
data contaminated by background noise and 
quantized with 1 dB width, the fluctuation wave 
form of the specific signal was estimated. The 
statistics of the specific signal and the background 
noise used in the experiment are shown in Table 1.   

Figures 8-10 show the estimation results of the 
fluctuation wave form of the specific signal. In this 
estimation, the finite number of expansion 
coefficients )2,( nmBmn was used for the 

simplification of the estimation algorithm. In these 
figures, the horizontal axis shows the discrete time 
k , of the estimation process, and the vertical axis 
expresses the sound level taking a logarithmic 
transformation of power-scaled variables, because 
the real sound environment usually is evaluated on 
dB scale connected with human effects. For 
comparison, the estimation results calculated using 
the usual method without considering any 
membership function are also shown in these figures. 
Since Kalman’s filtering theory is widely used in the 
field of stochastic system (Kalman, 1960; Kalman 
and Buch, 1961; Kushner, 1967), this method was 
also applied to the fuzzy observation data as a trail.  

The results estimated by the proposed method 
considering the membership function show good 
agreement with the true values. On the other hand, 
there are great discrepancies between the estimates  

Table 1: Statistics of the specific signal and the 
background noise. 

Statistics of Specific 
Signal 

Statistics of Background 
Noise 

Mean 
(watt/m2) 

Standard 
Deviation 
(watt/m2) 

Mean 
(watt/m2) 

Standard 
Deviation 
(watt/m2) 

2.9 10-5 2.8 10-5 2.9 10-5 1.4 10-6 
 
based on the standard type dynamical estimation 
method (i.e., Kalman filter) without consideration of 
the membership function and the true values, 
particularly in the estimation of the lower level 
values of the fluctuation. 
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Figure 8: State estimation results for the road traffic noise 
during a discrete time interval of [1, 100] sec., based on 
the quantized data with 1 dB width. 

 

Figure 9: State estimation results for the road traffic noise 
during a discrete time interval of [101, 200] sec., based on 
the quantized data with 1 dB width. 

 

Figure 10: State estimation results for the road traffic 
noise during a discrete time interval of [201, 300] sec., 
based on the quantized data with 1 dB width. 

5 CONCLUSIONS 

In this study, new methods for estimating a specific 

signal embedded in fuzzy observations have been 
proposed within static and dynamic frameworks. 
The proposed estimation methods have been realized 
by introducing a fuzzy logic approach into the 
probabilistic description of the signal. The 
effectiveness of the proposed fuzzy signal 
processing method has been confirmed 
experimentally by applying it to the real sound and 
electromagnetic data.  
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