
AVP
An Android Virtual Playground

François Gagnon1, Frédéric Lafrance1, Simon Frenette1 and Simon Hallé2

1Cégep Sainte-Foy, Québec, Canada
2Thales Research and Technology, Québec, Canada

Keywords: Android, Virtualization, Test-bed, Network Experiment, Automated.

Abstract: This paper presents a virtual test-bed for the Android platform named AVP - Android Virtual Playground. The
focus of AVP is the automatization of the manipulations required to perform a network experiment, in a very
broad sense, involving Android virtual devices. A central objective of AVP is data collection during experi-
ments. Together with describing the different steps of using AVP, from the specification of the experiment to
the visualization of the results, the paper presents the current capabilities of AVP.

1 INTRODUCTION

In the last decade, mobile devices such as smart-
phones have penetrated the consumer world at an in-
credibly fast pace. Nowadays, most people use mo-
bile devices for various tasks: communications, bank-
ing, shopping, etc. Several actors are taking advan-
tage of this massive acceptance of mobile technology.
Application developers try hard to obtain a market
share with a specific idea/feature. Hackers now have
access to a very interesting tool, providing entry into
various networks and access to an abundance of per-
sonal (and often sensitive) information.

In this paper, we share our ideas and experiences
in developing a fully automated test-bed for the An-
droid platform. Our test-bed aims to be generic
enough to be used for many different purposes. Be
it to test a mobile application on multiple hardware
platforms for compatibility (both at the library level
and the graphical level), or to inspect the security as-
pect of an application. The test-bed is large in scope to
take advantage of the different modules already avail-
able instead of focussing on a particular aspect and
digging deep. The solution is named Android Vir-
tual Playground (AVP), pointing to the fact that it is
a framework allowing us to perform several different
activities (hence the term playground).

We strongly believe automated test-beds for mo-
bile platforms are an important component for speed-
ing up the research related to this field. This has been
the case with automated test-beds for malware analy-
sis in the PC world (Massicotte and Couture, 2011).

The paper is structured as follows. First, section
2 places AVP in context with existing approaches for
Android virtualization and experimentation. Section
3 gives a brief overview of AVP. The core of test-bed
is described in Sections 4 and 5, respectively its capa-
bilities and how it is used. Then, Section 6 concludes
with final remarks and Section 7 discusses avenues
for future work.

2 RELATED WORK

Our work can be related to two different fields: An-
droid emulation solutions (see Section 2.1) and An-
droid experimentation frameworks (see Section 2.2).
AVP aims to instrument the various virtualization
methods available for Android and provide automated
control of user defined experiments with a rich set of
functionalities. This section presents projects related
to AVP.

2.1 Virtualization Solutions

Below is an overview of the main solutions used for
Android virtualization. Through AVP, we aim to har-
ness as many of those as possible.

� Google. distributes a modified version of the
open-source QEMU1 emulator (Bellard, 2005). It
can run native Android apps under the x86, ARM

1http://qemu.org

13Gagnon F., Lafrance F., Frenette S. and Hallé S..
AVP - An Android Virtual Playground.
DOI: 10.5220/0005016500130020
In Proceedings of the 5th International Conference on Data Communication Networking (DCNET-2014), pages 13-20
ISBN: 978-989-758-042-0
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



and MIPS architectures. Its purpose is to allow
Android developers to test their apps on a “real”
Android system. This emulator has several ad-
vantages over other emulators. It is supported
by Google, and as such offers features that many
other emulators do not provide. For example, it al-
lows two emulator instances to communicate with
each other or with the host machine using doc-
umented mechanisms. On the other hand, it is
known to be slow, particularly when running un-
der a non-x86 architecture.

� Genymotion. is a French company distributing
a virtualization solution for Android. It relies on
the well-known VirtualBox2 hypervisor (Watson,
2008) and on the compatible images that can be
built from the Android source code. Those im-
ages are then modified to add Genymotion’s own
apps and services that can be used to control the
virtual machine remotely. They offer a different
set of capabilities than the Google emulator. In
Genymotion, the virtual machines are much more
responsive since they take advantage of virtual-
ization features offered by VirtualBox (instead of
being emulated).

� AndroX86. 3 is an open source project offer-
ing ports of the Android OS for different x86 plat-
forms. As a result, Android can be run in conven-
tional hypervisors such as VMWare Workstation
as well as bare metal on some supported hard-
ware configurations (e.g., Lenovo Ideapad S10-
3T). This solution provides great performance at
the cost of functionalities inherent to a mobile de-
vice (e.g., no support for SMS).

� Manymo. is a software as a service solution for
Android virtualization. It allows one to launch
Android virtual machines through a web interface.
These machines can then be controlled through
a command-line interface and run Android apps.
The main limitation of this platform is the num-
ber of launches and concurrent devices available,
which are both very small for non-paying users.

AVP differs from these projects as it is not meant
to provide new ways of virtualizing the Android en-
vironment. Instead, AVP builds on top of exist-
ing virtualization solutions to take advantage of their
strengths. AVP is designed to support multiple under-
lying virtulization options.

2https://www.virtualbox.org/
3http://www.android-x86.org/

2.2 Android Experimentation
Frameworks

Several tools to perform experiments in Android ex-
ist; mainly focussing on android sandboxing for dy-
namic (behavioral) malware analysis. Some are pre-
sented below to contrast them with AVP.

� TaintDroid. (Enck et al., 2010) is a modification
of the Android API to allow tracking of sensitive
data through tainting. Tainting is a technique in
which data from sensitive sources is tainted. As
the data moves around the system (through vari-
able assignments, files and inter-process commu-
nication), the taint is propagated. If tainted data
escapes the system (through an internet connec-
tion, SMS, etc.), a notification is made system-
wide, so that monitoring tools can detect it. Taint-
Droid focuses entirely on taint propagation and
does not provide automation4.

� AASandbox. (Blasing et al., 2010) is an Android
malware sandbox implemented at kernel-level. It
is entirely automated but focuses only on system
call tracking.

� DroidScope. (Yan and Yin, 2012) is another An-
droid malware sandbox located at hypervisor level
(a modified version of QEMU). DroidScope of-
fers an interesting level of automation. However
it focuses entirely on malware analysis; providing
information on taint propagation, memory state
and process state.

� Bouncer. is Google’s own solution designed to
prevent malicious applications from being added
to the Play Store. Since it is proprietary software,
little is known about its inner workings (Lock-
heimer, 2012; Percoco and Schulte, 2012). It
seems to run Android applications under Google’s
emulator for a few minutes and observe their be-
havior. Upon suspicious behavior, control can be
transferred to a human for further analysis.

� JOESandboxMobile.5 is another proprietary so-
lution for Android malware analysis. It offers a
fully automated platform, but one which is fo-
cussing entirely on malware analysis.

� Monkeyrunner.6 is Google’s API to automate
the control of their modified QEMU emulator.
This project does not focus on malware analysis

4AVP can be used to automate the experiment flow of
TaintDroid

5http://www.joesecurity.org
6http://developer.android.com/tools/help/monkeyrunner

_concepts.html

DCNET�2014�-�International�Conference�on�Data�Communication�Networking

14



and do provide a more generic capability of cre-
ating experiments. However, the API is limited to
one emulator while AVP can integrate several.

Most of the tools available for Android applica-
tion analysis focus on a very narrow view of behavior
(e.g., taint tracking, malware behavior). In contrast,
AVP aims to provide the widest possible behavioral
view. In particular, by integrating several existing and
custom tools as AVP modules, it is possible to gather
more information. AVP targets a wide range of exper-
iments, not only those related to malware analysis.

Static solutions to malware analysis (code-based
analysis) are not discussed here since their offline na-
ture sets a very different scope from AVP. However,
static analysis solutions can be included in an experi-
ment system like AVP.

AVP distinguishes itself from existing solutions in
three ways. First, it is platform-agnostic: it can lever-
age several different virtualization technologies, and
has been built with expansion possibilities in mind.
Second, it fully automates the process of experimen-
tation in an Android environment; allowing to pre-
form controlled, custom and repeatable experiments.
Finally, it offers a wider scope than current solutions
by focussing not only on malware analysis, but on a
more general concept of experiment execution.

3 IN A NUTSHELL

This section provides an overview of the test-bed.
More details are provided in the following sections.
AVP was designed in order to perform different types
of experiments with Android devices in a virtual envi-
ronment. The main focus was automating the test-bed
and collecting data during the experiments.

Figure 1 presents the high-level workflow of AVP.
First, the user specifies an experiment, both in

terms of the Android virtual devices (AVDs) to use
and the actions to perform. The experiment specifica-
tion (what we call a scenario) is given to the system
through an XML file (1).

Next, the system validates that the scenario is cor-
rect (2). Validation is performed at different levels:
� Syntactic validation of the XML document (e.g.,

are the commands understood?)
� Resources validation (e.g., are all the required

AVDs available on the host?)
� Semantic validation of the action sequence (e.g.,

can an action really be executed in the current ex-
periment context?)

Whenever validation fails, the program terminates
with an error message. AVP also has a set of softer

validation rules that are considered best practice but
can be violated (e.g., timer issues, resources libera-
tion). In the later case, the system will provide warn-
ings but still perform the experiment.

Third is the execution phase (3), which represents
the heart of the test-bed. At this point, AVP instru-
ments an Android virtualization technology in order
to manipulate AVDs (e.g., start an AVD); it executes
actions on the AVDs and their applications; and then
collects experiment data (which is why the test-bed
was developed in the first place). Most collected data
is linked to the behavior of the AVD or one of its ap-
plications. Section 4 will provides details regarding
the possible "actions" and the data collection capabil-
ities of AVP.

At the end of the execution phase, the test-bed au-
tomatically performs a clean-up phase (4). The in-
ner workings are actually quite similar to those of the
execution phase, but we keep it conceptually distinct
because it is out of the user’s control.

Finally, once the experiment is over, the user can
visualize and/or process the data collected during the
experiment (5). Data visualization can also be done
in real time during the experiment.

4 CAPABILITIES

This section deals with the core of our test-bed: the
actions it can perform automatically (Section 4.2) and
the data it can collect (Section 4.3). But first, the vir-
tualization solutions supported in AVP are presented
(Section 4.1).

4.1 Virtualization

When building AVP, we did not want to create our
own virtualization environment. Instead, we wanted
to take advantage of the best existing solutions to em-
ulate Android devices. While studying existing vir-
tualization technologies, it quickly became apparent
that their objectives are not identical. For instance,
Google’s modified7 version of the QEMU emulator
aims to provide an experience close to a physical An-
droid device in terms of functionalities (e.g., SMS
and calls). On the other hand, Genymotion 8 (For-
merly AndroVM/BuildDroid9), based on VirtualBox,
provides a more fluid emulation targeting Android
apps developers requiring only limited functionality

7Available through the ADT (Android Development
Tools) environment.

8http://www.genymotion.com
9http://androvm.org

AVP�-�An�Android�Virtual�Playground

15



Figure 1: Android Virtual Playground Workflow.

(e.g., no support for SMS) but a more responsive ex-
perience.

Instead of choosing one technology, AVP was de-
signed in such a way that it could use different under-
lying technologies. As a consequence, the user has
access to a wider range of functionalities. As Section
5.1.1.3 will show, this choice has an impact on the
semantic validation of a scenario.

AVP currently supports four Android engines:
� Google’s modified QEMU emulator [Google em-

ulator]
� Genymotion’s free version emulator [Genymotion

emulator]
� Our own custom modified Google emulator

[Modified Google emulator]
� A real physical device

All of the above rely on ADB (Android Debug
Bridge) which provides a common mechanism to in-
teract with all of them. However, they all have par-
ticularities that need to be instrumented differently by
AVP. In the rest of the paper, unless explicitly men-
tioned, we focus on the Google emulator as it is the
most complete in terms of functionalities.

4.2 Actions

The set of actions supported by our test-bed can be
divided into two categories: lab actions and device
actions. A lab action (see Section 4.2.1) is an action
that is performed by our test-bed software (possibly
on a set of AVDs), while a device action (see Section
4.2.2) is an action that is executed by an AVD (as in-
structed by AVP).

4.2.1 Lab Actions

4.2.1.1 AVD Manipulation. AVD manipulation
actions are actions that aim to manipulate AVDs.
Examples of such actions are: create/deleteAVD,
start/stopAVD, push/pullFile, unlockAVD.

Most actions are self-explanatory, however, some
have details of interest. Starting and stopping AVDs
can be modified through the use of snapshots. AVP
allows the user to either boot (or not) from a snapshot
and save (or not) to a snapshot when closing. The
support for snapshots provides important advantages:
� It significantly speeds up the booting process,

which is interesting in the context of performing a
large amount of experiments in batch.

� It allows containment of an experiment, that is,
the effect of an experiment has no repercussions
on the subsequent experiments (e.g., leaving an
application installed). This is of tremendous im-
portance for data collection experiments.

4.2.1.2 App Manipulation. One of the key ele-
ment with mobile devices is the manipulation of ap-
plications, referred to as "apps" on mobile platforms.
AVP supports three action related to manipulating
apps: InstallApp, StartApp, and StartMonkey. The
StartMonkey action will run the monkey10 application
exerciser tool in the context of the specified app. This
is very interesting to perform an experiment simulat-
ing a user interacting with an application. The data
collection can then provide some behavioral informa-
tion regarding the tested app.

10http://developer.android.com/tools/help/monkey.html

DCNET�2014�-�International�Conference�on�Data�Communication�Networking

16



4.2.1.3 Lab Manipulation. Lab manipulations
are actions that are handled by the test-bed. The Wait
action allows the user to specify an amount of time for
the lab to pause before executing the next action. A
similar action, WaitForUser, can be used to pause the
lab until the user perform a specific action. Both the
the above actions are not dependant on any virtualiza-
tion technology. Hence, they are always available.

Starting an AVD (boot) is a process that can take
a long time11. Therefore, it is important for the lab
to wait until the device is booted before proceeding
further. An additional action called WaitForAVDBoot
achieves this.

Similarly, the installation of an application is not
instantaneous. AVP can wait until an application has
been installed through the WaitForAppInstall action.

Note that since the "wait" actions are blocking by
nature (while all other actions are non-blocking) they
come with an associated timeout threshold. When the
threshold is reached, the corresponding action is con-
sidered a failure and the experiment is aborted.

Finally, two actions can be performed by the lab
that will directly affect the AVDs: SendSMSToAVD
and CallAVD. This will result in sending an SMS
(resp. call) to a specific AVD as if it would have been
sent by another Android device.

4.2.2 Device Actions

The last type of actions supported by AVP are device
actions. These are actions that will be executed by the
AVD themselves. To achieve this, we developed an
Android app (named commandCatcher) that the lab
can install on an AVD and then invoke to request spe-
cific tasks to be executed by that AVD. The invoca-
tion is done through the intent broadcasting mecha-
nism which can be triggered from outside the AVD.

The list of device actions can be extended quite
easily simply by adding new capabilities to our com-
mandCatcher library. So far, the following device ac-
tions are implemented:

� Call: the device will initiate a phone call to a spec-
ified number.

� SendSMS: the device will send the specified SMS
message to the specified number.

� Navigate: the device will open a web browser to
the specified URL.

If the Call or SendSMS action targets a device
also running inside AVP, the two devices will actually
communicate with one another. On the other hand,
specifying a phone number not inside AVP will result

11From a few seconds to a few minutes depending on the
physical machine and the virtualization acceleration.

in only the first half of the communication establish-
ment taking place (nobody is at the receiving end).

4.3 Data Collection

While executing an experiment, the main objective of
AVP is to collect data. To this end, we have iden-
tified some information worth having and developed
the corresponding mechanisms to collect it. Here is
the list of information that AVP can collect at this mo-
ment and their corresponding supported actions (fur-
ther details are provided below):
� SMS Activity: Start/StopRecordSMS

� Phone Call Activity: Start/StopRecordCalls

� Network Traffic: Start/StopRecordNetworkTraffic

� Running Processes: StartRecordProcesses

� System Calls Activity: Start/StopStrace

� Taint Propagation Activity:
Start/StopRecordTaintDroid
AVP can gather SMS and call activities (both out-

going and incoming). In doing so, it gathers the
sender and recipient of the exchange, and for SMS
the actual data exchanged. For the Google emulator,
this is done by installing an app inside the AVD that
will hijack SMS and call activities. However, we no-
ticed that it is possible (and quite easy) for a malicious
app to bypass this monitoring mechanism by avoid-
ing the built-in functionalities for SMS and call. To
circumvent this limitation, we slightly modified the
Google emulator to have a lower level access to SMS
and call activities, which is much more difficult to by-
pass. This is the main difference between the stock
Google emulator and our modified version.

Network activity is recorded in a pcap file to al-
low further forensic of Internet access. Of particular
interest is the IP visited (e.g., publicity sites or botnet
Command and Control centers) as well as data down-
loaded (e.g., malicious payloads).

The list of running processes plus their usual in-
formation12 can be obtained. this list is automatically
refreshed each time there is a change in process activ-
ity. This provides us with the evolution of processes
during an experiment.

System calls are monitored through the strace13

utility. This provides the list of system calls for a
much deeper analysis.

Finally, through the use of TaintDroid (Enck et al.,
2010), AVP is able to track sensitive data leaking from
an AVD. This, however, requires a specific AVD con-
figuration (through the use of particular image files).

12process ID, owner ID, process Name, etc.
13http://sourceforge.net/projects/strace/

AVP�-�An�Android�Virtual�Playground

17



Thus, AVP treats TaintDroid as its own virtualization
technology (similar to Google emulator except it sup-
ports the taintdroid data collection process and instru-
ments the start mechanism in a different way).

Other pieces of data are always collected by AVP;
this information serves mainly as debug information.
More specifically, the logcat14 stream and system logs
from the scenario execution (executed actions and is-
sued commands) are collected.

In the future we plan to integrate new data collec-
tion capabilities to AVP. In particular, by adding sup-
port for tools similar to TaintDroid (see Section 7).

5 USING AVP

As shown in Figure 1, the user interacts with AVP at
two moments. Initially, the user must create an XML
scenario describing an experiment (see Section 5.1);
this is the input to AVP. Then, after the experiment
has been executed, the user can visualize the data col-
lected (see Section 5.2).

5.1 Scenario

A scenario is made of two sections: devices and ac-
tions. The first section specifies which Android de-
vices will be used in the experiment. For each device,
the user must provide an ID, the underlying technol-
ogy and the device name. The ID is used through
the scenario to identify this device. The technology
refers to the virtualization technology used to power
the device (e.g., taintdroid meaning the Google emu-
lator with the TaintDroid images is used). Finally, the
name refers to the AVD filename on the host.

The second section is the sequential list of actions.
All actions are non-blocking (that is AVP will go to
the next action right after having issued the command
to execute the specified action) with the exception of
wait actions.

For instance, let’s consider an experiment for the
behavioral analysis of an application. Such an experi-
ment can be specified with 3 stages of actions: setup,
start collecting information, application execution.

In the setup phase, the lab will poweron (Star-
tAVD) the necessary AVDs. We can suppose only one
AVD "A" to host the appliction. In order to maintain
this AVD clean, we could use the option to boot from
an existing snapshot but not persist the changes, hence
leaving the snapshot unmodified after the experiment.
After waiting for device "A" to boot (WaitForAVD-
Boot), the unlock command is issued (UnlockAVD).

14The Android logging system:
http://developer.android.com/tools/help/logcat.html

Then, data collection mechanisms are activated.
Depending on what we expect to observer, we can
decide what data to collect. For instance, if we
want to observe the communication behavior of
an App, the following would be interesting: SMS
(StartRecordSMS), calls (StartRecordCalls), network
traffic (StartRecordNetworkTraffic) and tainted data
(StartRecordTaintDroid).

Now the application is ready to come in play. The
app must first be installed (InstallApp). Once the in-
stallation is over (WaitForAppInstall), the app can be
launched (StartApp). Then, we can use the Monkey
tool to perform a specified number of random actions
in the application context (StartMonkey). It would
also be possible to interact with the App in a more
precise manner (e.g., clicking on specific buttons in a
specific sequence); however, this requires a very App-
specific sequence to be specified.

Finally, it is possible, but not mandatory, to stops
the data collection mechanisms and the AVD. Upon
reaching the end of the scenario, the lab will close
each open handle in a specific way (e.g., open AVD
are turned off, data collection feeds are stopped).

5.1.1 Scenario Validation

Before the execution of an experiment begins, the sce-
nario must be validated. Validation occurs at three
different levels: syntactic, resources, and semantic.

5.1.1.1 Syntactic Validation. The syntactic vali-
dation is straightforward enough in XML. First, the
document structure is tested (e.g., is there a list of
devices before the list of actions?). Then, each ac-
tion is validated by first making sure the action exists
and then verifying that the parameters to those actions
are correct, that required parameters are present, and
that they all have meaningful values. A last syntac-
tic check is performed to make sure all the devices
referenced in the actions belong to the list of devices
defined in the scenario.

5.1.1.2 Resources Validation. Resources are val-
idated using a simple validation process that makes
sure the devices listed in the scenario exist and that
they can be used by the specified technology. The
Google emulator, Modified Google emulator, and
TaintDroid emulator can all support the same set of
QEMU-based AVDs. However, Genymotion has its
own set of VirtualBox-based AVDs. In addition, the
validation process verifies that the applications used
in the different actions exist in their given locations.

DCNET�2014�-�International�Conference�on�Data�Communication�Networking

18



5.1.1.3 Semantic Validation. The semantic vali-
dation is much more complex. AVP currently covers
only a small portion of the possible semantic rules.
Here are a few examples of semantic validation rules:

� Most actions cannot be performed on an AVD that
is not running.

� Some actions can only be executed if the AVD in-
volved is of a specific technology. For instance,
actions related to calls and SMS are not applica-
ble to a Genymotion AVD. Similarly, starting and
stopping physical devices is not supported.

� Some actions are strongly dependent on one an-
other. For instance, StartApp should always be
preceded by a corresponding InstallApp.

AVP also produces warnings that will not prevent
the execution but indicate a potential mistake in the
scenario for the following reasons:
� When a wait action is usually necessary but omit-

ted in the scenario (e.g., between starting an AVD
and executing an action on that AVD).

� When a stop action occurs without a preceding
corresponding start action.

� When a start action has no following correspond-
ing stop action. Although the lab will compensate
during the clean-up phase, this might indicate an
error on the user’s part.

5.2 Data Analysis

AVP will collect a lot of information during an exper-
iment. Moreover, the type of information collected
will vary from one experiment to the other (depend-
ing on which data collection mechanisms are used in
each experiment and the data actually generated by
the AVDs/apps). Since data collection is at the core
of AVP, the log format is easily searchable and AVP
comes with visualization tool for the logs. Each piece
of data collected during an experiment is stored in a
file specifically related to the nature of the data, then
log files are aggregated in a more generic file based
on the similarity of their content. Finally, all the in-
formation is aggregated into a master file.

Each entry of each log file contains five elements:
� Time: the timestamp of the event.
� Thread: the identification of the AVP thread that

generated the event.
� Location: the origin (e.g., the method, class, li-

brary) of the event.
� Level: the importance of the logged event (Trace,

Debug, Info, Warning, Error).
� Message: a message describing the event.

5.2.1 Log Files

For each device, the information related to the lab ex-
ecution flow for that specific device is stored in a file
(then, this information is aggregated in common file
for all devices). The following log files are generated:

� Output/Error information of the processes used by
AVP (e.g., adb.exe, aapt.exe) in one file per pro-
cess (and again aggregate all processes informa-
tion in a single file).

� Sent/Received SMS are stored in a per-device ba-
sis (and SMS activities for all devices are aggre-
gated in a single file.) The same occurs for calls,
system calls, running processes, and tainted data.

� Logcat output per device (and aggregated).

� A number of logging files related to the lab exe-
cution (e.g., debug, warnings, errors).

� Pcap files containing network traffic logs on a per
device basis only.

5.2.2 Data Visualization

To facilitate the visualization of collected data, AVP
includes a generic log viewer. The log viewer will au-
tomatically create one view per log file. This feature
allows us to add the capabilities of logging new infor-
mation (i.e., creating new log files) without the need
to modify the log viewer. The log viewer allows for
searching and filtering of data.

6 CONCLUSION

AVP (Android Virtual Playground) is a virtual test-
bed for the Android platform. The main objective of
AVP is to collect data during network experiment (on
Android), while its main strength is the high level of
automation it provides (from creating and launching
Android AVDs, to forcing AVDs to perform specific
tasks, while collecting data from several viewpoints).

Some solutions already exist for Android virtual-
ization/experimentation. However, they are either ex-
tremely limited in terms of capabilities (e.g., actions
to perform, data to collect) or they provide little (or
no) automation mechanisms. One interesting feature
of AVP (when compared to other existing solutions)
is the ability to use multiple virtualization technolo-
gies. As a result AVP can to harness the individual
strengths of each technologies.

The main challenge while developing AVP was
the lack of maturity of the existing virtualization so-
lutions for Android, especially when compared with

AVP�-�An�Android�Virtual�Playground

19



their PC counterparts. Hence, properly instrument-
ing the virtualization environments and stabilizing the
execution of experiments proved to be more difficult
than expected.

7 FUTURE WORK

AVP can be extended in several ways. Below are
some of the avenues we are currently working on, or
expect to work on in the near future.

At the user-level, it would be interesting to provide
a graphical user interface as an alternative to the XML
scenario writing step.

At the core of AVP lies the actions it can perform
during an experiment. This is where most of the fu-
ture work resides. Possible extensions are:
� Supporting new virtualization technologies and

integrating existing data collection solutions (such
as TaintDroid).

� Taking AVD screenshots during an experiment.
� Analyzing in more details the logcat output in or-

der to keep a more accurate representation of an
AVD’s current state (e.g., detect the classical case
where an app stops working).

� Providing more support for the integration of a
physical device (e.g., can we achieve something
similar to snapshots of AVDs with respect to
cleaning the device after an experiment).
From a networking point of view, we are inter-

ested in deploying a single experiment on several dif-
ferent physical host in such a way that all the AVDs
remain connected with one another, see (Gagnon
et al., 2010). For instance, even if AVDs A and B ac-
tually run on different physical machine, they should
be able to communicate through SMS.

Our experiment specification language will evolve
(e.g., conditional execution and loops) with new uti-
lization cases of AVP that require more expressive
constructs. Moreover, to effectively support batch
execution of similar experiment, we plan to gener-
alize our scenario concept to introduce the notion
of templates. For instance, a scenario template de-
scribing an experiment could be written without in-
cluding the details on the application to use (for ac-
tions such as: InstallApp, WaitForAppInstall, Star-
tApp, and StartMonkey). Then, the scenario template
could be reused (and specialized) for each application
in a given dataset.

Regarding scenario validation (see Section 5.1.1)
significant work remains to be done, in particular to
augment our semantic validation capabilities. More-
over, it would be interesting to provide a continuous

runtime monitoring engine that would detect (and ide-
ally try to recover from) problems occurring at run-
time. An example is the failure to install (or start) an
application in an Android device (possibly due to a
malformed apk/manifest).

ACKNOWLEDGEMENTS

We would like to thank Thales Canada inc. for their
support through this project. This work is funded
by the National Sciences and Engineering Research
Council of Canada through grants RDA1-447989-13
and RDA2-452896-13.

REFERENCES

Bellard, F. (2005). Qemu, a fast and portable dynamic trans-
lator. In USENIX 2005 Annual Technical Conference,
FREENIX Track - Abstract, pages 41–46.

Blasing, T., Batyuk, L., and Schmidt, A.-D. (2010). An
android application sandbox system for suspicious
software detection. In 5th International Conference
on Malicious and Unwanted Software (MALWARE),
pages 55–62.

Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J.,
McDaniel, P., and Sheth, A. N. (2010). Taintdroid:
An information-flow tracking system for realtime pri-
vacy monitoring on smartphones. In Proceedings of
the USENIX Symposium on Operating Systems Design
and Implementation (OSDI).

Gagnon, F., Esfandiari, B., and Dej, T. (2010). Network in
a box. In Proceedings of the 2010 International Con-
ference on Data Communication Networking (DC-
NET’10).

Lockheimer, H. (2012). Android and security.
http://googlemobile.blogspot.ca/2012/02/android-
and-security.html.

Massicotte, F. and Couture, M. (2011). Blueprints of
a lightweight automated experimentation system: a
building block towards experimental cyber security. In
Proceedings of the First Workshop on Building Anal-
ysis Datasets and Gathering Experience Returns for
Security (BADGERS ’11), pages 19–28.

Percoco, N. J. and Schulte, S. (2012). Adventures in
bouncerland - failures of automated malware detec-
tion within mobile application markets. BlackHat
USA.

Watson, J. (2008). Virtualbox: bits and bytes masquerading
as machines. Linux Journal, 2008(166).

Yan, L. K. and Yin, H. (2012). Droidscope: seamlessly
reconstructing the os and dalvik semantic views for
dynamic android malware analysis. In 21st USENIX
conference on Security (Security’12), pages 29–44.

DCNET�2014�-�International�Conference�on�Data�Communication�Networking

20


