
New Multi-Token based Protocol for Flexible Networked
Microcontrollers

Imen Khemaissia1,2, Olfa Mosbahi3 and Mohamed Khalgui3

1Cynapsys Company, France-Germany
2Faculty of Sciences, Tunis El-Manar University, Tunis, Tunisia

3National Institute of Applied Sciences and Technology, INSAT, University of Carthage, Tunis, Tunisia

Keywords: Microcontroller, NetworkedSTM32F4, Token Ring, Reconfiguration, Multi-agent Architecture, Communi-
cation Protocol.

Abstract: This researcha paper deals with reconfigurable networked microcontrollers following theSTM32F4 technol-
ogy. These controllers based on the token ring architecture, are planned to be reconfigurable according to
user requirements, and should be automatically adapted at run-time to their environment. A reconfiguration
scenario is assumed to be any run-time automatic addition/removal/update of OS periodic tasks to/from dif-
ferentSTM32F4 microcontrollers. Nevertheless, if simultaneous and concurrent scenarios appear in different
controllers, then we can get unpredictable critical behaviors of the whole distributed system. A multi-agent
architecture is defined where Request and Coordination Agents are assigned to each microcontroller to handle
local reconfiguration scenarios after coordination with remote controllers. A tool is developed to simulate
a real-case study. We discuss the paper’s contribution by analyzing the experimental results that we did on
NetworkedSTM32F4 microcontrollers.

aThis research work is a collaboration between LISI Lab at INSAT and Cynapsys Company. We thank
Ing. Souhail KCHAOU R&D Manager and Ing. Haythem TEBOURBI Technical Manager who supported the
implementation of the current paper’s contribution. We thank also Mohamed Aymen Jouini for a collaboration
in the implementation part.

1 INTRODUCTION

The networked microcontrollers are widely used to-
day for the new generations of embedded systems
(J. Garcı́a, ) especially for the modern vehicles in
order to offer more functionalities in these automo-
biles. Due to possible external or also internal distur-
bances, the system can be automatically adapted by
adding/removing/updating OS periodic to/from/in the
microcontrollers. Nevertheless, some real-time con-
straints may be violated and the system becomes un-
feasible. Today rich related works have been ded-
icated to develop reconfigurable real-time embed-
ded control systems (M. Khalgui and Hanisch, 2011)
(C. Angelov and Marian, 2005) (K. Thramboulidis
and Frantzis, 2004) (George and Courbin, ) (Z. Gu,
2008). Several algorithms are proposed to schedule
their changeable OS tasks at run-time (S. Baruah and
Rosier, 1990) (Pellizzoni and Lipari, 2004) (Liu and
Layland, 1973) (Spuri and Buttazzo, 1996). A recon-
figuration can be any operation adapting the hardware

or software components. A software reconfiguration
is defined by the run-time addition/removal/update of
OS tasks to be assumed periodic. A hardware recon-
figuration means the activation/deactivation of con-
trollers in order to optimize the energy consumption
which is a major problem for embedded systems. We
are interested in our work in dynamic software recon-
figurations that we assume automatic to be performed
at run-time. The goal is to establish a coordination
between the different microcontrollers after any re-
configuration. This paper assumes that if a microcon-
troller mici applies a reconfiguration scenario to adapt
its execution according to user requirements for ex-
ample, the rest should perform also coherent behav-
iors to be adaptive to this execution. Otherwise, the
whole system will be oriented to unpredictable and in-
coherent behaviors on different microcontrollers. The
solution is to allow of course the required reconfig-
urations at run-time but we should also guarantee a
coherent distributed behavior. We aim in this paper to
allow flexible networked microcontrollers that should

464 Khemaissia I., Mosbahi O. and Khalgui M..
New Multi-Token based Protocol for Flexible Networked Microcontrollers.
DOI: 10.5220/0005014304640469
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 464-469
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



be adapted to their environment at run-time, neverthe-
less, this flexibility should guarantee the perfect co-
herence between microcontrollers. We assume that
any possible reconfiguration scenario can only be re-
sumed in one of the following levels: 1) Architecture
level: we add-remove OS periodic tasks in a micro-
controller, 2) Composition Level: we keep the same
architecture of tasks but we change their scheduling
in a controller, 3) Data Level: we change the values
of data according to user requirements. To allow a re-
quired coherent distributed behavior after any recon-
figuration scenario, we propose a multi-agent archi-
tecture where Request and Coordination Agents (RAi
andCAi) are defined for each microcontroller.RAi
defines local reconfiguration scenarios in the micro-
controller andCAi coordinates with the remote con-
trollers to apply this scenario. We propose a Multi-
Token based protocol (L. Gauthier and Jerraya, 2001)
(Henzinger and Sifakis, 2006) for the coordination
between microcontrollers at run-time. This protocol
is based on the architecture, composition and data lev-
els. Three types of tokens are proposed: Architecture,
Composition and Data Tokens. First of all, ifRAi
wants to apply a reconfiguration scenario that mod-
ifies the software architecture, the scheduling and the
values of some data; the relatedCAi is requested to
perform this modification. The latter sends an Archi-
tecture Token to all the remote controllers. This to-
ken will be accepted if it has a highest priority among
all tokens which are sent on the network. IfCAi re-
ceive the acceptance of this token, then it sends the
scheduling one in order to get the acceptance of re-
mote controllers. Then it sends the last data token and
waits the acceptance of the remote controllers too. We
have used three different types of tokens in order to
get an optimal step-by-step adaptation of the system.
Indeed, it is not significant to negotiate the schedul-
ing with remote microcontrollers when the new ar-
chitectures are not yet fixed. We assume in the cur-
rent paper a distributed embedded system following
the STM32F4 technology. This new technology of
microcontrollers is well-used today in industry since
they are cheaper than other controllers. We developed
at the company Cynapsys a tool for the simulation of
this protocol on realSTM32F4 and we show the ben-
efits of the paper’s contribution. The rest of the paper
is organized as follows: In Section 2 the case study to
be followed as a running example. We present in Sec-
tion 3 the proposed Multi-Agent Architecture. The
multi-microcontroller protocol is proposed in Section
4, before we implement, simulate and analyze the
whole architecture in Section 5. Section 6 concludes
finally this research work.

2 CASE STUDY

We assume as a running example a reconfigurable
distributed system to be composed of two microcon-
trollers. In this work, the different LEDs will be used
to differentiate the different reconfiguration steps that
will be detailed in the next sections. We assume that
each micro-controller contains several periodic OS
tasks such that each one produces periodic jobs ac-
cording to (Liu and Layland, 1973). It is character-
ized by: (1) A release timeR, (2) A periodT, (3) A
deadlineD, (4) A WCETC and (5) A static priorityS.
We assume that these tasks are periodic, synchronous,
i.e, R= 0 and with precedence constraints. Table 1
represents the initial tasks ofmic1 andmic2. Table 2
represents the added tasks ofmic1 andmic2, respec-
tively.

Table 1: The characteristic of the initial tasks ofmic1 and
mic2.

Tasks Ci Di /Ti mici

τ1 2 10 mic1
τ2 4 15 mic1
τ3 7 30 mic1
τ7 3 20 mic2
τ8 5 20 mic2
τ9 6 20 mic2

Table 2: The characteristic of the added tasks ofmic1.

Tasks Ci Di /Ti mici

τ4 1 15 mic1
τ5 2 30 mic1
τ6 1 30 mic1
τ10 6 20 mic2
τ11 3 30 mic2
τ12 9 30 mic2

We assume the following precedence constraints
between the tasks to be uploaded on bothmic1 and
mic2 in order to offer the global service of the dis-
tributed system. We assume thatτ7 must be executed
after τ2 andτ6 must be executed beforeτ10. We as-
sume that the latters are reconfigurable. For each con-
troller, we define two different implementations of
tasks. Note also that these controllers apply each time
a unique distributed reconfiguration scenario.

Running example 1At a particular timet1, if mic1
decides to apply a reconfiguration scenario by removing
τ2 andmic2 wants to keepτ7. It is one of the incoherence
that can be happen if there is no coordination between the
microcontrollers. For that, a protocol should be proposed
in the current paper to coordinate between the different
microcontrollers and avoid the incoherence in a network
of microcontrollers.

New�Multi-Token�based�Protocol�for�Flexible�Networked�Microcontrollers

465



3 MULTI-AGENT BASED
ARCHITECTURE

We formalize in this section the networked real-time
microcontrollers that we assume adaptive to their en-
vironment. The distributed system is composed ofn
STM32F4 controllers to be linked with a token ring
topology and serial ports. After applying a reconfigu-
ration scenario, the coherence between the microcon-
trollers can not be guaranteed. We propose a multi-
agent architecture where we propose for each micro-
controller a Request AgentRAthat defines the recon-
figurations to be applied locally, and a Coordination
AgentCA which manages any coordination with re-
mote controllers after any reconfiguration scenario.

3.1 Request Agent Modeling

The request agentRA is responsible of the local soft-
ware reconfigurations in the microcontroller. We con-
sider three forms of reconfigurations to be locally ap-
plied at run-time: (i) Architectural Reconfiguration
allowing the addition-removal of OS tasks at run-
time to-from the controller, (ii) Scheduling Recon-
figuration allowing the modification of the compo-
sition of tasks without modifying their architecture,
(iii) Data Reconfiguration allowing the modification
of values of data while keeping the same architecture
and scheduling. The idea of our paper is as follows:
suppose that a Request Agent of a controller wants
to apply a deep reconfiguration that changes the ar-
chitecture (adds-removes tasks), the scheduling (the
composition of some tasks) and the values of some
data. This reconfiguration should be applied with
the agreement of remote controllers in order to ap-
ply a coherent and correct distributed behavior of the
whole system. We model the agentRAby nested state
machines which are studied in several researches be-
fore(Rausch and Hanisch, 1995) (Hanisch and Luder,
). We assume that the architecture level is specified by
an architecture state machineSAmfor each microcon-
troller m∈ [1,n] where each state represents a partic-
ular proposed architecture. We define for each state
SAmi of SAma composition state machine to be de-
noted bySCm. It represents the different schedules
that can be applied if this particular architectureSAmi
is applied. The data level is specified by data state ma-
chine state machines such that each oneSDmk corre-
sponds to a particular stateSCMi, j of SCMi . The agent
automatically applies at run-time different reconfig-
uration scenarios where each scenario is denoted by
ςi, j ,k,h and corresponds to (i) an architecture state in
the top level, (ii) scheduling state in the second level,
(iii) data state in the bottom level as follows:

• The architecture StateSAmi: a state ofSAmthat
corresponds to a particular set of tasks to be lo-
cally executed in the microcontroler,

• The Composition StateSCmi, j : a state describing
a possible scheduling of these tasks according to
user requirements. This state belongs to a state
machine that corresponds (in the second level) to
SAmi ,

• The Data StateSDmk,h: a state that corresponds in
the third level to particular values of data that we
attach to the tasks ofSAmi.

3.2 Coordinator Agent

The coordination agentCA of a microcontroller co-
ordinates with remote controllers to look for the ap-
plication of the desired reconfigurations fromRAi . In
a particular controller i (i = 1...n), the controllerCAi
sends a request to the remote coordinator agents of the
rest of controllers. These coordinators analyze this
request with theirRAagents to possibly decide if the
request ofCAi is acceptable or not. If all the coordi-
nators of the different remote microcontrollers agree
the request ofCAi , then this reconfiguration is applied
since the coherence is guaranteed.

3.3 Token

To apply this protocol, we propose three types of to-
kens: (i) Architecture Token, (ii) Scheduling Token,
(iii) Data Token. The Coordination Agent sends first
a Token Agent in order to have an authorization from
remote controllers. This token has a priority and can
be rejected from the network if another Architecture
Token with a higher priority is sent. The Coordination
Agent waits the authorization from all remote con-
trollers before applying effectively this reconfigura-
tion. The architecture of the different distributed tasks
is fixed at this level in the different controllers.CA
sends now a new Scheduling Token in order to define
the scheduling of the local tasks and also in the rest
of controllers. When an agreement is received,CA
sends then a Data Token in order to ask the applica-
tion of reconfigurations allowing the modification of
data. This step-by-step reconfiguration is useful since
it is not important to apply architectural, scheduling
and data reconfigurations at the same time. We note
finally that these tokens are described in the transi-
tions of the nested state machines of eachRA.

3.3.1 Token Architecture

The architecture token is defined by a Matrix where
the lines represent the microcontrollers of the system

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

466



and the columns are as follows (Three columns):

• Column 1: Architecture ”added/removed tasks”,

• Column 2: Priority of the architecture,

• Column 3: Decision ofCAi (1 or 0). After a re-
configuration request,CAi will answer by 1 or 0
where:

– 1, if the reconfiguration is authorized,
– 0, if the reconfiguration is not authorized.

3.3.2 Token Composition

For a particular architecture, a token composition is
defined. The columns are as follows:

• Column1: The given schedule,

• Column2: The priority.

Note that the priority of each schedule is modified ac-
cording to user requirement.

3.3.3 Token Data

When an agreement is received after the composition
level,CAi sends then a Data Token in order to ask the
application of reconfigurations allowing the modifica-
tion of data. A Data Token is composed two columns
that represent the new values of data and its prior-
ity that will be applied for a given architecture after
scheduling.

3.4 Running Example

We define a nested state machine forRA1 andRA2.

The architecture level ofmic1 is characterized by two
different architectures:

• SA11: composed ofτ1, τ2 andτ4

• SA12: composed ofτ1, τ3, τ5 andτ6

ForSA11, we have 2 possibilities of schedules:

• SC111: τ1, τ2 andτ4

• SC112: τ2, τ4 andτ1

ForSA12, we have 3 possibilities of schedules:

• SC121: τ1, τ3, τ5 andτ6

• SC122: τ1, τ5, τ6 andτ3

• SC123: τ1, τ6, τ3 andτ5

For SD111, the periods must be equal to 20 but for
SDA212, they will be equal to 30 Time Units. For a
givenSC112, SC122 andSC123 the periods will be equal
to 20, 30 and 40, respectively.

The architecture level ofmic2 is characterized by two dif-
ferent architectures:

• SA21: composed ofτ7, τ8 andτ9 andτ10

• SA22: composed ofτ8, τ10, τ11 andτ12

Sinceτ7 is executed afterτ2 andτ2 is only in SA11. Then
τ7 will be in SA21 and notSA22. Similar for τ7, it will be
in SA21 since it has a precedence constraint withτ6 which
is in SA12. ForSA1, we have 2 possibilities of schedules:

• SC211: τ7, τ8 andτ10 andτ9

• SC212: τ10, τ8 andτ7 andτ9

For SA2, we have 2 possibilities of schedules:

• SC221: τ10, τ8, τ11 andτ12

• SC222:τ8, τ10, τ12 andτ11

The composition statesSC211 andSC212, the periods are
modified to be equal to 30 and 40, respectively. For a given
SC211, the period is equal to 30 Time Units.

At a particular timet1, RA1 chooses to applySA11 and
RA2 chooses to applySA22. We assume thatSA11 has
the highest priority. A token architecture is represented by
table 3. IfCA1 receive the acceptance of this token from
CA2, then it sends the composition one which is defined by
table 5 in order to get the acceptance ofCA2. If the latter
give its authorization, thenCA1 sends the last data token
shown by table and waits for the answer ofCA2.

Table 3: Architectural Matrix.

MiCm/Reci Architecture Priority Decisiono fCAi
mic1 SA11 1 1
mic2 SA22 0 1

Table 4: Data Matrix.

CA data Priority
CA1 SD111 1

Table 5: Composition Matrix.

CA Schedule Priority
CA1 SC111 1
CA1 SC112 0

4 COMMUNICATION
PROTOCOL

We propose a protocol for coherent distributed recon-
figurations of networked microcontrollers. Let we as-
sume that this protocol is based on the following three
parts::

• Part 1:RAof a particular microcontroller detects
a reconfiguration request.

New�Multi-Token�based�Protocol�for�Flexible�Networked�Microcontrollers

467



• Part 2: relationRA−CA: CA receives this request
and verifies according to its conditions ifRAcan
apply this reconfiguration or not.CA will check
if this applied reconfiguration lead it to apply an-
other corresponding reconfiguration. If it is the
case, it will inform the correspondRA to request
the new reconfiguration.

• Part 3: communication between CA and the re-
mote microcontrollers: everyCA asks the rest of
theCA if it has the authorization to apply a recon-
figuration or not.

The reconfiguration can be halted when architecture
or composition or data tokens are not authorized. The
goal of this protocol is to have useful and optimal dis-
tributed reconfigurations: if the microcontrollers do
not agree a suggested new architecture, then it is not
important to go to scheduling and so on. Algorithm
1 is developed to show the behavior of anRAwhen it
sends a request toCAi . Algorithm 2 shows the behav-
ior of the remoteCA when they receive this request.
This algorithm is applied in all the different level of
reconfiguration.

Algorithm 1: Communication Protocol.
Variables:
int CAj ;// Coordination agent for eachmicj
int RAj ; // Request agent for eachmicj

1. 1.
if (RAj sends an architecture request)then

if (answer(CAj )==1) then
Invoke algorithm 2;

end if
else

break;
end if
2.
if (RAj sends a composition request)then

if (answer(CAj )==1) then
Invoke algorithm 2;

end if
else

break;
end if
3.
if (RAj sends a data request)then

if (answer(CAj )==1) then
Invoke algorithm 2;

end if
else

break;
end if

Algorithms 1 and 2 are with complexityO(n2).

Algorithm 2: Communication CA-CA.
Variables:
int l=0; // counter for microcontrollers
booleanRR; // reconfiguration request for each level Matrix
of integers:
Matdecision// Matrix containing the decision of the other mi-
crocontrollers for each level,

for eachCAi , i! = j do
CAi gives its answer;
Put this value inMatdecision1;

end for
for (l = 1; l ≤ size(Matdecision1); i++ ) do

if l ! = j then
if Matdecision1[l ] == 1 then

Message=”Reconfiguration is authorized”;
RR=1; //

else
RR=0;
break;

end if
end if

end for

5 EXPERIMENTATION

The contribution of this paper is applied to a ring that
will be composed of 2STM32F4 as said in the sec-
tions below. A tool is developed to apply this new
simple strategy in order to manage the coordination
between the different devices of the system at run-
time. We expose in this section our case study.

5.1 Architectural Level 1

The microcontrollermic1 asksmic2 to apply a recon-
figuration scenario. It implements the architecture
SA11. The microcontrollermic1 activates the yellow
led when it asks the reconfiguration. Two cases may
happen.

5.1.1 Case 1: Reconfiguration is Authorized

According to table 6 the reconfiguration is authorized
sinceCA2 gives its authorization. Then,mic2 activates
the yellow led.

Table 6: Architectural Decision.

MiCm/Reci CA1 CA2

CA1 - 0
CA2 1 -

5.1.2 Case 2: Reconfiguration is not Authorized

Table. 7 shows that the reconfigurationSA11 is not
authorized. In this case,mic1 will be light in red.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

468



Table 7: Architectural Decision.

MiCm/Reci CA1 CA2

CA1 - 0
CA2 0 -

5.2 Composition Level

The microcontrollermic1 will ask to applySD11. The
microcontrollermic2 will give the authorization to ap-
ply this schedule. In this levelmic1 will be light in
orange after the task addition. Table 8 shows the de-
cision ofCA2.

Table 8: Composition Decision.

MiCm/Reci CA1 CA2

CA1 - 0
CA2 1 -

5.3 Data Level

The microcontrollermic1 must update the periods of
the tasks for a given architectureSA11 and a schedule
SD1. mic2 must gives its authorization as shown in
table 9. If it accepts this reconfiguration. Then, it will
be light in blue. In our example,mic1 will update the
relative periods to be equal to 20. The microcontroller

Table 9: Data Decision.

MiCm/Reci CA1 CA2

CA1 - 0
CA2 1 -

mic1 informs the microcontrollermic2 that a particu-
lar reconfiguration is applied. As a consequence, the
microcontrollermic2 will react and apply a forced re-
configuration.mic2 reacts by lighting in blue like the
other microcontrollers.

6 CONCLUSION

This paper presents a new solution for feasible co-
ordination betweenSTM32F4 microcontrollers of a
reconfigurable distributed system. A protocol is ap-
plied in step-by-step for optimal distributed reconfig-
urations or the system. We plan in future works to
deal with low-power and low-memory reconfigura-
tions of the same architecture by assuming heuristics-
based strategies since the problem is NP-Hard.

REFERENCES

C. Angelov, K. S. and Marian, N. (2005). Design models
for reusable and reconfigurable state machines. Proc.
of Embedded Ubiquitous Comput.

George, L. and Courbin, P. Reconfiguration of unipro-
cessor sporadic real-time systems: the sensitivity ap-
proach. Inchapter in IGI-Global Knowledge on Re-
configurable Embedded.

Hanisch, H.-M. and Luder, A. modular modelling of closed-
loop.

Henzinger, T. A. and Sifakis, J. (2006). The embedded
systems design challenge. Canada. 14th International
Symposium on Formal Methods.

J. Garcı́a, F.R. Palomo, A. L. C. A. J. Q. D. C. F. G. P. R. J. P.
Reconfigurable distributed network control system for
industrial plant automation.

K. Thramboulidis, G. D. and Frantzis, A. (2004). Towards
an implementation model for fb-based reconfigurable
distributed control applications. Vienna. Proc. IEEE
7th Int. Symp. Object-Oriented Real-Time Dist. Com-
put.

L. Gauthier, S. Y. and Jerraya, A. A. (2001). Automatic gen-
eration and targeting of application-specific operating
systems and embedded systems software. In IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems.

Liu, C. L. and Layland, J. W. (1973).Scheduling algo-
rithms for multiprogramming in a hard real time envi-
ronment. J. Assoc. Comput. Mach.

M. Khalgui, O. Mosbahi, Z. W. L. and Hanisch, H.-M.
(2011). Reconfiguration of distributed embedded-
control systems. IEEE/ASME Trans. Mechatronics.

Pellizzoni, R. and Lipari, G. (2004).A new sufficient fea-
sibility test for asynchronous real-time periodic task
sets. in Proc. on 16th Euro. Conf.

Rausch, M. and Hanisch, H.-M. (1995). net condition/event
systems with multiple condition outputs. in Sympo-
sium on Emerging Technologies and Factory Automa-
tion.

S. Baruah, R. H. and Rosier, L. (1990). Algorithms and
complexity concerning the preemptive scheduling of
periodic real-time tasks on one processor. Real-Time
Syst.

Spuri, M. and Buttazzo, G. (1996).Scheduling aperiodic
tasks in dynamic priority systems. Real-Time Sys-
tems.

Z. Gu, M. Lv, Q. D. a. G. (2008). Schedulability analysis of
global fixed-priority or edf multiprocessor scheduling
with symbolic model-checking. 11th IEEE Sympo-
sium on Object Oriented Real-Time Distributed Com-
puting.

New�Multi-Token�based�Protocol�for�Flexible�Networked�Microcontrollers

469


