
CloudaSec: A Novel Public-key Based Framework to Handle Data
Sharing Security in Clouds

Nesrine Kaaniche, Maryline Laurent and Mohammed El Barbori
Institute Mines Telecom, Telecom-SudParis, Paris, France

Keywords: Cloud Storage Systems, Data Security, Access Control, Algorithm Verification.

Abstract: Recent years have witnessed the trend of leveraging cloud-based services for large scale content storage,
processing, and distribution. Data security and privacy are among top concerns for the public cloud envi-
ronments. Towards these security challenges, we propose and implement CloudaSec framework for securely
sharing outsourced data via the public cloud. CloudaSec ensures the confidentiality of content in the public
cloud environments with flexible access control policies for subscribers and efficient revocation mechanisms.
CloudaSec proposes several cryptographic tools for data owners, based on a novel content hash keying system,
by leveraging the Elliptic Curve Cryptography (ECC). The separation of subscription-based key management
and confidentiality-oriented asymmetric encryption policies uniquely enables flexible and scalable deploy-
ment of the solution as well as strong security for outsourced data in cloud servers. Through experimental
evaluation, we demonstrate the efficiency and scalability of CloudaSec, build upon OpenStack Swift testbed.

1 INTRODUCTION

Recently, the US International Data Corporation
(IDC) proclaims that the digital universe will grow
by a factor of 300, up to 40 trillion gigabytes of repli-
cated data by 2020 (Gantz and Reinsel, 2012). This
explosive growth of data continues to rise the demand
for new storage and network capacities, along with
an increasing need for more cost effective architec-
tures. As such, recent years have witnessed the trend
of leveraging cloud data storage, since it provides ef-
ficient remote storage services in pay per use business
model.

However, these promising data storage services
have brought many challenging design issues, consid-
erably due to the loss of control on outsourced data.
One of the biggest concerns is data confidentiality
provisioning which remains a fundamental security
requirement in cloud storage services.

It is commonly agreed that data encryption at the
client side is a good alternative to mitigate such con-
cerns of data confidentiality. Thus, the client pre-
serves the decrypting keys out of reach of the cloud
provider. Nonetheless, the confidentiality preserva-
tion becomes more complicated with flexible data
sharing among a group of users. First, it requires ef-
ficient sharing of decrypting keys between different
authorized users. The challenge is to define a smooth

group revocation which does not require updating the
secret keys of the remaining users. So, the complexity
of key management is minimized. Second, the access
control policies should be flexible and distinguish-
able among users with different privileges to access
data. That is, data may be shared by different users or
groups, and users may belong to several groups.

In this paper, we propose CloudaSec, a public key
based solution for improving data confidentiality in
cloud storage environments and enhancing dynamic
sharing between users. CloudaSec applies the con-
vergent encryption concept (Wang et al., 2010) on
data contents. That is, the data owner uploads en-
crypted content to the cloud and seamlessly integrates
the deciphering key encrypted into the metadata to en-
sure data confidentiality. In addition, CloudaSec in-
tegrates a conference key distribution scheme, based
on parallel Diffie Hellman exchanges, in order to
guarantee backward and forward secrecy (Burmester
and Desmedt, 2005). That is, only authorized users
can access metadata and decipher the decrypting data
keys. As such, user revocation is achieved without
updating the private keys of the remaining users.

Beyond these security properties, a deduplication
mechanism is deployed ensuring that only one copy of
content is stored in cloud servers. This feature enables
the efficient usage of storage capacities and achieves
fast data distribution.

5Kaaniche N., Laurent M. and El Barbori M..
CloudaSec: A Novel Public-key Based Framework to Handle Data Sharing Security in Clouds.
DOI: 10.5220/0005010600050018
In Proceedings of the 11th International Conference on Security and Cryptography (SECRYPT-2014), pages 5-18
ISBN: 978-989-758-045-1
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Paper Organization.The remainder of this work is
organized as follows: Section 2 presents security con-
siderations and design goals. Then, Section 3 de-
scribes the system model, reviews some preliminaries
and cryptographic primitives, details the framework
design, and describes the prototype and its different
procedures. In Section 4, rigorous security discus-
sions are given, and implementation results are dis-
cussed in Section 5. Finally, we review the related
work in Section 6, before concluding in Section 7.

2 PROBLEM STATEMENT

Providing data confidentiality, in multi-tenant envi-
ronments, becomes more challenging and conflicting.
This is largely due to the fact that users outsource their
data on remote servers, which are controlled and man-
aged by possible untrusted Cloud Service Providers
(CSPs). That is why, it is compulsory to provide se-
crecy by encrypting data before their storage in cloud
servers while keeping the decryption keys out of reach
of CSP and any malicious user. Nonetheless, the con-
fidentiality preservation becomes more complex with
resilient data sharing among dynamic groups. Hence,
secure data sharing should support flexible security
policies including forward and backward secrecy.

• Forward Secrecy– this property requires that the
confidentiality of previous encrypted data has to
be ensured even after the long-term secrets are ex-
posed. For example, a user cannot access stored
data before he joins a group.

• Backward Secrecy– this property means that a
compromise of the secret key does not affect the
secrecy of future encrypted data. As such, a re-
voked group member is unable to access data that
were outsourced after he leaves the group.

Therefore, the design of our protocol is motivated
by providing the support of both robustness and effi-
ciency, while considering the limited storage and pro-
cessing capacities of user devices. It has to fulfill the
following requirements:

• Data Confidentiality– our scheme has to protect
the secrecy of outsourced data contents against
both curious providers and malicious users.

• Flexible Access Control– CloudaSec should en-
sure flexible security policies among users with
different granted privileges, belonging to differ-
ent groups. These access control policies should
guarantee backward and forward secrecy of out-
sourced data contents.

• Efficient User Revocation– the revocation of a
group member should not affect the remaining

users. That is, contrary to traditional fine-grained
access control schemes, the challenge is to de-
fine a smooth group revocation which does not re-
quires updating the secret keys of the non-revoked
members.

• Low Computation Overhead– on one hand, for
scalability reasons, the amount of computation at
the cloud storage server should be minimized, as
the server may be involved in concurrent interac-
tions. On the other hand, the proposed algorithms
should also have low processing complexity, at the
client side.

• Low Communication Overhead– CloudaSec
should minimize the usage of bandwidth, relying
on low communication cost.

• Low Storage Cost– the limited storage capacities
of the user devices has a critical importance in de-
signing our solution. So, low storage cost at the
client side is highly recommended.

3 CLOUDASEC FRAMEWORK

This section presents CloudaSec architecture with
four different types of players. Then, it introduces
CloudaSec, a public key based framework to han-
dle data sharing security, and it highlights the cryp-
tographic assumptions that should be fulfilled by our
proposed framework.

3.1 System Model

Figure 1 illustrates a descriptive network architecture
for CloudaSec framework. It relies on the following
entities for the good management of client data:

• Cloud Service Provider (CSP): a CSP has signifi-
cant resources to govern distributed cloud storage
servers and to manage its database servers. It also
provides virtual infrastructure to host application
services. These services can be used by the client
to manage his data stored in the cloud servers.

• Data Owner: a data owner makes use of
provider’s resources to store, retrieve and share
data with multiple users. A data owner can be ei-
ther an individual or an enterprise.

• Group Manager (GM): a group manager takes
charge of construction of a group, system param-
eters generation, user registration and user revo-
cation. Therefore, we assume that the group man-
ager is trusted by the other entities.

• Users: the users are able to access the content
stored in the cloud, depending on their access

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

6

Figure 1: CloudaSec architecture.

rights which are authorizations granted by the data
owner, like the rights to read, write or re-store the
modified data in the cloud. These access rights
serve to specify several groups of users.

In practice, the CSP provides a web interface for data
depositors to store data into a set of cloud servers,
which are running in a cooperated and distributed
manner. In addition, the web interface is used by the
users to retrieve, modify and re-store data from the
cloud, depending on their access rights. We assume
that there is an established secure channel between the
cloud user and the CSP. This secure channel supports
mutual authentication and data confidentiality and in-
tegrity. It can be implemented through the Transport
Layer Security protocol (TLS) (Dierks and Rescorla,
2008), where the client can authenticate with a certifi-
cate or password.

Next, we refer to these authorized user(s) as the
recipient(s) and to the data owner as the depositor.
We must note that our proposal does not require from
the recipients to be connected during the sharing pro-
cess. Indeed, recipients’ access rights are granted by
the data owner and managed by the CSP. That is, the
CSP is in charge of verifying each recipient access
permissions before sending him a redirected access
key element.

3.2 CloudaSec Overview

To protect outsourced data in public cloud servers
from unauthorized entities, CloudaSec provides sev-
eral cryptographic tools for the data owner in order
to guarantee the secrecy of his outsourced data and
to ensure that only authorized users are able to obtain
the decrypting data keys.

Our framework relies on the convergent encryp-
tion (Wang et al., 2010) which is a content hash key-
ing cryptographic system. That is, it presents two en-
cryption levels: data encryption level and key encryp-
tion level as follows.

• Symmetric Data Encryption Level– before out-

sourcing data to cloud servers, the depositor en-
crypts file contents, using a symmetric algorithm.
That is, the enciphering data key is derived, from
the file plaintext, using a one way hash function.
Hence, the choice of the convergent encryption is
multifold. First, storage capacity is preserved as
the same data encrypted by several users produce
the same encrypted data that need to be stored
once. As such, the number of redundant copies
is minimized in order to preserve the efficiency of
the storage service. Second, convergent encryp-
tion leads to a per-data enciphering key thus mit-
igating the usual key sharing problem when con-
tent sharing is needed. Third, the generation of the
deciphering data key is possible only if the plain-
text is known.

• Asymmetric Key Encryption Level– the depos-
itor enciphers the decrypting data keyk, based
on an asymmetric algorithm, using the public key
of the recipient. Then, he includes this resulted
encrypted key in user metadata, ensuring flexi-
ble access policies. Indeed, any authorized recipi-
ent may access to user metadata, in order to deci-
pher the encrypted data key, using his private key.
Then, he can decrypt the enciphered contents.

This dual encryption scheme on data then on the de-
crypting keys provides data confidentiality, as well as
flexible access control policies.

CloudaSec procedures involve two joint layers:
data layer and management layer. In the data layer,
we introduce the operations on data and the related
enciphering keys, namelyGenerateParameters,
EncryptData, DecryptData, EncryptKeyOneToOne,
EncryptKeyOneToMany and ShrinKey. In the man-
agement layer, CloudaSec introduces procedures of
user revocation, when a group member leaves or is
revoked from the group, anduser subscription, when
a new user joins the group.

CloudaSec supports flexible access to encrypted
contents, by dynamically sharing a group secret key
within the group. That is, when the group state is
modified due to a user subscription or revocation, the
GM broadcasts the new group arrangement to autho-
rized members in order to generate the new secret
group key, based on the published public elements,
without updating the private keys of the remaining
users, as presented in Section 3.5.

CloudaSec distinguishes two different data shar-
ing scenarios. First, the data sharing one to one, pre-
sented in Section 3.4.1, where a data owner stores
for one CloudaSec user. Second, the data sharing
one to many, described in Section 3.4.2, where a
data owner shares data among a group of authorized
users. These scenarios encompass two different data

CloudaSec:�A�Novel�Public-key�Based�Framework�to�Handle�Data�Sharing�Security�in�Clouds

7

key encryption algorithmsEncryptKeyOneToOneand
EncryptKeyOneToMany.

The different notations used in this paper are listed
in Table 1.

Table 1: Our notations.

Notation Description

f file content
k data key

idi identity of a CloudaSec userUi

ski private key of a CloudaSec userUi

pki public key of a CloudaSec userUi

skc private key of the CSP
pkc public key of the CSP
d group secret key

3.3 Cryptographic Background

This section reviews a straightforward cryptographic
background, used in the design of our CloudaSec
framework.

3.3.1 Preliminaries

CloudaSec essentially relies on the use of one way
functions and bilinear maps, defined as follows.

Collision Resistant Hash Functions (Boneh and
Boyen, 2006) – LetH : {0,1}∗ → {0,1}n be a hash
function. H is a collision resistant function if no
efficient algorithm can find a pairM 6= M′ ∈ {0,1}∗,
such thatH(M) = H(M′).

Bilinear Maps { (Regan,), (Ratna et al., 2004)}
– an admissible symmetric pairing function ˆe from
G1×G1 in G2 has to be bilinear, non degenerate and
efficiently computable.G1 is an additive subgroup of
the group of points of an Elliptic Curve (EC). How-
ever,G2 is a multiplicative subgroup of a finite field.
G1 andG2 have the same orderq. In addition,G1 and
G2 are generated byP and theg = ê(P,P), respec-
tively.

3.3.2 Cryptographic Assumptions

Our proposal is based on two cryptographic assump-
tions, namely the Elliptic Curve Discrete Logarithm
Problem and the Computational Diffie Hellman
Problem.

Elliptic Curve Discrete Logarithm Problem
(ECDLP) – given an additive groupG, a subgroup of
E(Fp), which is generated by the pointP of prime
ordern, it is intractable to finda, whereQ= aP, and
P are known.

Computational Diffie Hellman Problem (CDH)–
given a cyclic groupG of order p and generatorg,
there is no efficient algorithm to calculategab , where
(g,ga,gb) are known.

3.3.3 Group Key Distribution (GKD)

Burmester and Desmedt propose an unauthorized key
exchange protocol (Burmester and Desmedt, 2005).
It is a two round protocol that extends the concept of
the Diffie Hellman assumption.

Let G = {U1, ...Um}, be a group ofm users ar-
ranged into a cycle. To generate a group key, each
memberUi , wherei ∈ [1,m]N, first selects a random
secretbi . Then, he broadcastszi = gbi , whereg is
a generator of a multiplicative groupG. Afterwards,
this latter publishesXi = (zi+1

zi−1
)bi . We must note that

the number of exponentiations per user is constant and
each userUi computesK, asK ≡ gb1b2+b2b3+...+bmb1

mod(p).

3.4 CloudaSec Data Layer Procedures

This section describes the different CloudaSec data
layer procedures. CloudaSec, first, requires a sys-
tem setup procedure, ensured by the execution of
the GenerateParametersalgorithm, before perform-
ing the sharing scenarios.

This CloudaSecGenerateParametersalgorithm
initializes the system and generates the public param-
etersparams, according to a required security param-
eterξ, as presented in Algorithm 1. That is, the sys-
tem setup procedure generates the groupsG1 andG2
and the pairing function ˆe from G1×G1 in G2. G1
is an additive subgroup of the group of points of an
Elliptic Curve (EC), whereG2 is a multiplicative sub-
group of a finite field.G1 andG2 have the same order
n and are generated byP andg= ê(P,P), respectively.

After the specification of the groups, CloudaSec
GenerateParametersprocedure defines a secure one
way hash functionH :E→{0,1}l , with respect to the
required security level, whereE represents the finite
data domain andl is the length of the content encrypt-
ing key. In addition, it derives an applicationF to bind
an element belonging to the multiplicative groupG∗

2
to a binary sequence of lengthl .

The groupsG1 andG2, the pairing ˆe, the pointP,
the hash functionH() and the applicationF form the
public parametersparamsas follows.

params= {G1,G2,n, ê,g,P,H(),F}.

We must note that each user has to derive a pair of
public and private keys, with respect to the published
authentic public parametersparamsand the required

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

8

Algorithm 1 : GenerateParameters.

1: Input: Security parameterξ
2: Output: System parametersparams =

{G1,G2, ê,P,g,H,F,n}

3: Choose an elliptic curveECover an additive sub-
groupG1 of a prime ordern, whereBitLength (n)
> ξ and ECDLP is hard inG1;

4: SelectP a generator ofEC;
5: Choose a multiplicative subgroupG2 of a prime

ordern, whereBitLength (n)> ξ and CDH is hard
in G2;

6: Selectg a generator ofG2;
7: Generate ˆe from G1 ×G1 in G2 an admissible

pairing map;
8: Generate a one way hash functionH : E →

({0,1}l)∗, whereE is the data space andl is the
length of the encrypting key;

9: GenerateF : G∗
2 → {0,1}l an application to bind

an element ofG∗
2 to a binary sequence of lengthl

10: return params= {G1,G2, ê,P,g,H,F,n}

security levelξ. As such, a CloudaSec userUt is char-
acterized by his identityidt and the derived pair of
keys: his private keyskt , whereskt is a random secret
st ∈R Zn and his public key aspkt = st ·P.

Ut(idt , pkt ,skt)

In the following, we denote by· the scalar point mul-
tiplication in an additive group and by⋆ two elements
multiplication belonging to a multiplicative group.

We consider a data sharing process, where the
client outsources his data to the cloud and authorizes
a group of users to access the data. This group may
be a duo group or a multi-user group.

3.4.1 CloudaSec One to One Sharing Scenario

The One to One scenario is defined when a data owner
Ui wants to share data with only one recipient user
U j . The depositorUi first enciphers the data filef ,
as presented in Algorithm 2, based on a symmetric
encryption schemeSymEnc, using a data enciphering
key k. Based on a convergent cryptographic solution,
the data keyk is derived from the application of a one
way hash function over the original data filef . Sub-
sequently,Ui stores the encrypted contentf for the
recipient userU j , in remote servers. In order to as-
sign the access rights to the recipient, the depositor
enciphers the data decrypting keyk using the public
key of the recipientpkj , as described in CloudaSec
EncryptKeyOneToOneprocedure (Algorithm 3). That
is, CloudaSec introduces a novel asymmetric key en-
coding, to ensure flexible sharing of outsourced data.

Algorithm 2 : EncryptData.

1: Input: { f ,H,SymEnc}, where f is the data file,
H is a one way hash function andSymEncis a
symmetric encryption algorithm

2: Output: <Cf ,k>

3: k= H(f);
4: Cf = SymEnc(f ,k);
5: return <Cf ,k>

For instance, the resulting enciphered key involves a
couple of elements< C1,C2 >. C1 is included in the
user metadata, by the depositorUi. However,C2 is
sent to the CSP, in order to grant additional access
verifications on the outsourced data and to generate a
redirected access key element. We assume in our ap-
proach that all key elements belong to a finite domain
spaceD. We denote each key element bykey.eltas
defined in Equation 1, whereD can be either a user
metadata element space or a CSP metadata element
space.

key.elti∈{1,2,3} = {Ci,D(Ci)}i∈{1,2,3} (1)

We must note that the CSP has a pair of private and
public keys as< skc, pkc >, whereskc = sc ∈R Zn
presents the provider private key andpkc = sc ·P∈G∗

1
is his related public key. When the CSP receives the
second key elementC2, he runs theShrinKeyalgo-
rithm in order to derive a redirected key elementC3,
as presented in Algorithm 4. This latter enciphersC2,
using his secret keyskc and generates the correspond-
ingC3. Afterwards, when the CloudaSec recipientU j ,
where j 6= i, wants to recover the outsourced data file,
he has to retrieve the encrypted data key< C1,C3 >.
As such, the recipient userU j starts a data backup
scenario as follows.

Algorithm 3 : EncryptKeyOneToOne.

1: Input: {params,k,ski, pki , pkj , pkc}
2: Output: <C1,C2 >

3: Use a deterministic secure pseudo random num-
ber generator (SPRNG) with a random secret
seedto generater ∈R Zn;

4: C1 = k⊕F(ê(pki , pkj)
r);

5: C2 = ê(pkc, r ·P)ski ;
6: return <C1,C2 >

After successfully authenticating with the CSP,U j
gets the redirected key elementC3. Then, based on
the outsourced user metadata, the authorized recipi-
entU j extracts theC1 key element, which was enci-
phered, using his public keypkj by the depositorUi .
In the sequel, based on his local secret keyskj , the

CloudaSec:�A�Novel�Public-key�Based�Framework�to�Handle�Data�Sharing�Security�in�Clouds

9

recipientU j performs theDecryptKeyOneToOneproce-
dure, in order to decipher the encrypted data keyk,
as presented in Algorithm 5. Finally, the recipient re-
trieves the data file content. That is, he locally runs
the CloudaSecDecryptDataprocedure, based on the
derived deciphering keyk, using a symmetric algo-
rithm over encrypted dataCf (cf. Algorithm 6).

Algorithm 4 : ShrinKey.

1: Input: {C2,skc}
2: Output: C3

3: C3 = (C2)
1

skc ;
4: return C3

Algorithm 5 : DecryptKeyOneToOne.

1: Input: {params,<C1,C3 >,skj}
2: Output: Decrypting keyk

3: C1⊕F((C3)
skj);

4: return k

Algorithm 6 : DecryptData.

1: Input: {Cf ,k,SymEnc}
2: Output: f

3: f = SymEnc(Cf ,k) ;
4: return f

3.4.2 CloudaSec One to Many Sharing Scenario

When a depositorUi intends to share data with a
multi-user group, he has to encipher the data decrypt-
ing key based on his public keypki and a secret shared
group keyd. The secret shared key is a private key,
only known to the authorized group members. It is
derived by performing the key agreement algorithm
(Section 3.3.3), based on parallel Diffie Hellman in-
stantiations (Burmester and Desmedt, 2005), as ex-
plained in Section 3.5.

The depositor executes theEncryptKeyOneToMany
procedure (cf. Algorithm 7), in order to encrypt the
deciphering data key. The resulting encrypted key in-
cludes a couple of elements< C1,C2 >, whereC1 is
integrated in user metadata by the depositor, andC2
is sent to the cloud provider, in order to generate an
accessing keyC3 element (Algorithm 4). When an au-
thorized group member wants to retrieve the data de-
crypting key, he has first to send a request to the cloud
provider to access to the outsourced data. The CSP
verifies the granted privileges of the requesting user.
Once accepted, the requesting group member receives
the redirected key elementC3 obtained by performing

the ShrinKeyprocedure, as shown in Section 3.4.1.
Then, he runs the CloudaSecDecryptKeyOneToMany
procedure (cf. Algorithm 8) using the secret shared
group keyd, in order to derive the deciphering data
keyk.

Algorithm 7 : EncryptKeyOneToMany.

1: Input: {params,k, pki,ski ,d, pkc}
2: Output: <C1,C2 >

3: Use a deterministic secure pseudo random num-
ber generator (SPRNG) with a random secret
seedto generater ∈R Zn;

4: C1 = k⊕F(ê(pki , r ·P)d);
5: C2 = ê(pkc, r ·P)ski ;
6: return <C1,C2 >

Algorithm 8 : DecryptKeyOneToMany.

1: Input: {params,<C1,C3 >,d}
2: Output: Decrypting keyk

3: C1⊕F((C3)
d);

4: return k

3.5 CloudaSec Management Layer
Procedures

Efficient data sharing between authorized cloud users,
among dynamic groups remains a challenging con-
cern. That is, it increases the computation complex-
ity and the bandwidth consumption, due to the shar-
ing of group secret keys. In addition, the heavy over-
head and the large size of outsourced data may reduce
the advantages of remote sharing services to resource-
constrained devices.

In order to tackle this challenging issue,
CloudaSec introduces the role of a group man-
ager (GM). This latter is responsible for elementary
procedures, namely the initialization of the group
parameters and the organization among authorized
registered group members. Then, the GM makes the
group parameters available by migrating them to the
cloud. Such a design can significantly reduce the
computation overhead, at the CloudaSec user side.

Let us consider Gr = {{U0, id0}, ...,
{UN−1, idN−1}} a dynamic group of N users.
These group members want to generate a common
secretd∈Zn. In the following, we denote bypubeltsi
the public elements of a CloudaSec registered group
memberUi as described in Equation 2.

pubeltsi =< idi , pki > (2)

wherei ∈ {1, ...,N−1} andN is the number of group
users including the manager. As such, we note that

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

10

Algorithm 9 : GenerateGroup.

1: Input: n, p,ξ
2: Output: <G,h>

3: Choose a multiplicative subgroupG of a prime
ordern, whereBitLength (n)> ξ;

4: Selecth a generator ofG, wherehn ≡ 1 modp;
5: return <G,h>

the couple< id0, pk0 > presents the public group el-
ements of theGroup Manager(GM). First, the GM
runs aGenerateGroupprocedure, in order to derive a
multiplicative group and makes public the output of
this algorithm, which is used to generate the secret
group keyd (cf. Algorithm 9). We must note that
the order of the multiplicative group is strongly as-
sociated to the security levelξ of the cryptographic
algorithms.

Then, with respect to the published multiplicative
groupG, each group userUi chooses a randombi and
locally runs the CloudaSecUserKeyShareEltproce-
dure in order to get his first key share elementhi , as
presented in Algorithm 10.

Algorithm 10: UserKeyShareElt.

1: Input: idi ,bi ,h
2: Output: < idi ,hi >

3: hi = hbi ∈G∗;
4: return < idi,hi >

The GM receives the public elementspubeltsi of
each group memberUi . Then, he updates a list of
non revoked usersLNR, which contains the public ele-
ments of all non revoked group users. This list sets
the authorized group members arranged into a cy-
cle. As such, each user can easily identify his pre-
decessorUi−1 and his successorUi+1. Thus, using
the CloudaSecGenerateGroupandUserKeyShareElt
procedures,Ui computes his group key share(hi ,Xi),
as depicted in Equation 3.

(hi ,Xi) = (hbi ,(
hi+1

hi−1
)bi) (3)

Once computed, each userUi sends his group key
share to the GM. This latter publishes the received
key shares of the non revoked users, as presented in
Table 2. Afterwards, as presented in Section 3.3.3,
each user should derive the secret group keyd, us-
ing the published elements in theLNR list, while
respecting the ring construction of the group mem-
bers (Burmester and Desmedt, 2005).

Table 2: List of Non Revoked usersLNR .

Group id User Pubelts User Key Share
U0(id0, pk0) (h0,X0)

idGr U1(id1, pk1) (h1,X1)
...

...
UN−1(idN−1, pkN−1) (hN−1,XN−1)

3.5.1 User Subscription

When a new user{UN, idN} wants to join the
group Gr, presented by Gr = {{U0, id0}, ...,
{UN−1, idN−1}}, where i /∈ {0, ...,N − 1}, he first
runs theUserKeyShareEltalgorithm in order to get
his public key share element< idN,hN >. Then, the
new group member computes and sends his key share
(hN,XN) to the group manager. Hence, The GM
sends a notification message to the remaining group
members and updates the list of non revoked users
LNR.

Afterwards, each group user computes the new se-
cret keydN, due to the group state modification. Since
the derivation of the group secret key depends on
members’ identifiers, the computation of key shares
(hi ,Xi) may be restricted to the solicited members.
Consequently, CloudaSec significantly saves the pro-
cessing time and storage cost at CloudaSec user side.

The user subscription operation prevents new
users from accessing to protected content, before join-
ing the group. As such, CloudaSec ensures the for-
ward security. In order to grant access privileges to
new subscribers to outsourced data, the sharing of a
secrets’ listLS is required.

Indeed, the group manager updates a list of previ-
ously used secretsLS by including the new group se-
cret key. Then, he sends it to the CSP in an encrypted
format by using symmetric encryption algorithm and
the derived secret group keyd. In the sequel, any
authorized group member authenticates with the CSP
and uploads the encrypted list. So that, he can obtain
LS using the derived secret group key and the sym-
metric decryption algorithm.

3.5.2 User Revocation

When a group memberU j leaves or is revoked
from the groupGr = {id0, id1, id2, ..., idk}, where j ∈
{0,1, ...,k}, the group manager first updates the list of
non revoked usersLNR. That is, he removes the pub-
lic elements< id j , pkj > and the key share(hN,XN)
of the revoked member from theLNR list. Then, he
sends a notification message to other group users and
sends the updated list to the CSP. Each group user
computes a new secret keydN by running theGroup-
Keyalgorithm.

CloudaSec:�A�Novel�Public-key�Based�Framework�to�Handle�Data�Sharing�Security�in�Clouds

11

We note that the number of the revoked usersRU
has to be strictly less than(N−1), in order to keep the
One To Many sharing scenario. In fact, we consider
two cases.

1. Case 1– There areRU revoked users, where
1 ≤ RU ≤ N − 2. The group manager revokes
RU users, and updates theLNR list. That is, he
withdraws the revoked users’ identities and reor-
ganizes the indexing system of the list. The group
manager optimizes the changes of the group list
based on a selection protocol, in order to save the
computation capacities of resource constrained
devices. As such, a non solicited group member
is requested to only compute the resulting group
key, using the published public group elements.

2. Case 2– There areRU revoked users, where
RU ≥ N− 1. In this case, the group manager is
released from his role. As such, the multi-user
group becomes a duo group that shares data based
on a sharing One To One scenario.

4 SECURITY ANALYSIS

In the following security analysis, we discuss the re-
sistance of CloudaSec against two adversaries, based
on a realistic threat model. We briefly present the se-
curity of our proposed framework in terms of access
control and data file confidentiality.

4.1 Threat Model

For designing the most suitable security solutions for
cloud storage, we have to consider realistic threat
models. That is, we point out two adversaries: mali-
cious cloud user andhonest but curiouscloud server.

• malicious user adversary– an attacker can be
either a revoked user with valid data decryption
keys, an unauthorized group member or a group
member with limited access rights. As such, he
targets to get access to the outsourced shared data.
The objective of a malicious user is to convince
the cloud server that he is a legitimate data owner.
That is, we suppose that the adversary successes
to gain knowledge of an arbitrary part of the de-
crypting key.

• curious cloud server adversary– this storage
server honestly performs the operations defined
by our proposed scheme, but it may actively at-
tempt to gain the knowledge of the outsourced
sensitive data.

CloudaSec must provide the capabilities to the clients
and the service provider to thwart the two threats men-
tioned above. To this end, our proposed framework
must enforce a mutual verification of the actions con-
ducted by a CloudaSec client and the storage server.

4.2 Data Confidentiality

In our model, data files are stored encrypted in cloud
servers using a symmetric encryption algorithm, and
the secret key is protected relying on an asymmetric
scheme, in order to ensure efficient access control. As
such, the data confidentiality preservation is tightly
related to security of the used symmetric algorithm
and the secrecy of the data key.

Theorem 4.1. Data Confidentiality Preservation
The proposed framework supports data confidential-
ity preservation.

Proof. The confidentiality of data contents is twofold.
First, it depends on the security level of the encryption
algorithm. This latter is a recurrent concept in cryp-
tography. It permits to evaluate the hardness of break-
ing an encryption or a signature algorithm. That is,
the harder the level of security is, the harder the crypt-
analysis of the algorithm becomes. Our employed en-
cryption algorithm inherits the unforgeable property
from the selected scheme. Therefore, CloudaSec en-
sures the confidentiality of encrypted content exposed
in public cloud servers.

Second, the confidentiality of data relies also on
the secrecy of the deciphering key hosted in cloud
servers. The demonstration of this state is derived
from these two lemmas.

Lemma 4.2. Unauthorized users cannot decrypt the
deciphering data keys.

Proof. The proof of this lemma is equivalent to the
security of the key encryption algorithms and the cor-
rectness of the key decryption algorithms.

Let us suppose that an unauthorized user can be
a revoked group member or a malicious cloud user.
Thus, a brief security analysis can be done on the
three following cases.

• Case A– a revoked group memberUR should not
be able to decrypt new data contents, using the
old group secret keyd. This latter knows the pub-
lic elements of the non revoked users published
in LNR and the previous organization of the group
arranged into a cycle. Moreover, he can merely
guess the solicited members after his revocation.
As such, taking advantage from published infor-
mation,UR tries to deduce the new group secret

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

12

key dN or to extract a data key after his revoca-
tion from the group. In this case, we may con-
sider two different sessions(α) and(β), where the
same data ownerUi shares two different data files
fα and fβ, after the revocation ofUR. In the se-
quel, two key elements are defined as follows:

C(α)
1 = kα ⊕F(ê(pki , rα ·P)

dN)

C(β)
1 = kβ ⊕F(ê(pki , rβ ·P)

dN)

On one side, knowing the public key of the de-
positorpki , we state that the deduction of the new

group secretdN from C(α)
1 cannot hold. Obvi-

ously, this is due to the usage of a random value
rα. We also state that our scheme inherits the
unforgeablility property from the Burmester key
distribution algorithm (Burmester and Desmedt,
2005). On the other side,UR cannot deduce se-
cret information fromC(α)

1 ⊕C(β)
1 , mainly due to

the exclusive-or function.
As such, a revoked group memberUR has no ad-
vantage to guess the new secret group, based on
the old group keyd and the previously published
public elements. However, we must note that
CloudaSec does not prevent a revoked member
from decrypting previously shared contents.

• Case B– The main advantage of a malicious cloud
user is to deduce information from an unbounded
number of sessions, where the same data owner
shares different contents with legitimate group
members. As such, two different cases are ex-
posed as follows.
On one hand, in a one to many sharing scenario,
let us suppose that a userUi shares two data files
f1 and f2, respectively enciphered based on two
different keysk1 andk2, using the same random
r. That is, based on Equation 4 and Equation 5,
an attacker obtains indistinguishable data key ele-
mentskey.elt1, as follows.

C(f1)
1 = k1⊕F(ê(pki , r ·P)

d) (4)

C(f2)
1 = k2⊕F(ê(pki , r ·P)

d) (5)

Hence, we notice that there is no polynomial-time
algorithm that can deduce secret information from
Equation 4⊕Equation 5 =k1⊕k2, due to the usage
of the exclusive-or function. As such, the secrecy
disclosure of the deciphering keys remains infea-
sible.
On the other hand, in a one to one sharing sce-
nario, we suppose that a depositorUi shares data
with one recipientU j , using the same random se-
cretr, in order to encipher different data decrypt-
ing key. Thus, based on two successive sessions

(α) and(β), the malicious cloud user gets the fol-
lowing key elementskey.elt1.

C(α)
1 = k1⊕F(ê(pki , pkj)

r(α))

C(β)
1 = k2⊕F(ê(pki , pkj)

r(β))

Therefore, the deduction from the enciphered con-
tents is protected, due to the usage of different
data encryption keys. In addition, the security of
metadata takes advantages from the properties of
the exclusive-or function which ensure the indis-
tinguishability of encryptions.

• Case C– Let us suppose that a depositorUi be-
longs to two different groupsGA andGB. Ui wants
to share the same data filef to these two groups.
GA andGB have two secretsdA anddB, respec-
tively. As such, we have two different key ele-
mentskey.elt1, as follows:

C(A)
1 = k⊕F(ê(pki , rA ·P)

dA) (6)

C(B)
1 = k⊕F(ê(pki , rB ·P)

dB) (7)

We suppose that there a malicious group member
UM that belongs to the group of usersGA. UM tries
to deduce the group secret keydB of GB.
From Equation 6, the recipientUM extracts the

data deciphering keyk. In the sequel, fromC(B)
1 ,

UM computes Equation 8 as follows:

C(B)
1 ⊕ k = k⊕F(ê(pki , rB ·P)

dB)⊕ k (8)

= F(ê(pki , rB ·P)
dB) (9)

From Equation 7 and Equation 8, the mali-
cious recipientUM calculates ˆe(pki , rA · P)dA ⋆
[1/(ê(pki , rB ·P)dB)]. So that,UM executes the fol-
lowing steps:

ê(ski ·P, rA ·P)
dA ⋆ [

1
ê(ski ·P, rB ·P)dB

] =
grAdA

grBdB

Knowing the group secretdA and the two quanti-
ties grAdA andgrBdB, UM cannot extract the group
secretdB. Obviously, this contradicts the CDH as-
sumption.
Finally, as data may be shared by different depos-
itors or groups, and these depositors may belong
to several groups, our framework strongly ensures
the confidentiality of outsourced contents, based
on the hardness of the CDH assumption.

Lemma 4.3. The CSP is unable to learn the content
of outsourced data files in his public servers, based
on the CDH assumption.

CloudaSec:�A�Novel�Public-key�Based�Framework�to�Handle�Data�Sharing�Security�in�Clouds

13

Proof. A curious CSP tries to access to the stored data
contents. His main problem is that outsourced data
files are encrypted. However, the CSP tries to gain
knowledge of an arbitrary part of secret information.

That is, after each storage of data content, the CSP
receives the second key elementkey.elt2, from the de-
positorUi asC2 = ê(pkc, r ·P)ski , whereski ∈Zn is the
secret element of the depositorUi andpkc = skc ·P∈
G∗

1 is the public key of the storage provider. As such,
in order to extract secret information, the CSP com-
putesê(pki ,P) = gski . This deduction cannot hold.
Clearly, this contradicts the CDH assumption.

Given the redirected key elementC3 = C
1
c
2 =

(ê(pkc, r ·P)ski)
1
c , the CSP computesC3 = (ê(pki , r ·

P)skc)
1
c = ê(pki , r ·P). Then, he executes Equation 10

and Equation 11 as follows:

C2 ⋆ [
1

ê(pkc, pki)
] =

gskiskcr

gskiskc
= gr (10)

C3⋆ [
1

ê(pki , pki)
] =

gski r

gski
2 =

gr

gski
(11)

From Equation 10 and Equation 11, this curious stor-
age server cannot extract the secret key of the depos-
itor ski or the used random valuer. As such, the stor-
age server cannot learn the content of the outsourced
data files, based on the hardness of the CDH assump-
tion.

4.3 Access Control

CloudaSec is designed to ensure forward and back-
ward secrecy. When a new user joins the group or a
group member is revoked, a notification message is
sent to CSP and to the remaining members, in order
to adjust the access control lists.

On one side, when a new userUN joins the group,
he has to generate his own group public elements
pubeltsN. These elements will be later used to derive
the new group keydN. On the other side, when a user
UR leaves the group, the GM updates the sharing lists,
in order to generate the new decrypting key. Conse-
quently, a new user cannot decrypt the old data files,
using the new derived key, and a revoked user cannot
decrypt new files, with the old deciphering key.

The access control preservation is ensured, based
on the following two lemmas.

Lemma 4.4. Key Decryption Correctness.Unre-
voked users are able to access the cloud.

Proof. The proof of this lemma is equivalent to the
correctness of the key decryption algorithms, on the
basis of the two sharing scenarios, as follows.

• One To Onesharing scenario – the decryption
holds if, and only of the decrypting keyk∗ =
C1⊕F((C3)

skj).
This verification holds as follows. On one side,
the authorized recipientU j computes the data key
element included in user metadata as follows:

C1 = k⊕F(ê(pki , pkj)
r)

= k⊕F(ê(ski ·P,skj ·P)
r)

= k⊕F(ê(si ·P,sj ·P)
r)

On the other side, the cloud provider sends the
redirected key elementC3 to the CloudaSec recip-
ient, which is computed as follows.

C3 = (C2)
1

skc

= (ê(pkc, r ·P)
ski)

1
sc

= (ê(skc ·P, r ·P)
si)

1
sc

= (ê(sc
1
sc

·P, r ·P)si)

= (ê(P, r ·P)si)

In the sequel, given the non singularity property
of the bilinear functions, the verification holds
if, and only if k∗ = C1 ⊕F((C3)

skj), whereC1⊕
F((C3)

skj) is denoted by(E).

(E) = k⊕F(ê(ski ·P,skj ·P)
r)⊕F(ê(P, r ·P)ski skj)

= k⊕F(ê(si ·P,sj ·P)
r)⊕F(ê(si ·P, r ·P)

sj)

= k⊕F(ê(si ·P,sj ·P)
r)⊕F(ê(si ·P,sj ·P)

r)

= k

• One To Manysharing scenario – the decryption
holds if, and only of the data keyk∗ = C1 ⊕
F((C3)

d). This verification holds as follows.
On one hand, the authorized group memberU j
computes the data key elementC1 included in user
metadata as follows:

C1 = k⊕F(ê(pki , r ·P)
d)

= k⊕F(ê(ski ·P, r ·P)
d)

On the other hand, the CSP executes the follow-
ing operations onkey.elt2, in order to get the redi-
rected elementC3

C3 = (C2)
1

skc

= (ê(pkc, r ·P)
ski)

1
sc

= (ê(skc ·P, r ·P)
si)

1
sc

= (ê(sc
1
sc

·P, r ·P)si)

= (ê(P, r ·P)si)

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

14

As presented in theOne To Onesharing scenario,
given the non singularity property of the bilin-
ear functions, the verification holds if, and only if
k∗ = C1 ⊕F((C3)

d), whereC1 ⊕F((C3)
d) is de-

noted by(F).

(F) = k⊕F(ê(ski ·P, r ·P)
d)⊕F(ê(P, r ·P)ski d)

= k⊕F(ê(si ·P, r ·P)
d)⊕F(ê(si ·P, r ·P)

d)

= k

We state that the authorized CloudaSec users are able
to decipher the decrypting data key, thanks to the cor-
rectness of the key decryption algorithms.

Lemma 4.5. Unauthorized entities are unable to ac-
cess the cloud.

Proof. The proof of this lemma is twofold.
On one side, after each group memberUR revo-

cation, the group manager updates the listLNR and
sends a notification message to the authorized regis-
tered group members. Then, he communicates this
list to the cloud provider. This latter sendsLNR to
the remaining group members after a mutual authen-
tication, in order to verify the updated organization of
the group.Then, the remaining group members com-
pute the new secret group keydN by performing the
GroupKeyalgorithm. Therefore, the new data keys
are encrypted by usingEncryptKeyOneToMany algo-
rithm.

As discussed in Lemma 4.2 and Lemma 4.4, only
authorized recipients, knowing the new keydN, are
able to decrypt the enciphered data. However, the
CSP and the revoked users cannot extract the key
dN, based on the previously published public ele-
ments and the list of authorized membersLNR. This
is mainly due to the computation of the group secret
which requires the private secret keyski of each de-
riving group memberUi .

On the other side, when a group user wants to ac-
cess the cloud, the CSP has to verify the access con-
trol list. That is, the cloud provider gives or rejects
access to data contents, based on the granted privi-
leges of the requesting recipient.

5 PERFORMANCE EVALUATION

In this section, we first present the context of
CloudaSec implementation with OpenStack Object
Storage, and then evaluate the system performances,
in terms of computation, communication and storage
costs.

5.1 Context

In order to evaluate the performances of our proposal,
we build a simulated CloudaSec framework, based
on OpenStack Storage system (Swift) (swi,). Swift
is a cloud based storage system, which stores data
and allows write, read, and delete operations on them.
To achieve security enhancement of Swift, we extend
its functionalities with algorithms and protocols de-
signed in CloudaSec.

We have designed a simplified CloudaSec archi-
tecture, based on Swift. Indeed, our architecture con-
sists in dividing the machine drive into four physical
volumes. Then, each volume is divided into four log-
ical volumes. In total, we obtain sixteen partitions,
each one represents one logical storage zone.

The simulation consists of two components: the
client side and the cloud side. We implement
data layercryptographic algorithms based on cryp-
tographic functions from the Open-SSL library (The
OpenSSL Project, 2003), the GMP library (et al.,
2002) and the Pairing Based Cryptography (PBC) li-
brary (Ben, 2007), with independent native processes.
We choose Advanced Encryption Standard (AES) as
our symmetric encryption algorithm and implement
theCBC modeof AES.

We have conducted a number of experiments to
evaluate CloudaSec in the system and cloud levels.
We study the client efficiency of the cryptographic
algorithms with different pairing types and the user
management costs for communication and storage.

5.2 Computation Cost Evaluation

In order to evaluate the performances at the client
side, we conduct data encryption and decryption tests
locally. For our tests, we used 1000 samples in or-
der to get our average durations. In addition, we con-
ducted our experiments on an Intel core 2 duo, started
on single mode, where each core relies on 800 MHz
clock frequency (CPU). Figure 2 shows the computa-
tion overhead of data encryption and decryption at the
client side, with different sizes of data contents. We
can notice that the data encryption takes less than 12
ms, in order to encrypt 1MB data file.

We can note that this computation cost remains
attractive, as it provides better security to outsourced
data and does not deserve the client resources.

Then, we perform the encryption of the decipher-
ing data keyk. That is, as our proposed framework re-
lies on the use of bilinear maps, we choose two sym-
metric pairing functions from the PBC library (Ben,
2007), including type E pairinge.paramand type A
a.param. Thus, we examine the impact of different

CloudaSec:�A�Novel�Public-key�Based�Framework�to�Handle�Data�Sharing�Security�in�Clouds

15

Figure 2: Computation overhead of data encryption and de-
cryption at the client side with different data size (from 105

to 106 bytes) (ms).

bilinear functions on the performances of CloudaSec,
while considering three different security levels (cf.
Figure 3).

In cryptography, the security level of a symmet-
ric encryption algorithm is defined as the number of
operations needed to break the algorithm when ak-
bit key length is used. The security level in our pro-
posal depends on the security level of the bilinear
function in use ˆe, which is related to the hardness of
solving the ECDLP inG1. As such, it is closely re-
lated to the groups being selected. As shown in Fig-
ure 3, the encryption time increases along with the
security level, while there is a tiny difference between
the two symmetric pairing functions. As such, the
type of the pairing function should be taken into ac-
count, while implementing CloudaSec data layer pro-
cedures. We must note that the type of the pairing
function is bound to the choice of the elliptic curve,
where the bilinear map is computed.

Figure 3: Computation duration of Type A vs Type E pair-
ing functions (ms).

Finally, we investigate the impact of the cryp-
tographic operations, at CloudaSec client side. We
compare the encryption duration against OpenStack
upload and download duration, as depicted in Fig-
ure 4. In fact, we examine the encryption operations
vs Swift upload procedure and the decryption opera-
tions vs Swift download procedure. We must note that
the computation times include the key generation and

the data encryption withAES-256-CBCmode. We
notice that the cryptographic operations, at the client
side are acceptable compared to the upload operations
and do not carry exhaustive computation capacities.
For example, a 8∗ 105 bytes data size requires only
0.1 seconds to be enciphered, compared to 10 sec-
ond be uploaded. Therefore, the encryption proce-
dures involve 1% from the OpenStack upload over-
head. As such, CloudaSec does not deserve the client
resources, and presents an interesting processing cost
for resource constrained devices.

Figure 4: Impact of cryptographic operations on CloudaSec
at the client side (log10(ms)).

5.3 Communication Cost Evaluation

We investigate the communication overhead, when a
client stores his data file to remote servers and then
when he retrieves the outsourced content. As such, we
conduct some experiments with different data sizes
and we evaluate the upload and download times of
encrypted contents, as shown in Figure 5.

Figure 5: OpenStack upload and download overhead with
different data size (ms).

We can notice that the average communication
times are merely stable, with small data sizes, for the
storage and backup scenarios. However, this overhead
gradually increases, when the client intends to store

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

16

large data contents. We also analyze the communica-
tion cost, due to a group update, namely when a new
user wants to join the group. In our tests, we are based
on pre-computed tables, in order to optimize the com-
putation cost to resource-constrained devices. Thus,
we consider that the group includes 10 members at
the beginning. Then, 10 users join the group simulta-
neously, until reaching 100 members. We recall that
the computation complexity of the group update in-
creases with respect to the number of new subscribers,
as presented in Section 3.3.

As depicted in Figure 6, the derivation of the new
secret group key takes less than 6 ms for 100 users.
This computation cost remains interestingly attrac-
tive, along with our broadcasting approach.

Figure 6: Computation complexity of a group update (ms).

5.4 Storage Cost Evaluation

We investigate the storage cost for the key manage-
ment operations at the client side. In order to main-
tain a group membership, a registered user has only to
keep the secret group key.

Let suppose that the security parameterξ = 80
bits. We denoted byE(Fn) the elliptic curve defined
over the finite prime fieldFn. Meanwhile, we de-
note ê : G1 ×G1 −→ G2 the bilinear function.G1
corresponds to the q-torsion subgroups ofE(Fn) and
E(Fnk) wherek is the embedding degree of the curve
E. G2 is a multiplicative subgroup ofFnk of orderq.

For example, according to the security parameter
ξ = 80, we setq= 160 bits andn= 512 bits length,
while the embedding degree is equal to 2. As such,
G2 is a subgroup ofFn2 which has a order 1024 bits
order. Therefore, a client has to locally keep a secret
d, where|d|= 160. As such, CloudaSec introduces an
attractive storage cost, especially for limited storage
capacities.

6 RELATED WORK

Several security solutions have been recently de-
veloped, in order to provide data confidentiality in

public cloud storage environments{ (Xiong et al.,
2012),(Zarandioon et al., 2011), (Yu et al., 2010),
(Zhou et al., 2011), (Liu et al., 2013),(Fugkeaw,
2012)}, while considering the group access control
issues.

In (Yu et al., 2010), Yu et al. proposed an attribute
based access control policy to securely outsource sen-
sitive client data to untrusted cloud servers. In this ap-
proach, data are encrypted using a symmetric encryp-
tion algorithm, while the enciphering key is protected
by a Key-Policy-Attribute Based Encryption scheme
(Goyal et al., 2006). In order to manage dynamic
groups, they delegate the key re-encryption proce-
dures to the cloud, without revealing the content of
outsourced data. As such, the membership revocation
mechanism brings additional computation overhead.
However, CloudaSec defines a new revocation system
based on (Burmester and Desmedt, 2005), without
updating the secret keys of the remaining group mem-
bers, in order to minimize the complexity of key man-
agement. That is, our design conveys performance
advantages for large scale sharing groups.

In addition, several storage systems are based
on the proxy re-encryption algorithms, in order to
achieve fine grained access control{(Xiong et al.,
2012; Goyal et al., 2006),(Ateniese et al.,)}. When
a recipient wants to retrieve outsourced data from the
depositor, he has first to ask the cloud server to re-
encrypt data file using its public key and the pub-
lic master key, while considering the granted priv-
ileges. Ateniese et al. (Ateniese et al.,) propose
a proxy re-encryption scheme to secure distributed
storage systems and achieve efficient access control
among dynamic groups. However, a collision at-
tack between the untrusted storage server and a re-
voked group member can be launched, which enables
to learn the decryption keys of all encrypted blocks.
In (Xiong et al., 2012), the authors design an end to
end content confidentiality protection mechanism for
large scale data storage and distribution. They in-
clude many cryptographic mechanisms, namely the
proxy re-encryption and broadcast revocation. Unfor-
tunately, the subscription of a new user or the revoca-
tion of a group member requires the update of the en-
tire group with new parameters and secret keys. That
is, the complexity of user participation and revocation
in their approach is linearly increasing with the num-
ber of data owners and the number of revoked users,
respectively. To mitigate to such concern, CloudaSec
presents a flexible revocation procedure, while con-
sidering a restricted member list, adapted to resource
constrained devices.

Recently, in order to achieve efficient membership
revocation system, (Liu et al., 2013) adopts a group

CloudaSec:�A�Novel�Public-key�Based�Framework�to�Handle�Data�Sharing�Security�in�Clouds

17

signature mechanism. They propose a multi-owner
data sharing scheme, MONA, for dynamic groups in
the cloud, while preserving identity privacy from un-
trusted servers. Nevertheless, MONA brings an extra
storage overhead at both the cloud and the group man-
ager side, for each outsourced data file.

In (Seo et al., 2013), Seo et al. propose an im-
proved mediated certificateless approach, in order to
secure data sharing in cloud servers. In fact, the ba-
sic concept of mediated cryptography is the usage of
a security mediator (SEM) which can control secu-
rity capabilities for the participating entities. Once
the SEM is notified that a group member is revoked,
it can immediately stop the user scenario. Unfortu-
nately, similarly to a proxy re-encryption scheme, this
approach involves a trusted third party, in order to
generate the partially decrypting keys. That is, it re-
quires additional storage capacities and computation
cost overhead, while considering flexible user man-
agement mechanisms.

7 CONCLUSIONS

The growing need for secure cloud sharing services
and the attractive properties of the convergent cryp-
tography lead us to combine them, thus, defining an
innovative solution to the data outsourcing security
and efficiency issues. In this paper, we design a secure
data sharing scheme CloudaSec, for dynamic groups
in untrusted cloud storage environments. Our ap-
proach ensures the confidentiality of outsourced data
in public untrusted cloud servers and defines a smooth
group revocation mechanisms. That is, flexible access
control policies are enforced among users belonging
to separate groups with different privileges.

Our experimental results show the efficiency of
CloudaSec in scalable data sharing, while consider-
ing the impact of the cryptographic operations at the
client side.

REFERENCES

https://github.com/openstack/swift.
Ateniese, G., Fu, K., Green, M., and Hohenberger, S. Im-

proved proxy re-encryption schemes with applications
to secure distributed storage.ACM Trans. Inf. Syst. Se-
cur., 9:1–30.

Ben, L. (2007). On the implementation of pairing-based
cryptosystems.

Boneh, D. and Boyen, X. (2006). On the impossibility of ef-
ficiently combining collision resistant hash functions.
In In Proc. Crypto 06, pages 570–583.

Burmester, M. and Desmedt, Y. (2005). A secure and scal-
able group key exchange system.Inf. Process. Lett.,
94(3).

Dierks, T. and Rescorla, E. (2008). RFC 5246 - The Trans-
port Layer Security (TLS) Protocol Version 1.2. Tech-
nical report.

et al., T. G. (2002). GNU multiple precision arithmetic li-
brary 4.1.2.

Fugkeaw, S. (2012). Achieving privacy and security in
multi-owner data outsourcing. pages 239–244. IEEE.

Gantz, B. J. and Reinsel, D. (2012). The digital universe
in 2020: Big data, bigger digital shadows, and biggest
growth in the far east.IDC iView, (December):1–16.

Goyal, V., Pandey, O., Sahai, A., and Waters, B. (2006).
Attribute-based encryption for fine-grained access
control of encrypted data. InProceedings of the 13th
ACM conference on Computer and communications
security, CCS ’06, pages 89–98. ACM.

Liu, X., Zhang, Y., Wang, B., and Yan, J. (2013). Mona:
Secure multi-owner data sharing for dynamic groups
in the cloud.IEEE Trans. Parallel Distrib. Syst., 24(6).

Ratna, D., Rana, B., and Palash, S. (2004). Pairing-based
cryptographic protocols : A survey.

Regan, K. W. Minimum-complexity pairing functions.
Seo, S.-H., Nabeel, M., Ding, X., and Bertino, E. (2013).

An efficient certificateless encryption for secure data
sharing in public clouds. IEEE Transactions on
Knowledge and Data Engineering, 99:1.

The OpenSSL Project (2003).
Wang, C., guang Qin, Z., Peng, J., and Wang, J. (2010). A

novel encryption scheme for data deduplication sys-
tem. pages 265–269.

Xiong, H., Zhang, X., Yao, D., Wu, X., and Wen, Y. (2012).
Towards end-to-end secure content storage and deliv-
ery with public cloud. CODASPY ’12, pages 257–
266. ACM.

Yu, S., Wang, C., Ren, K., and Lou, W. (2010). Achieving
secure, scalable, and fine-grained data access control
in cloud computing. INFOCOM’10, pages 534–542.

Zarandioon, S., Yao, D. D., and Ganapathy, V. (2011). K2c:
Cryptographic cloud storage with lazy revocation and
anonymous access. InSecureComm, volume 96, pages
59–76. Springer.

Zhou, L., Varadharajan, V., and Hitchens, M. (2011). En-
forcing role-based access control for secure data stor-
age in the cloud.Comput. J., 54.

SECRYPT�2014�-�International�Conference�on�Security�and�Cryptography

18

