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The likelihood ratio method (LRM) is an efficient indirect method for estimating the sensitivity of given

expectations with respect to parameters by Monte-Carlo simulation. The restriction on application of LRM
to real-world problems is that it requires explicit knowledge of the probability density function (pdf) to cal-
culate the score function. In this study, a fixed-sample-path method is proposed, which derives the score
function required for LRM not via the pdf but directly from a constructive algorithm that computes the sam-
ple path from parameters and random numbers. The boundary residual, which represents the correction as-
sociated with the change of the distribution range of the random variables in LRM, is also derived. Some
examples including the estimation of risk measures (Greeks) of option and financial flow-of-funds networks
showed the effectiveness of the fixed-sample-path method.

1 INTRODUCTION

Given a system of interest, it is a major concern for
engineers and designers to understand how to make
the system behaviour “desirable” by changing pa-
rameters. To this end, knowledge about the relation-
ship (or the sensitivity) between the system parame-
ters and the system behaviours is required. However,
for complicated and probabilistic systems, the rela-
tionship between parameters and system behaviour
is often unclear, so Monte-Carlo simulation is need-
ed to estimate the relation.

Let X denote a random variable describing sys-
tem behaviours under consideration and x denote its
sample value (sample path). Here, X can be a multi-
dimensional vector and/or a family of random varia-
bles indexed by “time” t (random process). There-
fore, X should be denoted as X(t) in nature, but we
henceforth use X to avoid cumbersome notation.
Assume X is dependent on the system parameters z,
where zZ = (z;)i=1_n is an N-dimensional vector, and
let f(x, z) be the probability density function (pdf) of
X. There exists a behaviour evaluation function a(x)
that maps the system behaviour x to a real value

a(x). We call the expectation value A(z) of a(X), i.e.

To calculate A(z) of real interesting systems, the
fact that density function f(x,z) is often unknown
becomes an obstacle. However, even if f(x, z) itself
is unknown, in many cases, the system behaviour,
which makes the distribution of X, is known and
modelled, and Monte-Carlo simulation is applicable.

Let W= (W])_ denote an M -dimensional

j=1..M
vector of random numbers and w = (Wj)j=1...M
denote its sample value. We suppose that the
simultaneous probability density function g(w) of
W is well-known, and we can easily generate
random numbers of this distribution on computers.
Examples of W include M number of independent
random numbers from a uniform distribution on
(0,1) or the standard normal distribution N(0,1).
Assuming that there exists a function x = x(w, z),
i.e., a constructive algorithm to compute x from the

parameters z and random numbers w = (wj)j_1 "

A@) = E[a00) = | a(x(w, z)g(w) dw ?)
Q

holds, where Q € RM denotes the support of g(w).

Using the L set of random numbers (w(k))k=1 L=

k .
(Wj( ))_ . , we can estimate A(z) by
A(z) = E[a(X)] = [ a(x) f(x,z) dx (1) j=1.Mk=1.L"
1
. . A(z E—Za x(w®,z)) . 3

a “system evaluation function”. @ =1 L ( ( ) ) )
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Now, our goal is to estimate the sensitivity

0A(z)  (0A(z)
oz _< a9z )H N

“)
of the behaviour evaluation function with respect to
all of the N numbers of parameters z by Monte-
Carlo simulation. A direct method to this end is the
finite differential method (FDM), which re-runs a set
of Monte-Carlo simulations under a small variation
Az; of the parameter z; and approximates

0A(z) _ Az + Az;) — A(z)
0z; Az,

% a (x (w'(k), zZ+ Azi)) (5)

where z+ Az; = (24,7, ..., 2 + Az, ..., Zy) . The

problem of FDM is that the convergence speed of Eq.

(5) 1s slow. The variance of estimation value A(z)
by Eq. (3) is proportional to L™!, whereas that of
estimation value aA—(mby Eq. (5) is proportional to

L=1/* (for indepent samphng) or L™%/3 (for common

samphng) (Glynn, 1989).Moreover, since the re-run
of a set of Monte-Carlo simulations is needed for
each parameter z;, the computational time might be
impractical if the number of parameters N is large.
There exist two known indirect methods for es-
timating the sensitivity more efficiently than FDM:

the pathwise derivative method (PDM) (Glasserman ,

2003, Rubinstein and Kroese, 2007, Ho and Cao,
1991, Bettonvil, 1981) and the likelihood ratio
method (LRM) (Glasserman, 2003, Rubinstein and
Kroese, 2007, Glynn, 1987). PDM (also called the
“infinitesimal perturbation method”) is based on the
idea of differentiating Eq. (2) with respect to the
parameters z,

aA(z)

= —f a(x(w, z))g(w) dw

(6)
- fﬂ—"a(";‘;”)) g(w) dw.

Assuming this holds, we estimate the sensitivity by

(7

PDM is quite effectlve in term of its small variance
and fast convergence speed. However, it has limited
range of application because interchanging the order
of integration and differentiation in Eq. (6) requires
that a(x(w, z)) is (almost surely) continuous with
respect to z, which is often not the case.

0A(z) aa(x(w z))
LZ

0z
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In comparison, LRM (also called the “score
function method”) is based on the idea of
differentiating Eq. (1) with respect to the parameters
z,

9A 9
a(;) = o J a(x) f(x,2) dx
3f(x, 2)
= fa(x) oz dx ®)
= fa(x) h(x, z) f(x,z) dx,
where
o) = 2o i,z = ZELB] )

is called a “score function”. Assuming this holds, we
estimate the sensitivity by
L

0A) = 1 a (x(w(k),z)) h(w®,z). (10)
k=1

0z

LRM has a wider range of application than does
PDM because the pdf f(x,z) is typically a smooth
function with respect to the parameters z, whereas
a(x(w, z)) is not. An exception that does not satisfy
Eq. (8) will be discussed later in Section 2.3.

The restriction on the application of LRM to real
systems is that it requires explicit knowledge of the
pdf f(x,z) to calculate the score function h(x,z)
from Eq. (9). This restriction might seem not to be a
problem because we know the pdf of the random
numbers g(w) and the constructive algorithm,
which computes the sample path x = x(w, z) from
w, and f(x, z) can be calculated from these in theory.
In fact, pdf f(x,z) can be decomposed to the prod-
ucts of some conditional probability density func-
tions for some systems, such as Markov chains, and
discrete event systems without agent loop (Glasser-
man, 2003, Rubinstein and Kroese, 2007). Neverthe-
less, considering that we apply Monte-Carlo simula-
tion due to the lack of explicit knowledge on the pdf
f(x,z), the derivation of the score function from Eq.
(9) is an intrinsically problematic approach.

In this study, we propose a “fixed-sample-path”
method. Using this method, we can derive the score
function not via the pdf f(x,z) but directly from the
constructive algorithm that computes the sample
path x = x(w,z) from the parameters z and the
sample values w of the random numbers.

The paper is organized as follows. In Section 2,
we describe the idea of the fixed-sample-path meth-
od and its formulation. In Section 3, the fixed-
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sample-path method is applied to two simple sys-
tems: a system with 2-dimensional uniform random
variables and the estimation of risk measures
(Greeks) of option pricing in finance. Section 4 is a
description of a more complicated example: a finan-
cial flow-of-funds network of 25 companies. Finally,
Section 5 is the conclusion.

2 LRM WITH
FIXED-SAMPLE-PATH
PRINCIPLE

2.1 Basic Idea

The reason the calculation of the score function
h(x, z) requires explicit knowledge of the pdf f(x, z)
is that LRM in Eq. (8) is derived by differentiating
Eq. (1), which depends on f(x, z). In comparison, Eq.
(2), which is used to derive PDM in Eq. (6), only
depends on g(w) and x(w,z) , which we  know
explicitly. Can we not derive LRM from Eq. (2)
instead of Eq. (1)?

Let us consider sensitivity with respect to the i-th
parameter z;. The key idea is, given a sample path
x =x(w,z) and a small variation Az; of the
parameter z;, to consider the small variation Aw of
the sample values w of random variables that
cancels the parameter variation, i.e, Aw satisfying

A@) = B[a(0)] = [ aCx(w,2)g(w) dw (11)
Q

Since w + Aw is, of course, not distributed with pdf
g(w) , the expectaion A(z+ Az;) is no longer
calculable with simple expectation Eq. (3). However,
using the importance sampling method, we can
estimate A(z + Az;) by averaging up x(w,z) =
x(wW + Aw, z + Az;) with appropriate weights.

Concretely speaking, given a sample path
x =x(w,z), we consider a “fixed-sample-path”
derivative of the random variables w with respect to
the parameter z; under the condition of fixing the
sample path x:

0x
ow 0z;
62, - 0X ’ (12)

X=const

We note that the right- hand 51de of Eq. (12) is a
formal expression because x might be a multi-
dimensional vector. As discussed later in Section 2.3,

. . @
the fixed-sample-path derivative — can be
Zilx=const

calculated relatively easily from the constructive

algorithm of the function x = x(w,z). We use

ow to calculate the score function h(x, z).

0z; xX=const
2.2 Formulation of LRM

Let Az; be a small variation of the i-th parameter z;.
Then, the expectation A(z + Az;) under the parame-

ter values z + Az; = (24,23, ..., Zi + Az, ..., Zy) 1S
A(z + Azy)
= fa(x(w,Z+Azi))g(w) dw
Q
/ +A
:f,a(x(w +Aw,z+Az g(w +w)
“ BT
(w +Aw) W
= [ a0 F 03
_ g(w+Aw)
_L,a(x)ﬂ_i(a;w )A dw
dw aZl X= const 1

1 d aw Az ld
+ tr N a_Zl x=const Zi w’

is the ratio between the small pa-
X=const
rameter variation Az; and the small variation Aw of

the random variable, which keeps x constant, i.e.
x =x(w,z) = x(W + Aw, z + Az;) holds. Here, I
is an identity matrix, tr denotes the trace of a matrix,
and a centered dot “” denotes the inner products of

ow
where —
Zj

daw'| . . .
vectors. Also, |%| is the Jacobian determinant

corresponding to the change of variables from w to
W =w — Aw, and (' is the image of Q under this
transform. To get from line 5 to line 6, we use the
following relation. For a matrix B(e) = (by) =1 —
€ D with a matrix D = (d;;) and a small real number
€ < 1, the first-order Taylor approximation around
€ = 0 leads to

1 1
[T—eC| [B(e)

X ab,
= o~ B, (ail.co) (a_s]
1) ¢

T el IZ: 8 (_dij)

=1+etr(C),

=0> (14)

where (c;;) is the inverse matrix of B(¢) and (§) is
an identity matrix.
Using Eq. (13), we obtain
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0A . A(z+ Azl) —A(z)
= lim ————
aZl Azi—0
( )Z (2 w)
a * aZl X=const g Y

3(% )]dw_R_ (15)
1
6W] aZi x=const:

= f a(x) h;(w, z) g(w) dw — R;
Q
= E[a(X) hj(W,z) ] — R;.

Therefore, the score function h;(w, z) can be written

as
)+
x=const

| <6wj >]
awj azi x=const

In addition, R; is a term that is equivalent to the
correction amount associated with the changing
integration range Q' of Eq. (13) to Q. We callR; a
“boundary residual”. From Eq. (13) and Eq. (15), we
obtain

ow;
by(w,2) = Z [aw] (621]

(16)

. 1
R, = AlzliIEOA_Zi{L_Q’a(X){l + h;(w, z)Az;} g(w) dw

— f a(x){1 + h;(w, z)Az;} g(w) aﬂw}
o' -q

W
= f a(x) g(w) (02

f div [a(x) g(w) (62 )] dw
X=const:

- gy . )H

where ' — Q and Q — Q' are the differential sets,
0Q is the boundary of Q, m is the outward pointing
unit vector of dQ, and div denotes the divergence

)m«ﬂw (17)
Xx=const

a(x) g(w) (

with respect to w. From Eq. (10), if % is

X=const
zero (vector) on the boundary 9(), then
0A
Fr fﬂa(x) hy(w, z) g(w) dw a8)

= E[a(X) h;(W, z)]

holds.

Here, we calculate the score function h;(w, z)
for the typical distributions g(w) of random
variables with Eq. (16) for future convenience. For
random variables w following the M -dimensional

uniform distributions, considering ﬁ = 0, we obtain
j

o) (19)

0z 1y

h;(w, z) = i(awj

1
i= ow;
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For random variables w following the M -
dimensional ~ independent  standard  normal
distributions, considering that pdf is written as

XZ
g(w) = [T}, gn(w;), where gn(x) = =€ 7 is the

pdf of (1-dimensional) standard normal distributions
1(x)
and :N = —w holds, we obtain

N ()
6wj
Vi 0z;
X=const

h(w,z) = Z[m( . )] (20)

Once the score function h;(w,z) is calculated,
we can estimate the sensitivity dA/dz; by Monte-
Carlo simulation by using the LRM method:

0A
7 = E[a(X) h;(W,z) ] — R;
P ©3))
= () ),

k=1
2.3 Discussion

The range in application of the fixed-sample-path
method depends on the existance (and
computability) of the fixed-sample-path derivative

a .
== . In other words, given a sample path x

9zily—const

and a small variation Az; of the parameter z;, the
existance of the small variation Aw of the sample
values w of random variables that satisfies Eq. (11)
is the key to the fixed-sample-path method. This in
general is not necessarily the case because the
dimension of x, which we must keep fixed, can be
bigger than the dimension of the random variables w.
Nevertheless, for many applications, especially for
the case in which the system behaviour X is a time
series X(t) , the fixed-sample-path mathod is
applicable. Here, we exemplify two cases. The first
is the case in which the system behaviour X(t) can
be written as

X(® = f(t y(w,2)) , (22)

i.e., X(t) follows a deterministic function f(t,y)

identified by a random variable y of which distribution

is determined by the parameter z. Clearly,
ow _ 0w

(23)

0z X(t)=const 0z y=const

holds in this case. The second is the case in which the
time evolusion of the system behaviour X(t) is
detemined by the relation

X(t+ 1) = f(X(0),X(1), ..., X(t — 1), WO, z) , 24)
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ie., X(t+ 1) att + 1 is determined by the past history
of Xbeforet, a random variable W® that is newly
generated at each time t, and the parameter z. In this
case, given a small variation Az; of the parameter,
the small variation AW® of the random variables
that cancells out Az; can be determined sequencially
from the initial time t = 0 to the ending timet =T
from the relation

f(X(0),X(1), ..., X(t — 1), W®, z)
= £(X(0),X(1), ., X(t— 1), WO + AWO, 2+ 8z) . 2>
Another point we want to note is the boundary
residual R;. An exception that the conventional LRM
with Eq. (8) is not applicable includes the case
where the integral range of Eq. (1) depends on the
parameter z, i.e., the distribution range of the system
behaviour X varies depending on the parameter z.
The boundary residual R; explicitly represents the
correction amount associated with the change of the
distribution range of X, and we can extend the range
of application of LRM to this case using R; as seen
in Eq. (21). However, there would be considerable
difficulty in numerical calculation of R; by (17).
Numerically efficient method for calculating R; is
one of the future works of this study.

3 EXAMPLE CALCULATIONS

In this section, we apply the calculation method
proposed in section 2 to simple examples.

3.1 2-Dim. Uniform Distribution

As the first example, we consider a simple system
consisting of a single parameter, N =1, and two
random variables, M = 2. Let w = (w,,w,) be 2-
dimensional uniform random numbers on (0,1) X
(0,1), ie., glwy,wy) =1 on Q= {(wy,w,); 0<
wy,w, < 1}, and otherwise, g(w;,w,) = 0, and let
z be a real-valued parameter. Assuming the system
behavior as X = (Xxq,X;) = (sin(4zw,), 2z+
w,)% + w; ) and the behavior evaluation function as
a(x) = x; + X, let us consider the sensitivity of the

parameter value z to the expectation A(z) = E[a(x)].

Note that since the distribution range of x, =
(2z+ w,)? + w; depends on the parameter z, the
boundary residual R is, as we look later, not zero for
this example.

3.1.1 Direct Calculation

We can easily calculate the expectation A(z) and its
sensitivity A’(z) by direct integration:

Az) = ffﬂ{sin(llz wy) +2% wy + wy} dwy dw,

in%(2 5
I 204 (26)

4zsin(4z) + cos(4z) + 8z°(4z+1) — 1
472 '

A=

3.1.2 Calculation with Fixed Sample Method

Let us calculate A’(z) by using LRM with the score
function calculated by the fixed-sample-path method.

Step 1: Generating random numbers
Generate 2L number of random numbers under the
uniform-distribution on an interval (0,1), and repre-

sent them as w® = (Wik), Wz(k))kzl L

Step 2: Performing Monte-Carlo simulation

Calculate the system behaviour
K — (& & x k)

x = (Xl X2 )k=1...L from (Wl W2 )kzl...L )

Although this is quite easy for this simple example,

this step might be computer-intensive for real-world
problems.

ow
0z

Step 3: Calculating

For all (wik), wz(k))k=1 ,» calculate

X=const

aW1 _ 8X1 6X1 _ W1
0z lyeeonst 02/ 0wy z’
e L TS
0z x=const 0z 6W1 0z x=const 6W2

wy — 4z w, — 822

472 + 2z w,

If an analytical calculation is impossible, we can
adopt numerical approaches. For example, consider-
ing a small Az (e.g. Az =0.01), find numerically
(Aw,, Aw,) , which satisfies x((wq,w,),z) =
X((W1 + Aw,, w, + Aw,),z + Az) , and approxi-

ow; Aw;
mate — by—, (j=1,2).
0z Ix=const yaAZ (] )
From Eq. (27), = turns out to be non-
0z lx=const

zero on the boundary 01}, and therefore, considera-
tion of the boundary residual R is required.
BW]‘

Step 4: Calculating ai (a_
W] Z

x=const)

. . ow;
Calculate the derivatives of %

with respect
x=const

to W]
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a (6w1 ) _
awl aZ X=const B zZ ’
a (6w2 ) _ wy (28)
W, \ 0Z lyeconst/ 222z +wy)?

We can also calculate them numerically by finding
aw;
0z

under a small variation of wj.
x=const

Step 5: Calculating the score function h(w, z)
From Eq. (19), which is the case for uniformally
distributed random variables, we obatin

2
a [ow;
hw.2) = Zm(a—z’
[T N

. a [ow;
Numerically, calculate the sum of — (ﬂ
owj \ 0z

S D S
X=C0nst> - 2z(w, + 22)% (29)

x=c0nst)

Step 6: Calculating the sensitivity A'(z)
To derive A'(z), the boundary residual R is required.
R is calculated by using line 2 of Eq. (17):

R = [ aGO{ s(W, 2) Iy, 1 — S(W, 2) sy} dw;
+J; aGO{ s(W, 2) |y 1 — S(W, 2) |1y, o} dw;

B -1
7192242z +1)
+3(1282z* + 6423 + 1)sin(4z) — 12z cos(4z)}.

(30)
{16 22 (6z + 1)(482° + 3222+ 72+ 1)

Calculation using line 3 of Eq. (17) leads to the same
result. Once R is obtained, we can calculate A'(z)
using Eq. (8):
A'(z) = f a(z) h(w,z) g(w) dw — R
= -U {sin(4z wy) + (zw,)? + wy}
B Wy 31
{—1 - m}dwl sz —R ( )

_4zsin(4z) + cos(4z) + 827 (4z+ 1) — 1
- 472 !

which is the same result of direct calculation Eq.
(26), as expected. Numerically, apply the Monte-
Carlo LRM method with the score function s(w, z):

L
A(z) = %Z a(x(k)) h(w(k),z) -R. (32)

3.2 Risk Measures (Greeks) in Finance

Currently, financial engineering is one of the most
active fields of investigation that uses the Monte-
Carlo method, and option pricing and designing
hedge strategies are especially important
applications.

Let us calculate some typical risk measures
(Greeks), Delta A, Vega v, and Rho p for an Asian

314

European call option by using LRM with the fixed-
sample-path method. We suppose the underlying
asset price X(t) of the option follows a geometric
Brownian motion (GBM) under a risk-neutral prob-
ability measure,

dX(t) = rX(t) dt + o X(t) dB(D), (33)

with the spot (initial) price X(0) = X, > 0, wherer
is a risk-free interest rate, o is the volatility of the
asset price, and B(t) is a standard Brownian motion.
Equation (33) has an explicit solution:

X(® = X(O)exp[(r = <) t+ 0 B®)]. (34)

The discounted value C, of an Asian (average-price)
European call option derived from this asset with
expiration date T and strike price K satisfies

crme et 0w k0, 69

where E[-] denotes the expectation under the risk-
neutral probability measure. Dividing T into M seg-
ments,; we discretize Eq. (34) to

P 0 I

where X; = X(jAt) is the system behaviour, where
j=1,..,Mand At =T/M, and {Wj}j=1 y are inde-

pendent standard normal random variables. Then,
approximating continuous-time integral of Eq. (35)
by discrete-time summation leads to

1 M
max(MZXj — K,O)
=1

= e E[a(X)] = " A(Xo, 0,p) .

Cya=e¢TTE

(37

where we define the behaviour evaluation function
as a(X) = max (ﬁ THL X - K O), which equals the
payoff function of the option, and its expectation as
AXp, 0,p) = E[a(X)].

On the basis of the above preparations, let us cal-

culate three typical risk measures (Greeks), Delta A,
Vega v, and Rho p, defined as

_0Cy L 0A
=, ¢ X,
_0C, . 0A 38
V= do =¢ do (38)
0Cp _r0A
_W_ e E—TCA.

We note that since the distribution range Q of

{Wj}j:l y covers the whole RM, the boundary re-

sidual R; equals ZERO.
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3.2.1 Delta A = 3C, /09X,

Delta A, which represents the sensitivity of option
value C, with respect to the spot price of the under-
lying asset, called “Delta A ”, is the most
fundamental Greek in option trading. Considering
the small variation of random variables {W]-}]__1 M
that cancel out a given small variation of the spot

price X,, we easily obtain the fixed-sample-path
derivative

(0w, Xy 0%, 1
a—xo x=const ax an - o \/EXO ’
aw;
a_X; x=const =0 for ] =% (39)
The score function can be calculated by Eq. (20):
hy, = ——2
% ovBtX,’ (40)
Therefore,
0A
A=e"T—=¢e"TE[a(X) h
¢ X, 1200 1, (41)
=e ]E[a(X) U\/_X ]

holds. We can estimate A by Monte-Carlo expecta-
tion (LRM) by using Eq. (41) with a large number of
sample paths generated by Eq. (35).

3.2.2 Vegav =0C, /00

The sensitivity of option value C, with respect to the
volatility o of the asset price is called “Vega v”’. The
fixed-sample-path derivative with respect to o is

ow;
90

0X; 10X; w;
rrs awJ \/A_t—?, (42)

Xx=const

and the score function is

[ (| = LB (g3

Mo

. R 1
where we use the notations W, = MZ]'Nile and

(wl)2 = %Zfil(w}-)z. Therefore, we obtain LRM
estimator

v= e_rTZ_‘: = e T E[a(X) hy]
- [a(x) () e

3.2.3 Rho p = 8C,/0r

The sensitivity of option value C, with respect to the
risk-free interest rate r is called “Rho p ".
Considering the small variation of random variables
{W]-}]_=1 M that cancel out a given small variation of

the risk-free interrest r
derivative is

the fixed-sample-path

R e s)
The score function calculated by Eq. (20) is
he= o (46)
Therefore, we obtain the LRM estimator
p=e” %—TC =e " E[a(X) (b, — T)]
(47)

- 8o (S, 1)

As might be expected, the score functions and
LRM estimators of Delta A, Vega v, and Rho p
derived from the fixed-sample-path method in this
section are the same as those derived from the
conventional method by differentiating the
probability density function (Glasserman, 2003,
Broadie and Glasserman, 1996). It is noteworthy that
the conventional method requires explicit knowledge
of the relevant probability density function, whereas
the fixed-sample-path method requires the
knowledge of the time evolution of individual
sample paths x only.

4 ANALYSIS OF FINANCIAL
FLOW-OF-FUNDS NETWORK

The calculation examples of Section 3 were aimed at
pretty simple systems. In this section, we address a
network model of the financial flow of funds among
companies as an example of the relatively compli-
cated system that shows the effectiveness of the
fixed-sample-path method.

4.1 Outline of the Problem

Let us consider a network of the financial flow of
funds among 25 companies, labeled 1 to 25, as
shown in Figure 1. While a network consisting of 25
companies is not too complicated to understand and
discuss the results, it is fairly complicated to perform
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sensitivity analysis with the conventional LRM
method. In Figure 1, the nodes represent each com-
pany, where the numbers written in the nodes repre-
sent the company’s label. The edges represent the
existence of the financial flow of funds along the
edge directions. For simplicity, we suppose that the
average amounts of fund transfers per unit period
equals one for all edges. We suppose, in addition,
that the assets of each company increase or decrease
by an average amount per unit period denoted by
parenthetical numbers beside each node, whereas the
assets of the companies of which corresponding
nodes have no parenthetical numbers do not change.
This increase or decrease in assets represents the
fund transfers from/to companies other than those of
the 25 companies depicted in Figure 1. As a result,
the average net incomes and outgoings per unit peri-
od of each of the 25 companies are balanced.

We suppose the actual amounts of fund transfers
through the edges to be random variables distributed
around the above average amounts. The assets of
each company increase or decrease depending on the
variation of the difference between incomes and
outgoings. As a result, there is the possibility for
"company bankruptcy”, i.e., the assets of a certain
company go negative at a certain time. Here, we
suppose that companies in bankruptcy and the edges
(funds transfer) related to them cease to exist. If
company 1 in Figure 1, for example, goes bankrupt
at time t, we delete four edges: from Co. 1 to Co. 3,

Co. 1 to Co. 20, Co. 17 to Co. 1, and Co. 18 to Co. 1.

As a consequence, companies 3 and 20 become
increasingly likely to go bankrupt because of an
unfavourable balance without fund transfers from
company 1, whereas companies 17 and 18 become
less likely to go bankrupt because of a favourable
balance. Bankruptcy of a company has an effect on
the bankrupt probabilities of the other companies
through the connection structure of the network in
this way.

Now, we are interested in the relationship be-
tween the flow of funds of the edges and the bank-
rupt probabilities of the companies. If the average
flows of each edge slightly change from 1, what
happens in the bankrupt probability of company 1 or
the average bankrupt probability of all 25 compa-
nies? Conversely, which edge is the most effective at
reducing the bankrupt probability of company 1 if
we change the average flow of funds? The edges
linked directly from/to company 1 might naturally
have a large influence, but is there a possibility that
edges located away from company 1 have a large
influence on its bankrupt probability by network
effect? Given this awareness of the problems, the
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aim of this section is to estimate the sensitivities of
the bankrupt probabilities of each company and the
sensitivity of the average bankrupt probability of the
all companies with respect to the average flow of
funds of each edge by Monte-Carlo simulation by
using LRM with the fixed-sample-path principle.

4.2 Formulation

Let us consider a network of the financial flow of
funds among 25 companies, shown in Figure 1. We
call the “outside” of the network as “company 0” for
notational convenience, i.e., the fund transfers
from/to companies outside the network (denoted by
parenthetical numbers beside each node) are consid-
ered to be the fund transfers from/to company 0. Let
X;(t) denote the total assets of company i (where
i=1..25) at time t. We suppose the initial assets
X;(0) = 25 for all 25 companies. The existence
function of company i is defined as

SO ={o7 I Firerue, (4)
i.e., S;(t) equals 1 if company i exists at time t, and
S;(t) equals 0 if company i has been bankrupt. We
define Sy(t) = 1 for all t for notational simplicity.
Let Fj;(t) denote the amount of the transfer of funds
from company i to company j at time t. Fj;(t) are
random variables with mean ;; = 1 for i,j (where
i=1,..,25andj=1,..,25) for which there exists
an edge between company i and j, while pj; equals
zero for i,j for which there exists no edge between
them. In addition, Fg;(t) and Fjo(t), which denote
the transfer of funds from/to the outside of the net-
work, are random variables with mean po;, pjo=1-3,
shown in parentheses in the figure. Here, we sup-
pose Fj;(t) to be under log-normal distribution with
mean py; and variance \/u_” . The assets X;(t) of

company (where i = 1 ... 25) satisfy the relation
Xit+ 1) —X;(®)
25

25
=Y ROsOsSO-Y BOsOso @)
j=0 j=0

On the basis of the above premises, let us esti-
mate the existence probabilities S; = E[S;(T)] of
each company at T = 100 and the average existence

probability 'S, = E [2i5 212:51 Si(T)] of all 25 com-
panies by Monte-Carlo simulation. In addition, we
estimate 98;/dp;; and 0?1/ oy, i.e., the sensitivity
of §; and S, with respect to the average flow of
funds of each edge, by using the fixed-sample-path
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method. There exist 86 numbers of pj;;, which are
non-zero, that is, 71 edges plus 15 parenthetical
numbers. We can estimate 95;/dy; and 0'S, /du;
for all 86 pj; simultaneously.

4.3 Derivation of Score Functions

To estimate d8;/dp;; and s,/ O, the score func-
tions h(uij) are required. The log of a random varia-
ble under log-normal distribution with mean p and

variance o is under normal distribution with mean
m and variance 8:

(50)

Therefore, Fj;(t), which is under log-normal distri-
bution with mean p;; and variance ,/p;;, can be writ-
ten as

F; (1) = exp(my; + & wjj)

_ (uij)z Jlog(@ + 1/ exp( | /Tog(T + 1/ wy) (51)

where Witj is a random variable with the standard
normal distribution.

Let us apply the fixed-sample-path method. Con-
sidering the relationship between a small variation of
Wit]- and a small variation of p;; under the condition

of keeping Fy;(t) fixed satisfies

owj; _ dFy(D s0F;()
auij Fjj(t)=const duii an]
1
wi— (3+2 ;) [log (1 + U_u) (52)

1

and the fact that the system behaviour X;(t) stays
fixed if and only if all fund flows Fy;(t) S;(t) S;(t)
are fixed, we obtain the fixed-sample-path derivative

o

X=const

(53)
PP wropee
i Iy if Si®S® =1

2 pyj (1 + uij) log (1 +H_ij

0, otherwise.

Therefore, from Eq. (20), he score function h(uij)

with respect to p; is

he,)

min (t;, 1)

Z a (6W,t]
4 owj; \ Ou;

t=

) . (6wi‘i
—wt

i\ 3
x=const u‘]

min (T\.ri) 1— (Wlt])z + W,tl (3 12 uij) log(l + 1/uij)
= 2y (1+ py) log(1 + 1/ky)

where T; is the last time that company i exists:

x=const )} (54)

T = argmaxer[ i) = 17 . (55)
4.4 Simulation Result

We performed a Monte-Carlo simulation with two-
million sample paths and estimated

L
S = E[S,(100)] = %z s%(100)

25 -1 L 25
| 11
G [ﬁz 51(100)] = EZ [ﬁZ si(100)]
- e (56)

98 _ <IN o ®
e E [si(wo) h(ui])] = Ekz 5%(100) ()
PN [1

25 = B[ %%, 5,(100) by, ]

Oy
Lol [Ly2s o0 )
3k [ 2E 5000y n) |

I

25 <=

Figure 2 shows an over-drawn time series of 200
typical Monte-Carlo sample paths of 2—15 25 Si(D),
the average existence probability of the 25 compa-
nies. Figures 3 - 5 show the convergence of the es-
timated values: Fig. 3 for §; and 'S, , Fig. 4 for
6?1/611“-, and Fig. 5 for d8;/dw;. All of the esti-
mated values are converged. As is known, the con-
vergence speeds of the sensitivities when using the
LRM method are slower than those of the expecta-
tions themselves (Glasserman, 2003).

Table 1 shows the estimated values of S, and S;
and their sensitivities 9'S, /dy; and 0S;/dw;. The
leftmost col umn of the table shows the estimated
value of S, (the average existence probability of the
25 companies) and the 25 estimated values of §; (the
existence probabilities of company i). The right ten
columns of the table show the sensitivities (differen-
tial coefficients) of S, and S; with respect to the
average funds flow pj; of edges. Due to limited
space, the sensitivities with respect to only ten edges,
arranged in descending order of their absolute values,
are shown respectively, where the upper rows identi-
fy the edges, and the bottom rows show the estimat-
ed values of the differential coefficients.
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Figure 1: Financial flow-of-funds network with 25 companies.
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Table 1:

the estimated values of S, and §; and their sensitivities 'S, /ap;; and 85, /9.

Existence The estimated sensitivities with respect to each edge I
Probability| 4+ #2 #3 #a #5 #6 #7 #8 #9 #10
<. 04769 | 233 | 0=7 | 0-10 | 0—18 | 1023 | 0—17 | 020 | 0—2 | 3—12 | 324
i 0.08596 | 0.07176 | 0.06742 | 0.06573 | -0.06462 | 0.06146 | 0.05095 | 0.04989 | -0.04944 | -0.04906
S 06719 | 1=3_| 120 | 321 [ 1819 | 176 | 311 | 17—7 | 16—4 | 18—1 | 1712
1 : 09747 | 09134 | 04447 | -0.3927 | -0.3461| 0.3424 | -0.3414| -0.3368| 0.3345| -0.3238
S, 0.7415
55 0.5024
56 0.5322
57 0.4482
58 0.4284
39 0.1940
510 04711 | 8638 | -0.8049 | 07756 | -0.7606 | 0.6648 | 04750 -0.4707| 04213| 0.4069| -0.3430
S 024483 | =15 [11=12 | 1156 | 610 | 1213 | 2217 | 8—12 | 15613 | 10-14 | 311
11 : 0.9037 | -0.8759 | -0.8294 | 04712| 04209 | -0.3898 | -0.3650| 0.3629| -0.3574| 0.3462
S 02472 |-1227 11216 | 12—8 | 12243 | 722 | 17—7 | 16—9 | 0—7 | 8-23 | 325
12 i 06790 | -05719| 05492 | -0.5186 | 0.3617 | -0.3588 | 0.2915| -0.2793 | 02644 | -0.2593
S 03799 | 1310 [713=23 1743=0 T™0—16 | 770—11 " 12—8 [ 7233 17158 | 166 | 3—5
13 : -0.8373| -0.8043 | -0.6842 | 05073 | 04574 | -0.4472 | 0.4331| -04145| -0.3261| -0.3106
Sy 07548 | 149 [ 14=5 [14—25 [T0—14 | 510 | 10—16 [ 10=11 | 10—~23 | 010 | 918 _
14 : -0.8365 | -0.7869 | -0.7464 | 06162 | 0.3702 | -0.3328 | 0.3267 | -0.3026 | 0.2715| 0.2418
S 05260 | 1578 | 16=13 | 127 | 11=12 | 716 | 13—10 | 823 | 1323 | 0—7 722
15 : -1.1379| 11117 | 05564 | -0.5426 | -0.5284 | 0.4491| 0.4376| 04156 | 0.4036| -0.3907
S 04141 |--1626 [ 16213 | 16—9 | 13—10 | 12—13 | 1014 | 9—3 | 10—11 1 9-18 | 0—-10
16 . -0.8364 | -0.8072 | -0.8043 | 05246 | -0.4697 | -0.4008 | 0.3846| -0.3574 | 03417 | 0.3259
S 0.4926 |- 17212 | 1726 | 71 ) 17—>7 1 0217 | 21212 | 12—-8 | 2217 | 1213 | 722
17 : 09313 | -0.8432 | 0.8264 | -0.7960 | 06776 | -0.5995 | 03746 | 0.3744| 03742 | 0.3387
S 06510 | 18219 [ 18=4 | 18—=1 [ 0—18 | 4—9 1 6-25 [ 9-0 | 59 | 24—9 | 93 _
18 : 0.9755| 0.9174 | -0.9007 | 07450 | 05324 | -0.4179| 0.3943| 0.3700| 0.3544 | -0.3315
S 05141 |- 19724 11920 | 19—3 | 18—4 | 24—4 | 5—4 | 18—19 | 24—19 | 4—17 | 5219
19 : -1.1736 | 0.8793 | -0.7153 | -0.6266 | -0.6078 | -0.5807 | 0.4290 | 0.4074 | 0.4007 | 0.3902
S 05610 |-20=221 | 20—2 | 20—4 |} 0—20 | 2117 | 3—21 | 23 | 4-3 | 4217 | 1220
20 : 09482 | 09310 | -0.8908 | 0.7290 | 04338 | -04250 | 0.3988| 0.3926| 0.3468| 0.3327
Ky 04799 | 2117 [ 21522 [21=12 [ 3=12 | 17—1 | 221 | 176 | 1216 | 20—4 | 12—13
21 ’ -0.9103 | -0.8803 | -0.8600 | -04702| 04002 | 0.3791| 03728 0.3541| -0.3444| 0.3119
S 05839 |- 22211 [ 2217 | 17—>7 | 2117 | 716 | 715 [ 11212 | 07 | 1712 [ 1125
22 : -1.0411| 09813 | 06397 | -0.5667 | -0.5137 | -0.4763 | 0.4563| 0.4280| 0.3974| 0.3369
S 01888 | 2370 [ 2323 [73>12 | 6-2 [ 13—0 [10—14 [ 80 | 623 [ 0—10 | 10-23
23 ) -0.5486 | -0.4449 0.2889 | -0.2859 -0.2788 | -0.2577 | -0.2489 0.2269 0.2241 0.2192
S 06154 | 24198 [ 24=4 [ 0-24 | 249 1719-3 ["4—3 | 35 173520 | 311 | 321
24 : -0.8424 | 07966 | 0.6685 | -0.6268 | 05091 | 05016 | -0.4815| -0.4246 | -0.4240 | -0.4064
S 0375525224 | 25—0 | 24—9 | 9—3 | 9-18 | 9—0 | 24—4 | 0—14 | 4—3 | 14—25
25 : 0.9278| 07619 | 05972 | -05229| -04131| -0.3888| 0.3871| 0.3564| -0.3078| 0.2978

From Table 1, for example, edge 23> 3 (the edge
from company 23 to company 3) turned out to have
the largest sensitivity of 0.08596 to S, . Edge 0->7
(the flow of funds from the outside of the network to
company 7) and edge 0>10 (from the outside to
company 10) also had large sensitivities to S, . It is
interesting that edge 23->3, which is an inner flow
of the network, had larger sensitivity to the average
existence probability S, than did the inward flows
from the outside of the network, which increased the
total assets within the network. This would be ex-
plained by the fact that company 23 has four inward

edges, while it has only one outward edge 23>3. An
increasing flow of funds for 23->3, which clearly
had an adverse effect on the survival of company 23,
might be desirable for the survival of the many other
companies in the network.

We turn attention to the existence probability S;
of company 1. The top three edges having a large
effect on §; were edge 123, edge 1220, and edge
3->21 in descending order of the (absolute value of)
sensitivities. We are convinced that edge 123 and
edge 120, which are directly outward from node 1,
had large and negative sensitivities to 8;. It is inter-
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esting that edge 3->21, which does not link to com-
pany 1 directly, had the third largest sensitivity. This
would be explained if we note that edge 3->21 had
the largest (and negative) effect on the survival of
company 3 and edge 13 the largest (and negative)
effect on the survival of company 1.

As seen above, we can estimate the sensitivity of
'S, and §; with respect to all 86 numbers of W by
Monte-Carlo simulation by using the LRM method
with the score functions derived by using the fixed-
sample-path principle. Although this example net-
work is pretty small, the LRM method with fixed-
sample-path principle can be applicable and practi-
cal for much more complicated systems with numer-
ous parameters, such as for systematic risk analysis
of complicated financial networks, traffic flow on a
complicated roadway network, and emerging “big-
data” analysis.

5 CONCLUSION

In this study, a fixed-sample-path method was pro-
posed, which derives the score function of LRM not
via the pdf f(x,z). The key idea is to consider the
fixed-sample-path derivative of the random variables
w with respect to the parameter z; under the condi-
tion of fixing the sample path x. The boundary re-
sidual R;, which represents the correction associated
with the change of the distribution range of the ran-
dom variables in LRM, was also derived. Some
examples including the estimation of risk measures
(Greeks) of option and financial flow-of-funds net-
works showed the effectiveness of the fixed-sample-
path method.
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