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Abstract: The likelihood ratio method (LRM) is an efficient indirect method for estimating the sensitivity of given 
expectations with respect to parameters by Monte-Carlo simulation. The restriction on application of LRM 
to real-world problems is that it requires explicit knowledge of the probability density function (pdf) to cal-
culate the score function. In this study, a fixed-sample-path method is proposed, which derives the score 
function required for LRM not via the pdf but directly from a constructive algorithm that computes the sam-
ple path from parameters and random numbers. The boundary residual, which represents the correction as-
sociated with the change of the distribution range of the random variables in LRM, is also derived. Some 
examples including the estimation of risk measures (Greeks) of option and financial flow-of-funds networks 
showed the effectiveness of the fixed-sample-path method. 

1 INTRODUCTION 

Given a system of interest, it is a major concern for 
engineers and designers to understand how to make 
the system behaviour “desirable” by changing pa-
rameters. To this end, knowledge about the relation-
ship (or the sensitivity) between the system parame-
ters and the system behaviours is required. However, 
for complicated and probabilistic systems, the rela-
tionship between parameters and system behaviour 
is often unclear, so Monte-Carlo simulation is need-
ed to estimate the relation. 

Let X denote a random variable describing sys-
tem behaviours under consideration and x denote its 
sample value (sample path). Here, X can be a multi-
dimensional vector and/or a family of random varia-
bles indexed by “time” t (random process). There-
fore, X should be denoted as ॿሺtሻ in nature, but we 
henceforth use X  to avoid cumbersome notation. 
Assume X is dependent on the system parameters চ, 
where চ ൌ ሺz୧ሻ୧ୀଵ...୒ is an N-dimensional vector, and 
let fሺx, চሻ be the probability density function (pdf) of 
X. There exists a behaviour evaluation function aሺxሻ 
that maps the system behaviour x  to a real value 
aሺxሻ. We call the expectation value Aሺচሻ of aሺXሻ, i.e. 

 
Aሺচሻ ൌ ॱሾaሺXሻሿ ൌ ׬ aሺxሻ	fሺx, চሻ dx (1) 

 

a “system evaluation function”.  

To calculate Aሺচሻ of real interesting systems, the 
fact that density function fሺx, চሻ  is often unknown 
becomes an obstacle. However, even if fሺx, চሻ itself 
is unknown, in many cases, the system behaviour, 
which makes the distribution of X , is known and 
modelled, and Monte-Carlo simulation is applicable. 

Let ॾ ൌ ൫W୨൯୨ୀଵ…୑  denote an M -dimensional 

vector of random numbers and গ ൌ ൫w୨൯୨ୀଵ…୑ 

denote its sample value. We suppose that the 
simultaneous probability density function gሺগሻ  of 
ॾ  is well-known, and we can easily generate 
random numbers of this distribution on computers. 
Examples of ॾ  include M  number of independent 
random numbers from a uniform distribution on 
ሺ0,1ሻ  or the standard normal distribution Nሺ0,1ሻ . 
Assuming that there exists a function x ൌ xሺগ, চሻ, 
i.e., a constructive algorithm to compute x from the 
parameters চ and random numbers গ ൌ ൫w୨൯୨ୀଵ…୑, 

 

Aሺচሻ ൌ ॱሾaሺXሻሿ ൌ නaሺxሺগ, চሻሻgሺগሻ dগ
ஐ

 (2) 
 

holds, where	Ω ⊂ Թ୑ denotes the support of gሺগሻ. 
Using the L set of random numbers ൫গሺ୩ሻ൯

୩ୀଵ…୐
ൌ

൫w୨
ሺ୩ሻ൯

୨ୀଵ…୑,୩ୀଵ…୐
, we can estimate Aሺচሻ by  

Aሺচሻ ≅
1
L
෍aቀx൫গሺ୩ሻ, চ൯ቁ

୐

୩ୀଵ

	. (3) 
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Now, our goal is to estimate the sensitivity 
 

∂Aሺচሻ
∂চ

ൌ ቆ
∂Aሺচሻ
∂z୧

ቇ
୧ୀଵ…୒

 (4) 
 

of the behaviour evaluation function with respect to 
all of the N  numbers of parameters চ  by Monte-
Carlo simulation. A direct method to this end is the 
finite differential method (FDM), which re-runs a set 
of Monte-Carlo simulations under a small variation 
∆z୧ of the parameter z୧ and approximates  

 
∂Aሺচሻ
∂z୧

≅
Aሺচ ൅ ∆z୧ሻ െ Aሺচሻ

∆z୧

≅
1
∆z୧

൥
1
L
෍a൬x ቀগᇱሺ୩ሻ, চ ൅ ∆z୧ቁ൰	

୐

୩ୀଵ

																															െ	
1
L
෍aቀx൫গሺ୩ሻ, চ൯ቁ	

୐

୩ୀଵ

൩ .

 (5) 

 

where চ ൅ ∆z୧ ൌ ሺzଵ, zଶ, … , z୧ ൅ ∆z୧, … , z୒ሻ . The 
problem of FDM is that the convergence speed of Eq. 
(5) is slow. The variance of estimation value Aሺচሻ 
by Eq. (3) is proportional to Lିଵ , whereas that of 
estimation value ப୅

ሺচሻ

ப୸౟
 by Eq. (5) is proportional to 

Lିଵ/ସ (for indepent sampling) or Lିଵ/ଷ (for common 
sampling) (Glynn, 1989).Moreover, since the re-run 
of a set of Monte-Carlo simulations is needed for 
each parameter z୧, the computational time might be 
impractical if the number of parameters N is large. 

There exist two known indirect methods for es-
timating the sensitivity more efficiently than FDM: 
the pathwise derivative method (PDM) (Glasserman , 
2003, Rubinstein and Kroese, 2007, Ho and Cao, 
1991, Bettonvil, 1981) and the likelihood ratio 
method (LRM) (Glasserman, 2003, Rubinstein and 
Kroese, 2007, Glynn, 1987). PDM (also called the 
“infinitesimal perturbation method”) is based on the 
idea of differentiating Eq. (2) with respect to the 
parameters চ, 
 

∂Aሺচሻ

∂চ
ൌ

∂
∂চ

න aሺxሺগ, চሻሻgሺগሻ dগ
ஐ

 

						ൌ ׬
பୟ൫୶ሺগ,চሻ൯

பচ
gሺগሻ dগஐ . 

(6) 

 

Assuming this holds, we estimate the sensitivity by 
 

∂Aሺচሻ

∂চ
≅
1
L
෍

∂a൫xሺগ, চሻ൯	
∂চ

୐

୩ୀଵ

	. (7) 

PDM is quite effective in term of its small variance 
and fast convergence speed. However, it has limited 
range of application because interchanging the order 
of integration and differentiation in Eq. (6) requires 
that aሺxሺগ, চሻሻ  is (almost surely) continuous with 
respect to চ, which is often not the case. 

In comparison, LRM (also called the “score 
function method”) is based on the idea of 
differentiating Eq. (1) with respect to the parameters 
চ, 
 

∂Aሺচሻ

∂চ
ൌ

∂
∂চ

׬ aሺxሻ	fሺx, চሻ dx 

												ൌ නaሺxሻ
∂fሺx, চሻ
∂চ

dx 

ൌ නaሺxሻ hሺx, চሻ	fሺx, চሻ dx	, 

 

(8) 

 

where 
 

hሺx, চሻ ൌ
∂fሺx, চሻ
∂চ

fሺx, চሻൗ ൌ
∂logሾfሺx, চሻሿ

∂চ
 (9) 

 

is called a “score function”. Assuming this holds, we 
estimate the sensitivity by 
 

∂Aሺচሻ

∂চ
≅
1
L
෍aቀx൫গሺ୩ሻ, চ൯ቁ 	h൫গሺ୩ሻ, চ൯

୐

୩ୀଵ

	. (10) 

 

LRM has a wider range of application than does 
PDM because the pdf fሺx, চሻ is typically a smooth 
function with respect to the parameters চ, whereas 
aሺxሺগ, চሻሻ is not. An exception that does not satisfy 
Eq. (8) will be discussed later in Section 2.3. 

The restriction on the application of LRM to real 
systems is that it requires explicit knowledge of the 
pdf fሺx, চሻ  to calculate the score function hሺx, চሻ 
from Eq. (9). This restriction might seem not to be a 
problem because we know the pdf of the random 
numbers gሺগሻ  and the constructive algorithm, 
which computes the sample path x ൌ xሺগ, চሻ from 
গ, and fሺx, চሻ can be calculated from these in theory. 
In fact, pdf fሺx, চሻ can be decomposed to the prod-
ucts of some conditional probability density func-
tions for some systems, such as Markov chains, and 
discrete event systems without agent loop (Glasser-
man, 2003, Rubinstein and Kroese, 2007). Neverthe-
less, considering that we apply Monte-Carlo simula-
tion due to the lack of explicit knowledge on the pdf 
fሺx, চሻ, the derivation of the score function from Eq. 
(9) is an intrinsically problematic approach. 

In this study, we propose a “fixed-sample-path” 
method. Using this method, we can derive the score 
function not via the pdf fሺx, চሻ but directly from the 
constructive algorithm that computes the sample 
path x ൌ xሺগ, চሻ  from the parameters চ  and the 
sample values গ of the random numbers. 

The paper is organized as follows. In Section 2, 
we describe the idea of the fixed-sample-path meth-
od and its formulation. In Section 3, the fixed-
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sample-path method is applied to two simple sys-
tems: a system with 2-dimensional uniform random 
variables and the estimation of risk measures 
(Greeks) of option pricing in finance. Section 4 is a 
description of a more complicated example: a finan-
cial flow-of-funds network of 25 companies. Finally, 
Section 5 is the conclusion. 

2 LRM WITH  
FIXED-SAMPLE-PATH  
PRINCIPLE 

2.1 Basic Idea 

The reason the calculation of the score function 
hሺx, চሻ	requires explicit knowledge of the pdf fሺx, চሻ 
is that LRM in Eq. (8) is derived by differentiating 
Eq. (1), which depends on fሺx, চሻ. In comparison, Eq. 
(2), which is used to derive PDM in Eq. (6), only 
depends on gሺগሻ  and xሺগ, চሻ , which we know 
explicitly. Can we not derive LRM from Eq. (2) 
instead of Eq. (1)? 

Let us consider sensitivity with respect to the i-th 
parameter z୧. The key idea is, given a sample path 
x ൌ xሺগ, চሻ  and a small variation ∆z୧	 of the 
parameter z୧, to consider the small variation ∆গ of 
the sample values গ  of random variables that 
cancels the parameter variation, i.e, ∆গ satisfying 
 

Aሺচሻ ൌ ॱሾaሺXሻሿ ൌ නaሺxሺগ, চሻሻgሺগሻ dগ
ஐ

 (11) 
 

Since গ൅ ∆গ is, of course, not distributed with pdf 
gሺগሻ , the expectaion Aሺচ ൅ ∆z୧ሻ  is no longer 
calculable with simple expectation Eq. (3). However, 
using the importance sampling method, we can 
estimate Aሺচ ൅ ∆z୧ሻ  by averaging up xሺগ, চሻ ൌ
	xሺগ ൅ ∆গ, চ ൅ ∆z୧ሻ	 with appropriate weights. 

Concretely speaking, given a sample path 
x ൌ xሺগ, চሻ , we consider a “fixed-sample-path” 
derivative of the random variables গ with respect to 
the parameter z୧  under the condition of fixing the 
sample path x: 

∂গ
∂z୧

ฬ
୶ୀୡ୭୬ୱ୲

ൌ െ

∂x
∂z୧

		
∂x
∂গ		

	. (12) 

We note that the right-hand side of Eq. (12) is a 
formal expression because x  might be a multi-
dimensional vector. As discussed later in Section 2.3, 

the fixed-sample-path derivative 
பগ

ப୸౟
ቚ
୶ୀୡ୭୬ୱ୲

 can be 

calculated relatively easily from the constructive 

algorithm of the function x ൌ xሺগ, চሻ . We use 
பগ

ப୸౟
ቚ
୶ୀୡ୭୬ୱ୲

 to calculate the score function hሺx, চሻ. 

2.2 Formulation of LRM 

Let ∆z୧ be a small variation of the i-th parameter z୧. 
Then, the expectation Aሺচ ൅ ∆z୧ሻ under the parame-
ter values চ ൅ ∆z୧ ൌ ሺzଵ, zଶ, … , z୧ ൅ ∆z୧, … , z୒ሻ is 
 

ሺচܣ ൅ ∆z୧ሻ

ൌ නܽ൫xሺগ, চ ൅ ∆z୧ሻ൯gሺগሻ dগ
ஐ

 

 
ൌ න aሺxሻ

gሺগᇱ ൅ ∆গሻ

ቚ
dগᇱ

dগ ቚ
dগᇱ

ஐᇲ
 

ൌ න aሺxሻ
gሺগ ൅ ∆গሻ

ฬॴ െ
d
dগ൬

∂গ
∂z୧

ฬ
୶ୀୡ୭୬ୱ୲

൰ ∆z୧ฬ
dগ

ஐᇲ
 

≅ න aሺxሻ ቊgሺগሻ ൅
∂g
∂গ

⋅ ቈቆ
∂গ
∂z୧

ฬ
୶ୀୡ୭୬ୱ୲

ቇ቉ ∆z୧ቋ
ஐᇲ

 

ቊ1 ൅ tr ቈ
d
dগ

ቆ
∂গ
∂z୧

ฬ
୶ୀୡ୭୬ୱ୲

ቇ቉ ∆z୧ቋ dগ, 

(13) 

 

where 
பগ

ப୸౟
ቚ
୶ୀୡ୭୬ୱ୲

 is the ratio between the small pa-

rameter variation ∆z୧ and the small variation ∆গ of 
the random variable, which keeps x  constant, i.e. 
x ൌ xሺগ, চሻ ൌ 	xሺগ ൅ ∆গ, চ ൅ ∆z୧ሻ  holds. Here, ॴ 
is an identity matrix, tr denotes the trace of a matrix, 
and a centered dot “⋅” denotes the inner products of 

vectors. Also, ቚ
ୢগᇲ

ୢগ
ቚ  is the Jacobian determinant 

corresponding to the change of variables from গ to 
গᇱ ൌ গെ ∆গ, and Ωᇱ  is the image of Ω under this 
transform. To get from line 5 to line 6, we use the 
following relation. For a matrix Bሺεሻ ൌ ሺb୧୨ሻ ൌ ॴ െ
ε	D with a matrix D ൌ ሺd୧୨ሻ and a small real number 
ε ≪ 1, the first-order Taylor approximation around 
ε ൌ 0 leads to 
 

1
|ॴ െ ε C|

ൌ
1

|Bሺεሻ| 

≅
1

|Bሺ0ሻ|
െ ε|Bሺ0ሻ|෍ቀc୨୧หகୀ଴ቁ ቆ

∂b୧୨
∂ε

ቤ
கୀ଴

ቇ
୧,୨

ൌ
1
|ॴ|

െ ε|ॴ|෍δ୨୧	൫െd୧୨൯
୧,୨

ൌ 1 ൅ ε trሺCሻ ,

 
(14) 

 

where ሺc୧୨ሻ is the inverse matrix of Bሺεሻ and (δ୧୨ሻ is 

an identity matrix.  
Using Eq. (13), we obtain 

 

ൌ න aቀx൫গ′ ൅ ∆গ,চ ൅ ∆zi൯ቁ
g൫গ′ ൅ ∆গ൯

ቤ
Քগ′

Քগቤ
Քগ′

Ω′
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∂A
∂z୧

ൌ lim
∆୸౟→଴

Aሺচ ൅ ∆z୧ሻ െ Aሺচሻ

∆z୧

ൌ න aሺxሻ෍ቈ
∂
∂w୨

ቆ
∂w୨

∂z୧
ቤ
୶ୀୡ୭୬ୱ୲

ቇ gሺগሻ					

୑

୨ୀଵஐ

																													൅	
∂g
∂w୨

ቆ
∂w୨

∂z୧
ቤ
୶ୀୡ୭୬ୱ୲

ቇ቉ dগ െ R୧

ൌ නaሺxሻ	h୧ሺগ, চሻ	gሺগሻ dগ
ஐ

െ R୧

ൌ ॱሾaሺXሻ	h୧ሺॾ, চሻ	ሿ െ R୧	.

 (15) 

 

Therefore, the score function h୧ሺগ, চሻ can be written 
as 
 

h୧ሺগ, চሻ ൌ෍ቈ
∂
∂w୨

ቆ
∂w୨

∂z୧
ቤ
୶ୀୡ୭୬ୱ୲

ቇ ൅

୑

୨ୀଵ

 

∂
∂w୨

ቆ
∂w୨

∂z୧
ቤ
୶ୀୡ୭୬ୱ୲

ቇ቉ 
(16) 

 

In addition, R୧  is a term that is equivalent to the 
correction amount associated with the changing 
integration range Ωᇱ  of Eq. (13) to Ω. We call R୧  a 
“boundary residual”. From Eq. (13) and Eq. (15), we 
obtain 
 

(17) 

 

where Ωᇱ െ Ω  and Ω െ Ωᇱ  are the differential sets, 
∂Ω is the boundary of Ω, ঎ is the outward pointing 
unit vector of ∂Ω , and div  denotes the divergence 

with respect to গ. From Eq. (10), if  
பগ

ப୸౟
ቚ
୶ୀୡ୭୬ୱ୲

 is 

zero (vector) on the boundary ∂Ω, then 
 

∂A
∂z୧

ൌ නaሺxሻ	h୧ሺগ, চሻ	gሺগሻ dগ
ஐ

ൌ ॱሾaሺXሻ	h୧ሺॾ, চሻሿ
 (18) 

 

holds. 
Here, we calculate the score function h୧ሺগ, চሻ 

for the typical distributions gሺগሻ  of random 
variables with Eq. (16) for future convenience. For 
random variables গ  following the M -dimensional 
uniform distributions, considering ப୥

ப୵ౠ
ൌ 0, we obtain 

h୧ሺগ, চሻ ൌ ∑ ப

ப୵ౠ
൬
ப୵ౠ

ப୸౟
ቚ
୶ୀୡ୭୬ୱ୲

൰୑
୨ୀଵ  . (19) 

 

For random variables গ  following the M -
dimensional independent standard normal 
distributions,  considering that pdf is written as 

gሺগሻ ൌ ∏ g୒ሺw୨ሻ
୑
୨ୀଵ , where g୒ሺxሻ ൌ

ଵ

√ଶ஠
eି

౮మ

మ  is the 

pdf of (1-dimensional) standard normal distributions 

and  
୥ొ
ᇲሺ౮ሻ

୥ొሺ୶ሻ
ൌ െw holds, we obtain 

 

(20) 

 

Once the score function h୧ሺগ, চሻ  is calculated, 
we can estimate the sensitivity ∂A ∂z୧⁄  by Monte-
Carlo simulation by using the LRM method:  
 

∂A
∂z୧

ൌ ॱሾaሺXሻ h୧ሺॾ, চሻ	ሿ െ R୧ 

≅
1
L
෍aቀx൫গ୩, চ൯ቁ

୐

୩ୀଵ

	h୧൫গ୩, চ൯ െ R୧ 
(21) 

2.3 Discussion 

The range in application of the fixed-sample-path 
method depends on the existance (and 
computability) of the fixed-sample-path derivative 
பগ

ப୸౟
ቚ
୶ୀୡ୭୬ୱ୲

. In other words, given a sample path x 

and a small variation ∆z୧	of the parameter z୧ , the 
existance of the small variation ∆গ of the sample 
values গ of random variables that satisfies Eq. (11) 
is the key to the fixed-sample-path method. This in 
general is not necessarily the case because the 
dimension of x, which we must keep fixed, can be 
bigger than the dimension of the random variables গ. 
Nevertheless, for many applications, especially for 
the case in which the system behaviour X is a time 
series ॿሺtሻ , the fixed-sample-path mathod is 
applicable. Here, we exemplify two cases. The first 
is the case in which the system behaviour ॿሺtሻ can 
be written as 
 

ॿሺtሻ ൌ f൫t, ঙሺগ, চሻ൯ , (22) 
 

i.e., ॿሺtሻ  follows a deterministic function fሺt, ঙሻ 
identified by a random variable ঙ of which distribution 
is determined by the parameter চ. Clearly, 
 

∂গ
∂চ

ฬ
ॿሺ୲ሻୀୡ୭୬ୱ୲

ൌ
∂গ
∂চ

ฬ
ঙୀୡ୭୬ୱ୲

 (23) 

 

holds in this case. The second is the case in which the 
time evolusion of the system behaviour ॿሺtሻ  is 
detemined by the relation 

ॿሺt ൅ 1ሻ ൌ f൫Xሺ0ሻ, Xሺ1ሻ, … , Xሺt െ 1ሻ,ॾሺ୲ሻ, চ൯ , (24) 
 

Ri ൌ lim
∆zi→0

1
∆zi

ቊන aሺxሻሼ1 ൅ hiሺগ, চሻ∆ziሽ	gሺগሻՔগ
ΩെΩ′

																	െන aሺxሻሼ1 ൅ hiሺগ, চሻ∆ziሽ	gሺগሻՔগ
Ω′െΩ

ቋ

ൌ න aሺxሻ	gሺগሻ	ቆ
∂গ
∂zi

ฬ
xൌconst

ቇ ⋅ ঎Քগ
∂Ω

ൌ න div ቈaሺxሻ	gሺগሻ	ቆ
∂গ
∂zi

ቤ
xൌconst

ቇ቉ Քগ
Ω

ൌ ॱ ቈ
1

gሺগሻ
div ቈaሺxሻ	gሺগሻ ቆ

∂গ
∂zi

ቤ
xൌconst

ቇ቉	቉

hiሺগ, চሻ ൌ෍ቈ
∂
∂wj

ቆ
∂wj

∂zi
ቤ
xൌconst

ቇ െ wj ቆ
∂wj

∂zi
ቤ
xൌconst

ቇ቉

M

jൌ1

. 
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i,e., ॿሺt ൅ 1ሻ at t ൅ 1 is determined by the past history 
of  ॿ before t,  a random variable ॾሺ୲ሻ that is newly 
generated at each time t, and the parameter চ. In this 
case, given a small variation ∆z୧	of the parameter, 
the small variation ∆ॾሺ୲ሻ  of the random variables 
that cancells out ∆z୧ can be determined sequencially 
from the initial time t ൌ 0 to the ending time t ൌ T 
from the relation 
 

f൫Xሺ0ሻ, Xሺ1ሻ, … , Xሺt െ 1ሻ,ॾሺ୲ሻ, চ൯ 
(25) 

 

Another point we want to note is the boundary 
residual R୧. An exception that the conventional LRM 
with Eq. (8) is not applicable includes the case 
where the integral range of Eq. (1) depends on the 
parameter z, i.e., the distribution range of the system 
behaviour X  varies depending on the parameter z . 
The boundary residual R୧  explicitly represents the 
correction amount associated with the change of the 
distribution range of X, and we can extend the range 
of application of LRM to this case using R୧ as seen 
in Eq. (21). However, there would be considerable 
difficulty in numerical calculation of R୧  by (17). 
Numerically efficient method for calculating R୧  is 
one of the future works of this study. 

3 EXAMPLE CALCULATIONS 

In this section, we apply the calculation method 
proposed in section 2 to simple examples. 

3.1 2-Dim. Uniform Distribution 

As the first example, we consider a simple system 
consisting of a single parameter, N ൌ 1 , and two 
random variables, M ൌ 2 . Let গ ൌ ሺwଵ,wଶሻ  be 2-
dimensional uniform random numbers on ሺ0,1ሻ ൈ
ሺ0,1ሻ , i.e., gሺݓଵ, ଶሻݓ ൌ 1  on Ω ൌ ሼሺwଵ,wଶሻ; 	0 ൏
wଵ,ݓଶ ൏ 1ሽ, and otherwise, gሺݓଵ, ଶሻݓ ൌ 0, and let 
z be a real-valued parameter. Assuming the system 
behavior as ঘ ൌ ሺxଵ, xଶሻ ൌ ሺsinሺ4ݖ	ݓଵሻ,			ሺ2	z ൅
wଶሻଶ ൅  ሻ and the behavior evaluation function as	ଵݓ
aሺঘሻ ൌ xଵ ൅ xଶ, let us consider the sensitivity of the 
parameter value z to the expectation Aሺzሻ ൌ ॱሾaሺঘሻሿ. 
Note that since the distribution range of xଶ ൌ
ሺ2	z ൅ wଶሻଶ ൅ ଵݓ  depends on the parameter z, the 
boundary residual R is, as we look later, not zero for 
this example. 

3.1.1 Direct Calculation 

We can easily calculate the expectation Aሺzሻ and its 
sensitivity A′ሺzሻ by direct integration:  

(26) 

3.1.2 Calculation with Fixed Sample Method 

Let us calculate A′ሺzሻ by using LRM with the score 
function calculated by the fixed-sample-path method.  

 

Step 1:  Generating random numbers 
Generate 2L number of random numbers under the 
uniform distribution on an interval ሺ0,1ሻ, and repre-
sent them as গሺ୩ሻ ൌ ൫wଵ

ሺ୩ሻ, ଶݓ
ሺ୩ሻ൯

௞ୀଵ…௅
. 

 

Step 2:  Performing Monte-Carlo simulation 
Calculate the system behaviour 

ঘሺ୩ሻ ൌ ൫xଵ
ሺ୩ሻ, xଶ

ሺ୩ሻ൯
௞ୀଵ…௅

 from ൫wଵ
ሺ୩ሻ, ଶݓ

ሺ୩ሻ൯
௞ୀଵ…௅

. 

Although this is quite easy for this simple example, 
this step might be computer-intensive for real-world 
problems. 

 

Step 3:  Calculating 
பগ

பচ
ቚ
୶ୀୡ୭୬ୱ୲

 

For all ൫wଵ
ሺ୩ሻ, ଶݓ

ሺ୩ሻ൯
௞ୀଵ…௅

, calculate 

 

 

(27) 

 

If an analytical calculation is impossible, we can 
adopt numerical approaches. For example, consider-
ing a small ∆z  (e.g. ∆z ൌ 0.01 ), find numerically 
ሺ∆wଵ, ∆wଶሻ , which satisfies ঘሺሺwଵ,wଶሻ, zሻ ൌ
	ঘ൫ሺwଵ ൅ ∆wଵ,wଶ ൅ ∆wଶሻ, z ൅ ∆z൯  , and approxi-

mate 
డ୵ౠ

డ୸
ቚ
୶ୀୡ୭୬ୱ୲

 by 
∆୵ౠ

∆୸
, (j ൌ 1, 2ሻ. 

From Eq. (27), 
பগ

பচ
ቚ
୶ୀୡ୭୬ୱ୲

 turns out to be non-

zero on the boundary ∂Ω, and therefore, considera-
tion of the boundary residual R is required. 

 

Step 4:  Calculating ப

ப୵ౠ
ቀ
ப୵ౠ

ப୸
ቚ
୶ୀୡ୭୬ୱ୲

ቁ 

Calculate the derivatives of 
ப୵ౠ

ப୸
ቚ
୶ୀୡ୭୬ୱ୲

 with respect 

to w୨: 
 

ൌ f൫Xሺ0ሻ, Xሺ1ሻ, … , Xሺt െ 1ሻ,ॾሺtሻ ൅ ∆ॾሺtሻ, চ ൅ ∆চ൯ .

Aሺzሻ ൌ ඵሼsinሺ4ݖ 1ሻݓ ൅ z2 w2 ൅ 1ሽݓ
Ω

	Քw1 Քw2

ൌ
sin2ሺ2ݖሻ

2z
൅ 4z2 ൅ 2z ൅

5
6
	,

A′ ሺzሻ ൌ
4z sinሺ4zሻ ൅ cosሺ4zሻ ൅ 8z2ሺ4z ൅ 1ሻ െ 1

4z2
.

 

߲w1

߲z
ฬ
xൌconst

ൌ െ
߲x1
߲z

߲x1
߲w1

൘ ൌ െ
w1

z
	,

߲w2

߲z
ฬ
xൌconst

ൌ െ൬
߲x2
߲z

൅
߲x2
߲w1

߲w1

߲z
ฬ
xൌconst

൰
߲x2
߲w2

൘

ൌ
1ݓ െ ݖ4 2ݓ െ 2ݖ8

2ݖ4 ൅ ݖ2 2ݓ
	 .
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∂
∂wଵ

൬
∂wଵ

∂z
ฬ
୶ୀୡ୭୬ୱ୲

൰ ൌ െ
1
ݖ
	,

∂
∂wଶ

൬
∂wଶ

∂z
ฬ
୶ୀୡ୭୬ୱ୲

൰ ൌ െ
ଵݓ

ݖሺ2ݖ2 ൅ ଶሻଶݓ
	 .
 (28) 

 

We can also calculate them numerically by finding 
ப୵ౠ

ப୸
ቚ
୶ୀୡ୭୬ୱ୲

 under a small variation of w୨.  
 

Step 5:  Calculating the score function hሺগ, চሻ 
From Eq. (19), which is the case for uniformally 
distributed random variables, we obatin 
 

(29) 

 

Numerically, calculate the sum of 
ப

ப୵ౠ
ቀ
ப୵ౠ

ப୸
ቚ
୶ୀୡ୭୬ୱ୲

ቁ. 

 

Step 6:  Calculating the sensitivity A′ሺzሻ 
To derive A′ሺzሻ, the boundary residual R is required. 
R is calculated by using line 2 of Eq. (17): 
 

R ൌ ׬ aሺxሻ൛	sሺগ, zሻ|୵మୀଵ െ sሺগ, zሻ|୵మୀ଴ൟ dwଵ
ଵ

଴
  

						൅ ׬ aሺxሻ൛	sሺগ, zሻ|୵భୀଵ െ sሺগ, zሻ|୵భୀ଴ൟ dwଶ
ଵ

଴
  

ൌ
െ1

ݖሺ2	ସݖ	192 ൅ 1ሻ
ሼ16	ݖଶ	ሺ6ݖ ൅ 1ሻሺ48ݖଷ ൅ ଶݖ32 ൅ ݖ7 ൅ 1ሻ

൅3ሺ128ݖସ ൅ ଷݖ64 ൅ 1ሻsinሺ4ݖሻ െ ݖ12 cosሺ4ݖሻሽ	.
 

(30) 

 

Calculation using line 3 of Eq. (17) leads to the same 
result. Once R  is obtained, we can calculate Aᇱሺzሻ 
using Eq. (8): 
 

A′ሺzሻ ൌ නaሺচሻ	hሺগ, zሻ	gሺগሻ dগ െ R 

												ൌ ඵሼsinሺ4ݖ	ݓଵሻ ൅ ሺz	ݓଶሻଶ ൅ ଵሽݓ
ஐ

	 

																																		൜െ1 െ
ଵݓ

2	ሺݓଶ ൅ 2ሻଶ
ൠ dwଵ dwଶ െ R 

		ൌ
4z sinሺ4zሻ ൅ cosሺ4zሻ ൅ 8zଶሺ4z ൅ 1ሻ െ 1

4zଶ
	, 

(31) 

 

which is the same result of direct calculation Eq. 
(26), as expected. Numerically, apply the Monte-
Carlo LRM method with the score function sሺগ, চሻ: 
 

Aᇱሺzሻ ≅
1
L
෍a൫ঘሺ୩ሻ൯ h൫গሺ୩ሻ, z൯ െ R

୐

୩ୀଵ

	. (32) 

3.2 Risk Measures (Greeks) in Finance 

Currently, financial engineering is one of the most 
active fields of investigation that uses the Monte-
Carlo method, and option pricing and designing 
hedge strategies are especially important 
applications. 

Let us calculate some typical risk measures 
(Greeks), Delta Δ, Vega ν, and Rho ρ for an Asian 

European call option by using LRM with the fixed-
sample-path method. We suppose the underlying 
asset price Xሺtሻ  of the option follows a geometric 
Brownian motion (GBM) under a risk-neutral prob-
ability measure, 
 

dXሺtሻ ൌ r Xሺtሻ dt ൅ σ	Xሺtሻ dBሺtሻ, (33) 
 

with the spot (initial) price Xሺ0ሻ ൌ X଴ ൐ 0, where r 
is a risk-free interest rate, σ is the volatility of the 
asset price, and Bሺtሻ is a standard Brownian motion. 
Equation (33) has an explicit solution: 
 

Xሺtሻ ൌ Xሺ0ሻexp ቂቀr െ
஢మ

ଶ
ቁ t ൅ σ	Bሺtሻቃ. (34) 

 

The discounted value C୅ of an Asian (average-price) 
European call option derived from this asset with 
expiration date T and strike price K satisfies 
 

C୅ ൌ eି୰୘ ॱ ቂmax ቀ
ଵ

୘
׬ Xሺtሻ
୘

଴
dt െ K, 0ቁቃ, (35) 

 

where ॱሾ⋅ሿ denotes the expectation under the risk-
neutral probability measure. Dividing T into M seg-
ments, we discretize Eq. (34) to 
 

X୨ାଵ ൌ X୨ exp ቂቀr െ
஢మ

ଶ
ቁ ∆t ൅ σ	√∆t	w୨ାଵቃ, (36) 

 

where X୨ ൌ Xሺj∆tሻ  is the system behaviour, where 

j ൌ 1,… ,M and ∆t ൌ T/M , and ൛w୨ൟ୨ୀଵ…୑ are inde-

pendent standard normal random variables. Then, 
approximating continuous-time integral of Eq. (35) 
by discrete-time summation leads to 
 

C୅ ൌ eି୰୘ ॱ ቎maxቌ
1
M
෍X୨ െ K

୑

୨ୀଵ

, 0ቍ	቏ 

ൌ eି୰୘ ॱሾaሺXሻሿ ൌ eି୰୘	AሺX଴, σ, ρሻ , 

(37) 

 

where we define the behaviour evaluation function 

as aሺXሻ ൌ 	max ቀ
ଵ

୑
∑ X୨
୑
୨ୀଵ െ K, 0ቁ, which equals the 

payoff function of the option, and its expectation as 
AሺX଴, σ, ρሻ ൌ 	ॱሾaሺXሻሿ.  

On the basis of the above preparations, let us cal-
culate three typical risk measures (Greeks), Delta Δ, 
Vega ν, and Rho ρ, defined as 
 

Δ ൌ
∂C୅
∂X଴

ൌ eି୰୘
∂A
∂X଴

 

							ν ൌ
∂C୅
∂σ

ൌ eି୰୘
∂A
∂σ

 

ρ ൌ
∂C୅
∂r

ൌ eି୰୘
∂A
∂r

െ T C୅ . 

(38) 

We note that since the distribution range Ω  of 
൛W୨ൟ୨ୀଵ…୑  covers the whole Թ୑ , the boundary re-

sidual R୧ equals ZERO. 

hሺগ, zሻ ൌ෍
∂
∂wj

ቆ
∂wj

∂zi
ቤ
xൌconst

ቇ

2

jൌ1

ൌ െ1 െ
w1

2ݓሺݖ2 ൅ ሻ2ݖ2
.
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3.2.1 Delta ઢ ൌ ૒۱ۯ ૒܆૙⁄  

Delta Δ, which represents the sensitivity of option 
value C୅ with respect to the spot price of the under-
lying asset, called “Delta Δ ”, is the most 
fundamental Greek in option trading. Considering 
the small variation of random variables ൛w୨ൟ୨ୀଵ…୑ 

that cancel out a given small variation of the spot 
price X଴ , we easily obtain the fixed-sample-path 
derivative 
 

ە
ۖ
۔

ۖ
ۓ
∂wଵ

∂X଴
ฬ
୶ୀୡ୭୬ୱ୲

ൌ െ
߲Xଵ
߲X଴

߲Xଵ
߲wଵ

൘ ൌ െ
1

σ	√∆t	X଴
	 ,

∂w୨

∂X଴
ቤ
୶ୀୡ୭୬ୱ୲

ൌ j		ݎ݋݂		0 ൒ 2	.
 (39) 

 
The score function can be calculated by Eq. (20): 
 

hଡ଼బ ൌ
wଵ

σ	√∆t X଴
	. (40) 

 
Therefore, 
 

Δ ൌ eି୰୘
∂A
∂X଴

ൌ eି୰୘ ॱൣaሺॿሻ	hଡ଼బ൧ 

																																	ൌ eି୰୘ ॱ ቂaሺXሻ	
୛భ

஢	√∆୲	ଡ଼బ
ቃ  

(41) 

 
holds. We can estimate Δ by Monte-Carlo expecta-
tion (LRM) by using Eq. (41) with a large number of 
sample paths generated by Eq. (35).  

3.2.2 Vega ૅ ൌ ૒۱ۯ ૒ો⁄  

The sensitivity of option value C୅ with respect to the 
volatility σ of the asset price is called “Vega ν”. The 
fixed-sample-path derivative with respect to σ is 

 
∂w୨

∂σ
ቤ
୶ୀୡ୭୬ୱ୲

ൌ െ
߲X୨
߲σ

߲X୨
߲w୨

൘ ൌ √∆t െ
w୨

σ
	, (42) 

 
and the score function is 
 

(43) 

 

where we use the notations 	w఩തതതത ൌ
ଵ

୑
∑ w୨
୑
୨ୀଵ  and 

	൫w఩൯
ଶ
	

തതതതതതതതത
ൌ

ଵ

୑
∑ ൫w୨൯

ଶ୑
୨ୀଵ . Therefore, we obtain LRM 

estimator  
 

								ν ൌ eି୰୘
∂A
∂σ

ൌ eି୰୘	ॱሾaሺXሻ	h஢ሿ 

																								ൌ eି୰୘	ॱ ቈaሺXሻ
൫୛ഡ൯

మ
	

തതതതതതതതതത
ି஢	√∆୲		୛ഡതതതതതି୑మ	

୑	஢
቉ . 

(44) 

3.2.3 Rho ૉ ൌ ૒۱ۯ ૒ܚ⁄  

The sensitivity of option value C୅ with respect to the 
risk-free interest rate r  is called “Rho ρ ". 
Considering the small variation of random variables 
൛w୨ൟ୨ୀଵ…୑ that cancel out a given small variation of 

the risk-free interrest r , the fixed-sample-path 
derivative is 
 

∂w୨

∂r
ቤ
୶ୀconst

ൌ െ
߲X୨
߲r

߲X୨
߲w୨

൘ ൌ െ
√∆t
σ

 (45) 

 

The score function calculated by Eq. (20) is 
 

h୰ ൌ෍
√∆t w୨

σ

୑

୨ୀଵ

ൌ
√∆t	
M	σ	

	w఩തതതത	. (46) 

 

Therefore, we obtain the LRM estimator  
 

ρ ൌ eି୰୘
∂A
∂r

െ T C୅ ൌ eି୰୘ ॱሾaሺॿሻ	ሺh୰ െ Tሻሿ 

ൌ eି୰୘ ॱ ቂ aሺXሻ ቀ√
∆୲	

୑ ஢
	W఩തതതത െ Tቁቃ . 

(47) 

 

As might be expected, the score functions and 
LRM estimators of Delta Δ , Vega ν , and Rho ρ 
derived from the fixed-sample-path method in this 
section are the same as those derived from the 
conventional method by differentiating the 
probability density function (Glasserman, 2003, 
Broadie and Glasserman, 1996). It is noteworthy that 
the conventional method requires explicit knowledge 
of the relevant probability density function, whereas 
the fixed-sample-path method requires the 
knowledge of the time evolution of individual 
sample paths x only. 

4 ANALYSIS OF FINANCIAL 
FLOW-OF-FUNDS NETWORK 

The calculation examples of Section 3 were aimed at 
pretty simple systems. In this section, we address a 
network model of the financial flow of funds among 
companies as an example of the relatively compli-
cated system that shows the effectiveness of the 
fixed-sample-path method.  

4.1 Outline of the Problem 

Let us consider a network of the financial flow of 
funds among 25 companies, labeled 1 to 25, as 
shown in Figure 1. While a network consisting of 25 
companies is not too complicated to understand and 
discuss the results, it is fairly complicated to perform 

hσ ൌ ∑ ൤
൫wj൯

2
െ1

σ
െ √∆t	wj൨

M
jൌ1 ൌ

	൫wj൯
2
	

തതതതതതതതത
െσ	√∆t		wjതതതതെM2

M	σ
 ,
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sensitivity analysis with the conventional LRM 
method. In Figure 1, the nodes represent each com-
pany, where the numbers written in the nodes repre-
sent the company’s label. The edges represent the 
existence of the financial flow of funds along the 
edge directions. For simplicity, we suppose that the 
average amounts of fund transfers per unit period 
equals one for all edges. We suppose, in addition, 
that the assets of each company increase or decrease 
by an average amount per unit period denoted by 
parenthetical numbers beside each node, whereas the 
assets of the companies of which corresponding 
nodes have no parenthetical numbers do not change. 
This increase or decrease in assets represents the 
fund transfers from/to companies other than those of 
the 25 companies depicted in Figure 1. As a result, 
the average net incomes and outgoings per unit peri-
od of each of the 25 companies are balanced.  

We suppose the actual amounts of fund transfers 
through the edges to be random variables distributed 
around the above average amounts. The assets of 
each company increase or decrease depending on the 
variation of the difference between incomes and 
outgoings. As a result, there is the possibility for 
"company bankruptcy”, i.e., the assets of a certain 
company go negative at a certain time. Here, we 
suppose that companies in bankruptcy and the edges 
(funds transfer) related to them cease to exist. If 
company 1 in Figure 1, for example, goes bankrupt 
at time t, we delete four edges: from Co. 1 to Co. 3, 
Co. 1 to Co. 20, Co. 17 to Co. 1, and Co. 18 to Co. 1. 
As a consequence, companies 3 and 20 become 
increasingly likely to go bankrupt because of an 
unfavourable balance without fund transfers from 
company 1, whereas companies 17 and 18 become 
less likely to go bankrupt because of a favourable 
balance. Bankruptcy of a company has an effect on 
the bankrupt probabilities of the other companies 
through the connection structure of the network in 
this way. 

Now, we are interested in the relationship be-
tween the flow of funds of the edges and the bank-
rupt probabilities of the companies. If the average 
flows of each edge slightly change from 1, what 
happens in the bankrupt probability of company 1 or 
the average bankrupt probability of all 25 compa-
nies? Conversely, which edge is the most effective at 
reducing the bankrupt probability of company 1 if 
we change the average flow of funds? The edges 
linked directly from/to company 1 might naturally 
have a large influence, but is there a possibility that 
edges located away from company 1 have a large 
influence on its bankrupt probability by network 
effect? Given this awareness of the problems, the 

aim of this section is to estimate the sensitivities of 
the bankrupt probabilities of each company and the 
sensitivity of the average bankrupt probability of the 
all companies with respect to the average flow of 
funds of each edge by Monte-Carlo simulation by 
using LRM with the fixed-sample-path principle. 

4.2 Formulation 

Let us consider a network of the financial flow of 
funds among 25 companies, shown in Figure 1. We 
call the “outside” of the network as “company 0” for 
notational convenience, i.e., the fund transfers 
from/to companies outside the network (denoted by 
parenthetical numbers beside each node) are consid-
ered to be the fund transfers from/to company 0. Let 
X୧ሺtሻ  denote the total assets of company i  (where 
i ൌ 1…25) at time t. We suppose the initial assets 
X୧ሺ0ሻ ൌ 25  for all 25 companies. The existence 
function of company i is defined as 
 

S୧ሺtሻ ൌ ൜
1 , ݂݅		X୧ሺtሻ ൒ 0
0 , ,	݁ݏ݅ݓݎ݄݁ݐ݋

 (48) 
 

i.e., S୧ሺtሻ equals 1 if company i exists at time t, and 
S୧ሺtሻ equals 0 if company i has been bankrupt. We 
define S଴ሺtሻ ൌ 1  for all t  for notational simplicity. 
Let F୧୨ሺtሻ denote the amount of the transfer of funds 
from company i  to company j  at time t . F୧୨ሺtሻ  are 
random variables with mean μ୧୨ ൌ 1  for i, j  (where 
i ൌ 1,… ,25 and j ൌ 1,… ,25) for which there exists 
an edge between company i and j, while μ୧୨  equals 
zero for i, j for which there exists no edge between 
them. In addition, F଴୨ሺtሻ  and F୧଴ሺtሻ , which denote 
the transfer of funds from/to the outside of the net-
work, are random variables with mean μ଴୨, μ୧଴=1–3, 
shown in parentheses in the figure. Here, we sup-
pose F୧୨ሺtሻ to be under log-normal distribution with 
mean μ୧୨  and variance ඥμ୧୨ . The assets X୧ሺtሻ  of 
company (where i ൌ 1…25) satisfy the relation 
 
X୧ሺt ൅ 1ሻ െ X୧ሺtሻ

ൌ෍F୨୧ሺtሻ
ଶହ

୨ୀ଴

S୨ሺtሻ S୧ሺtሻ െ෍F୧୨ሺtሻ
ଶହ

୨ୀ଴

S୧ሺtሻS୨ሺtሻ	 (49) 

 

On the basis of the above premises, let us esti-
mate the existence probabilities ୧࣭ ൌ ॱሾS୧ሺTሻሿ  of 
each company at T ൌ 100 and the average existence 

probability 	 న࣭	തതതത ൌ ॱ ቂ
ଵ

ଶହ
෌ S୧ሺTሻ

ଶହ

୧ୀଵ
ቃ  of all 25 com-

panies by Monte-Carlo simulation. In addition, we 
estimate ∂ ୧࣭ ∂μ୧୨⁄  and ∂ 	 న࣭	തതതത ∂μ୧୨ൗ , i.e., the sensitivity 
of ୧࣭  and 	 న࣭	തതതത  with respect to the average flow of 
funds of each edge, by using the fixed-sample-path 
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method. There exist 86 numbers of μ୧୨ , which are 
non-zero, that is, 71 edges plus 15 parenthetical 
numbers. We can estimate ∂ ୧࣭ ∂μ୧୨⁄  and ∂ 	 న࣭	തതതത ∂μ୧୨ൗ  
for all 86 μ୧୨ simultaneously. 

4.3 Derivation of Score Functions 

To estimate ∂ ୧࣭ ∂μ୧୨⁄  and ∂ 	 న࣭	തതതത ∂μ୧୨ൗ , the score func-
tions h൫ஜ౟ౠ൯ are required. The log of a random varia-

ble under log-normal distribution with mean μ and 
variance σ is under normal distribution with mean 
ࣾ and variance ः: 
 

ە
ۖ
۔

ۖ
ࣾۓ ൌ log ቆ

μଶ

ඥμଶ ൅ σଶ	
ቇ

ः ൌ ඨlog ቆ1 ൅
σଶ

μଶ
ቇ	.

 (50) 

 

Therefore, F୧୨ሺtሻ, which is under log-normal distri-
bution with mean μ୧୨ and variance ඥμ୧୨, can be writ-
ten as 
 

(51) 

 

where w୧୨
୲  is a random variable with the standard 

normal distribution. 
Let us apply the fixed-sample-path method. Con-

sidering the relationship between a small variation of 
w୧୨
୲  and a small variation of μ୧୨ under the condition 

of keeping F୧୨ሺtሻ fixed satisfies 
 
∂w୧୨

୲

∂μ୧୨
ቤ
୊౟ౠሺ୲ሻୀୡ୭୬ୱ୲

ൌ െ
dF୧୨ሺtሻ

dμ୧୨

∂F୧୨ሺtሻ

∂w୧୨
୲൘  

																						ൌ

w୧୨
୲ െ 	൫3 ൅ 2	μ୧୨൯ඨlog ൬1 ൅

1
μ୧୨
൰

2	μ୧୨	൫1 ൅ μ୧୨൯	log ൬1 ൅
1
μ୧୨
൰

		 

(52) 

 

and the fact that the system behaviour X୧ሺtሻ  stays 
fixed if and only if all fund flows F୧୨ሺtሻ	S୧ሺtሻ	S୨ሺtሻ 
are fixed, we obtain the fixed-sample-path derivative 

					
ப୵౟ౠ

౪

பஜ౟ౠ
ฬ
୶ୀୡ୭୬ୱ୲

 

ൌ

ە
ۖ
۔

ۖ
ۓ

		

w୧୨
୲ െ 	൫3 ൅ 2	μ୧୨൯ඨlog ൬1 ൅

1
μ୧୨
൰

2	μ୧୨	൫1 ൅ μ୧୨൯	log ൬1 ൅
1
μ୧୨
൰

,

.݁ݏ݅ݓݎ݄݁ݐ݋					,	0		

 

(53) 
 
 
 

Therefore, from Eq. (20), he score function h൫ஜ౟ౠ൯ 

with respect to μ୧୨ is 
 

(54) 

where τ୧ is the last time that company i exists: 
 

τ୧ ൌ argmax୲ஸ୘ሾ S୧ሺtሻ ൌ 1	ሿ . (55) 

4.4 Simulation Result 

We performed a Monte-Carlo simulation with two-
million sample paths and estimated 
 

 

(56) 

 

Figure 2 shows an over-drawn time series of 200 

typical Monte-Carlo sample paths of 
ଵ

ଶହ
∑ S୧ሺtሻ
ଶହ
୧ୀଵ , 

the average existence probability of the 25 compa-
nies. Figures 3 - 5 show the convergence of the es-
timated values: Fig. 3 for ୧࣭  and 	 న࣭	തതതത , Fig. 4 for 
∂	 న࣭	തതതത ∂μ୧୨ൗ , and Fig. 5 for ∂ ଵ࣭ ∂μ୧୨⁄ . All of the esti-
mated values are converged. As is known, the con-
vergence speeds of the sensitivities when using the 
LRM method are slower than those of the expecta-
tions themselves (Glasserman, 2003). 

Table 1 shows the estimated values of 	 న࣭	തതതത and ୧࣭ 
and their sensitivities ∂	 న࣭	തതതത ∂μ୧୨ൗ  and ∂ ଵ࣭ ∂μ୧୨⁄ . The 
leftmost col umn of the table shows the estimated 
value of 	 న࣭	തതതത (the average existence probability of the 
25 companies) and the 25 estimated values of ୧࣭ (the 
existence probabilities of company i). The right ten 
columns of the table show the sensitivities (differen-
tial coefficients) of 	 న࣭	തതതത  and ୧࣭  with respect to the 
average funds flow μ୧୨  of edges. Due to limited 
space, the sensitivities with respect to only ten edges, 
arranged in descending order of their absolute values, 
are shown respectively, where the upper rows identi-
fy the edges, and the bottom rows show the estimat-
ed values of the differential coefficients. 

 

Fij ሺtሻ ൌ exp൫ࣾij ൅ ःij 	wij
t ൯ 

ൌ
൫μij ൯

2
	ඥlogሺ1 ൅ 1/μij 	exp൫	ඥlogሺ1 ൅ 1/μij 	wij

t ൯

ඥμij 	ሺ1 ൅ μij ሻ

h൫μij ൯ 

ൌ ෍ 	൝
∂

∂wij
t ቆ
∂wij

t

∂μij
ቤ
xൌconst

ቇ െ wij
t ቆ
∂wij

t

∂μij
ቤ
xൌconst

ቇൡ

min ൫τi ,	τj൯

tൌ1

 

ൌ ෍
1െ ൫wij

t ൯
2
൅ wij

t 	൫3 ൅ 2	μij൯ටlog൫1 ൅ 1/μij ൯

2 μij ൫1 ൅ μij ൯	log൫1 ൅ 1/μij൯

min ൫τi ,	τj൯

tൌ1

 

i࣭ ൌ ॱሾSiሺ100ሻሿ ≅
1
L
෍Si

ሺkሻሺ100ሻ
L

kൌ1

 

i࣭തതതത ൌ ॱ ൥
1
25
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25

iൌ1
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1
25
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25
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൩
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kൌ1

 

∂ i࣭

∂μij
ൌ ॱ ቂSiሺ100ሻ h൫μij ൯ቃ ≅

1
L
෍Si
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ሺkሻ

L
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ൌ ॱ ቂ 1

25
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Figure 1: Financial flow-of-funds network with 25 companies.

 

Figure 2: Over-drawn time series of the average existence 
probability by Monte-Carlo simulation. 

 

Figure 3: Estimated value of existence probabilities vs 
number of simulations. 

 

Figure 4: Estimated value of ∂	 న࣭	തതതത ∂μ୧୨ൗ  vs number of 
simulations. 

 

Figure 5: Estimated value of ∂ ଵ࣭ ∂μ୧୨⁄  vs number of simu-
lations. 
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Table 1: the estimated values of 	 న࣭	തതതത and ୧࣭ and their sensitivities ∂	 న࣭	തതതത ∂μ୧୨ൗ  and ∂ ଵ࣭ ∂μ୧୨⁄ . 

 
 
From Table 1, for example, edge 233 (the edge 

from company 23 to company 3) turned out to have 
the largest sensitivity of 0.08596 to 	 న࣭	തതതത. Edge 07 
(the flow of funds from the outside of the network to 
company 7) and edge 010 (from the outside to 
company 10) also had large sensitivities to 	 న࣭	തതതത. It is 
interesting that edge 233, which is an inner flow 
of the network, had larger sensitivity to the average 
existence probability 	 న࣭	തതതത than did the inward flows 
from the outside of the network, which increased the 
total assets within the network. This would be ex-
plained by the fact that company 23 has four inward 

edges, while it has only one outward edge 233. An 
increasing flow of funds for 233, which clearly 
had an adverse effect on the survival of company 23, 
might be desirable for the survival of the many other 
companies in the network. 

We turn attention to the existence probability ଵ࣭ 
of company 1. The top three edges having a large 
effect on ଵ࣭ were edge 13, edge 120, and edge 
321 in descending order of the (absolute value of) 
sensitivities. We are convinced that edge 13 and 
edge 120, which are directly outward from node 1, 
had large and negative sensitivities to ଵ࣭. It is inter-

	 i࣭ 	തതതത 

1࣭
࣭2
࣭3
࣭4
࣭5
࣭6
࣭7
࣭8
࣭9
1࣭0

1࣭1

1࣭2

1࣭3

1࣭4

1࣭5

1࣭6

1࣭7

1࣭8

1࣭9
࣭20
࣭21
࣭22
࣭23
࣭24
࣭25

 

＃１ ＃２ ＃３ ＃４ ＃５ ＃６ ＃７ ＃８ ＃９ ＃１０

23→3 0→7 0→10 0→18 10→23 0→17 0→20 0→2 3→12 3→24
0.08596 0.07176 0.06742 0.06573 -0.06462 0.06146 0.05095 0.04989 -0.04944 -0.04906
1→3 1→20 3→21 18→19 17→6 3→11 17→7 18→4 18→1 17→12
-0.9747 -0.9134 0.4447 -0.3927 -0.3461 0.3424 -0.3414 -0.3368 0.3345 -0.3238
2→3 2→5 2→21 0→2 3→20 20→21 6→2 20→2 6→23 20→4
-0.8100 -0.7856 -0.7707 0.6345 0.4148 -0.3370 0.3240 0.3066 -0.2995 -0.2838
3→21 3→11 3→20 3→12 3→24 20→4 3→5 2→21 1→20 20→2
-0.5485 -0.5407 -0.5334 -0.4134 -0.3956 0.3719 -0.3607 -0.2965 -0.2859 0.2798
4→10 4→9 4→17 4→0 4→3 9→18 24→9 5→9 5→10 19→4
-0.7510 -0.7464 -0.7339 -0.6120 -0.4982 0.4884 -0.4323 -0.3803 -0.3614 0.3497
5→19 5→4 5→9 5→10 4→3 19→3 9→3 3→24 3→12 3→21
-0.7143 -0.7053 -0.6733 -0.6124 0.4746 0.4496 0.4455 -0.4150 -0.3834 -0.3569
6→23 6→2 16→13 23→3 17→12 16→9 17→1 23→0 0→17 12→16
-1.0721 -1.0054 -0.4793 0.4554 -0.4080 -0.4065 -0.4058 0.3542 0.3474 0.3396
7→16 7→15 7→22 0→7 22→17 12→16 17→1 17→6 16→9 0→17
-1.0488 -1.0205 -0.9594 0.7789 0.5961 -0.4402 -0.4348 -0.3906 0.3893 0.3809
8→23 8→0 23→3 15→13 12→13 23→0 12→16 15→8 3→5 12→8
-1.0896 -0.8440 0.6284 -0.5632 -0.5147 0.4214 -0.4110 0.3514 -0.2901 0.2867
9→25 9→18 9→0 25→24 9→3 14→25 18→4 24→19 14→9 5→19
-0.5920 -0.5796 -0.4650 0.3994 -0.3581 -0.3199 0.3104 -0.2640 0.2539 -0.2515
10→23 10→16 10→11 10→14 0→10 11→5 13→23 16→13 14→5 5→9
-0.8638 -0.8049 -0.7756 -0.7606 0.6648 0.4750 -0.4707 0.4213 0.4069 -0.3430
11→15 11→12 11→5 5→10 12→13 22→17 3→12 15→13 10→14 3→11
-0.9037 -0.8759 -0.8294 0.4712 0.4209 -0.3898 -0.3650 0.3629 -0.3574 0.3462
12→7 12→16 12→8 12→13 7→22 17→7 16→9 0→7 8→23 3→5
-0.6790 -0.5719 -0.5492 -0.5186 0.3617 -0.3588 0.2915 -0.2793 0.2644 -0.2593
13→10 13→23 13→0 10→16 10→11 12→8 23→3 15→8 16→6 3→5
-0.8373 -0.8043 -0.6842 0.5073 0.4574 -0.4472 0.4331 -0.4145 -0.3261 -0.3106
14→9 14→5 14→25 0→14 5→10 10→16 10→11 10→23 0→10 9→18
-0.8365 -0.7869 -0.7464 0.6162 0.3702 -0.3328 -0.3267 -0.3026 0.2715 0.2418
15→8 15→13 12→7 11→12 7→16 13→10 8→23 13→23 0→7 7→22
-1.1379 -1.1117 0.5564 -0.5426 -0.5284 0.4491 0.4376 0.4156 0.4036 -0.3907
16→6 16→13 16→9 13→10 12→13 10→14 9→3 10→11 9→18 0→10
-0.8364 -0.8072 -0.8043 0.5246 -0.4697 -0.4008 0.3846 -0.3574 0.3417 0.3259
17→12 17→6 17→1 17→7 0→17 21→12 12→8 22→17 12→13 7→22
-0.9313 -0.8432 -0.8264 -0.7960 0.6776 -0.5995 0.3746 0.3744 0.3742 0.3387
18→19 18→4 18→1 0→18 4→9 9→25 9→0 5→9 24→9 9→3
-0.9755 -0.9174 -0.9007 0.7450 0.5324 -0.4179 -0.3943 0.3700 0.3544 -0.3315
19→4 19→0 19→3 18→4 24→4 5→4 18→19 24→19 4→17 5→19
-1.1736 -0.8793 -0.7153 -0.6266 -0.6078 -0.5807 0.4290 0.4074 0.4007 0.3902
20→21 20→2 20→4 0→20 21→17 3→21 2→3 4→3 4→17 1→20
-0.9482 -0.9310 -0.8908 0.7290 0.4338 -0.4250 0.3988 0.3926 0.3468 0.3327
21→17 21→22 21→12 3→12 17→1 2→21 17→6 12→16 20→4 12→13
-0.9103 -0.8803 -0.8600 -0.4702 0.4002 0.3791 0.3728 0.3541 -0.3444 0.3119
22→11 22→17 17→7 21→17 7→16 7→15 11→12 0→7 17→12 11→5
-1.0411 -0.9813 0.6397 -0.5667 -0.5137 -0.4763 0.4563 0.4280 0.3974 0.3369
23→0 23→3 3→12 6→2 13→0 10→14 8→0 6→23 0→10 10→23
-0.5486 -0.4449 0.2889 -0.2859 -0.2788 -0.2577 -0.2489 0.2269 0.2241 0.2192
24→19 24→4 0→24 24→9 19→3 4→3 3→5 3→20 3→11 3→21
-0.8424 -0.7966 0.6685 -0.6268 0.5091 0.5016 -0.4815 -0.4246 -0.4240 -0.4064
25→24 25→0 24→9 9→3 9→18 9→0 24→4 0→14 4→3 14→25
-0.9278 -0.7619 0.5972 -0.5229 -0.4131 -0.3888 0.3871 0.3564 -0.3078 0.2978

0.1888

0.6154
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0.4799

0.5839

0.4926

0.6510

0.5141

0.7548

0.5260

0.4141

0.4483

0.2472

0.3799

0.4284

0.1940

0.4711

0.5024

0.5322

0.4482

0.7415

0.2376

0.4635

0.4769

0.6719
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Probability

The estimated sensitivities with respect to each edge μij  
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esting that edge 321, which does not link to com-
pany 1 directly, had the third largest sensitivity. This 
would be explained if we note that edge 321 had 
the largest (and negative) effect on the survival of 
company 3 and edge 13 the largest (and negative) 
effect on the survival of company 1. 

As seen above, we can estimate the sensitivity of 
	 న࣭	തതതത and ୧࣭  with respect to all 86 numbers of μ୧୨  by 
Monte-Carlo simulation by using the LRM method 
with the score functions derived by using the fixed-
sample-path principle. Although this example net-
work is pretty small, the LRM method with fixed-
sample-path principle can be applicable and practi-
cal for much more complicated systems with numer-
ous parameters, such as for systematic risk analysis 
of complicated financial networks, traffic flow on a 
complicated roadway network, and emerging “big-
data” analysis.  

5 CONCLUSION 

In this study, a fixed-sample-path method was pro-
posed, which derives the score function of LRM not 
via the pdf fሺx, চሻ. The key idea is to consider the 
fixed-sample-path derivative of the random variables 
গ with respect to the parameter z୧ under the condi-
tion of fixing the sample path x. The boundary re-
sidual R୧, which represents the correction associated 
with the change of the distribution range of the ran-
dom variables in LRM, was also derived. Some 
examples including the estimation of risk measures 
(Greeks) of option and financial flow-of-funds net-
works showed the effectiveness of the fixed-sample-
path method.  
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