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Abstract: Data-centric workflows focus on how the data is transferred between processes and how it is logically 
stored. In addition to traditional workflow analysis, these can be applied to monitoring, tracing, and 
analyzing data in processes and their mutual relationships. In many applications, e.g. manufacturing, the 
tracing of products thorough entire lifecycle is becoming more and more important. In the present paper we 
define the traceability graph that involves a framework for data that adapts to different levels of precision of 
tracing. Advanced analyzing requires modeling of data in processes and methods for accumulating 
resources and emissions thorough the lifecycle of products. This, in turns, requires explicit modeling and 
presentation how objects are divided and/or composed and how information is cumulated via these tasks.   
The traceability graph focuses on these issues. The traceability graph is formally defined by set theory that 
is an established and exact specification method. 

1 INTRODUCTION 

The data-centric approach for designing workflows 
is based on defining how the data is transferred 
between processes and how it is logically stored 
(Akram, Kewley and Allan, 2006; Caswell and 
Nigam, 2003). The approach examines how 
processes transform data and which entities send and 
receive the data. The main goal of data-centric 
workflows is to present the data sets in the 
workflows. In other words, data-centric workflows 
must involve an integrated data model for storing 
and manipulating data. 

Complex objects consist of objects that in turn 
may consist of smaller objects (Motschnig-Pitrik and 
Kaasböll, 1999). This makes their manipulation 
demanding because both immediate and indirect 
components must be taken into account in analyzing 
information associated with complex objects. 
Physical assemblies are complex objects with the 
exclusivity constrain i.e. no component is shared 
(Junkkari, 2005). Workflows are usually focused on 
management of manufacturing of physical 
assemblies and they describe how physical 
assemblies are constructed. In manufacturing of 
physical assemblies, objects may be composed of 
components or an object may be divided into smaller 

objects. In manufacturing, information related to 
physical assemblies is cumulated via different types 
of processes. Division and composition require 
specific rules for information accumulation.  

In the present study, we develop a data-centric 
workflow approach, called the traceability graph, 
focused on management of information allocation 
and accumulation in object transformation (division 
or composition). It supports dynamic data 
management techniques for data refinement such as 
aggregation, attribute value propagation, and derived 
attributes. Integration of object transformation with 
other dynamic data management issues gives an 
advanced approach to analyze data associated with 
processes, products the processes yield, and their 
components.  

In our approach a (database) object may 
correspond to a real life entity, a set of real life 
entities or mass of material that can be physically 
identified thorough the part of a process chain in 
which it is participating. This means that physical 
entities of a patch are manipulated by a single object 
in a database if physical entities cannot be 
individually identified.  

In data-centric workflows, the manipulation of 
complex objects requires specific features because 
objects may be changed into other objects in both 
the logical (in databases) and physical (real world) 
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levels. This means that object transformation and 
related data derivation rules must be modeled. In 
addition, objects are manipulated in patches that can 
be divided into subsets. In turn, patches may be 
collected into larger patches. The above issues 
means that there must be rules for determining how 
resources, emissions and other information of 
processes are allocated to products in object 
transformation and how these are accumulated in a 
workflow. 

We use the term supply chain, borrowed from 
manufacturing, to determine all the processes that 
are participating directly or indirectly in the 
production of a product. The supply chain is a 
directed subgraph of a workflow diagram, i.e. the 
result of a process is a raw material for another 
process. Processes possess properties, such as 
resources and emissions, associated with the result 
products of processes. From data-oriented 
perspective, these properties are accumulated in a 
supply chain, i.e. the information on the preceding 
processes of a process is also associated with the 
process and its products. For example, for 
calculating the used energy of a product, all history 
(preceding processes) must be taken into account. 
For modeling this accumulation of products, a 
process contains two values: ordinal and cumulated 
where the ordinal value is focused on an underlying 
process whereas the cumulated value is aggregated 
from previous processes. The information from a 
process to another is transferred by derived 
attributes. 

Unlike existing methods our model enables 
analyzing resources and emissions on the single 
product level – not only average values. Nowadays a 
common method for calculating the environmental 
impact is to measure the input and output flows of 
the whole supply chain during some time period and 
calculate the average environmental impact for the 
product (Puettmann and Wilson, 2005). 

We aim to find the principal primitives needed to 
model and manipulate data-centric aspects in 
workflows in a way that enables tracing of products 
at different granularity levels. We do not bind our 
model to any existing data or workflow methods, i.e. 
we give freedom to apply our model into existing 
formalisms and systems.  

  The rest of the paper is organized as follows. 
In Section 2 we present a short survey on workflow 
models and traceability. The used mathematical 
notational conventions are given in Section 3 and the 
traceability graph is defined in Section 4. The 
analytic capabilities of the traceability graph are 
demonstrated in Section 5. In Section 6, we discuss 

implementation issues of the present model, and 
finally, the conclusions are given in Section 7.   

2 RELATED WORKS 

In workflows, materials, documents and other 
information are transferred from a process to another 
(van der Aalst and van Hee, 2002; Bonner, 1999). 
Different types of activities are typically 
distinguished in workflow diagrams, like sending, 
transforming and packing of materials. Some 
modern modeling methods of information systems, 
e.g. UML (Booch, Rumbaugh and Jacobson, 1999), 
contain diagrams for dynamic aspects of programs 
(interaction diagrams) and modeling of workflows 
(activity diagram). The purpose of workflow model 
of UML is to map real world activities to the 
underlying software solution. 

There are several formal methods for modeling 
functionality of information systems that are not 
primarily intended to any specific purpose. For 
example Petri nets are traditionally used for defining 
or describing functionality of computer programs, 
but they are also proposed for exact representation 
of workflow models (van der Aalst, 1998; van der 
Aalst and van Hee, 2002). YAWL (van der Aalst 
and Ter Hofsted, 2005), Temporal logic (Attie et al., 
1993), and Transaction Logic (Bonner, 1999) are 
other good representatives for formalizing 
workflows. These methods emphasize timing within 
processes and supply chains. From our perspective, 
timing is a secondary feature. Instead we emphasize 
handling the data aggregation and movement 
between processes. 

Workflow models have also been investigated 
from the perspective of how they support different 
data-centric aspects (Curcin and Ghanem, 2008). 
The main aspects include concentrating on process 
functionality based on the data, i.e. each node has 
behavior instructions with regard to the data. 
Deutsch and others (2009) present an advanced data-
centric business processes model and its verification. 
They define several essential primitives such the 
artifacts schema, artifact instance, and service 
logically integrated with each other. The main 
difference between our study and their approach is 
that we address the explicit object sifting, 
transformation and derivation of the information 
through processes.  

The present study focuses on tracing based on 
object transformation in a supply chain. In general, 
the importance of traceability has been noticed in 
software development (Gotel and Fincesteins, 1994, 

Data-Centric�Workflow�Approach�to�Lifecycle�Data�Management

117



 

Sommerwille, 2007; Podeswa, 2009; Bouillon et al., 
2013; Breaux and Gordon, 2013; Rempel et al., 
2013) as well as in manufacturing (Cheng and 
Simmons, 1994; Jansen-Vullers et al., 2003; 2004; 
Campos and Hardwick, 2006; Folinas et al., 2006). 
In software engineering it is essential to find the 
origin of a requirement when a system is changed 
(Gotel and Fincesteins, 1994; Sommerwille, 2007). 
In this context, traceability is seen as a property of a 
requirements specification that reflects the case of 
finding related requirements (Sommerwille, 2007). 
Requirements traceability refers to the ability to 
describe and follow the life of a requirement (Gotel 
and Fincesteins, 1994).  In the context of UML 
based system specification, tracing between the 
behavioral and structural models has also noticed 
essential (Podeswa, 2009). This relates to our 
approach where aimed to integrated manipulation of 
data structures and workflows / data-flows.  

In the context of requirements traceability and 
manufacturing, traceability is based on analyzing 
workflows or data-flows (with possible class and 
object diagrams) and there are different methods to 
represent traceability data. We, in turn, develop 
workflows for supporting information tracing 
through object transformations. 

3 NOTATIONAL CONVENTIONS 

Standard set theory is used for representing the 
traceability graph. Next we introduce only those 
notational conventions which have widely used 
alternative representations. 
 Tuple is an ordered sequence of elements 

represented between angle brackets.  
 If t is a tuple and x its uniquely labeled member 

then t.x refers to x in t. For example if t = 
a, b,c  then t.b refers to the second member of 

t. 
 If it is not necessary to refer to a member of a 

tuple the underline space can be used. For 
example in 3-tuple _ x _   the first and last 

members are not referred. 
 The power set of the set S is denoted by P(S)  
 Cartesian product between sets A and B is 

denoted by A  B. 
 Mapping f from a set X to another set Y is a 2-

place relation ( X  Y) denoted by f:X  Y. 
X or Y may be a set consisting of sets, e.g. a 
power set. 

 If  R is a 2-place relation R  X  Y  then the 
domain of R ({x  X | x,y    R}) is denoted 

by dom(R),  whereas the range ({y  Y | 
x,y   R}) is denoted by rng(R). 

A (directed) graph is a pair (N,E) where N is a set 
of nodes (vertexes) and E is a set of edges. 
Nodes and edges are represented by set theory 
as follows:  

 A node is represented as a tuple 
Node id,  P1,  ,  Pn   , where Node-id is the 

identity of the node and P1, …, Pn are the 
properties associated with the node. For brevity, 
Node-id can be used to refer to the node. Thus, 
the notation Node-id.Pi refers to the property Pi 
in the node having the underlying identity.    

 A directed edge is represented as a tuple 
Node idS, Node idE,  P1,  ,  Pn    , where 

Node-idS and Node-idE are the identities of the 
start and end nodes, respectively. P1 ,…,Pn are 
the properties associated with the edge. 

4 TRACEABILITY GRAPH 

In the traceability graph each node describes a 
process where resources are needed or new costs 
(e.g. environmental impacts) emerge. A node 
involves a set of attributes and a set of product 
portions. These are the properties of the node. An 
edge describes division, composition or transferring 
of products portions. Each edge possesses a set of 
product portions which are shifted to the following 
process. In an edge neither new resources are needed 
nor new costs are emerged, i.e. ordinary attributes 
are not associated with an edge. Instead, an edge 
may involve derived attributes that describe portions 
of previous product portions and attributes. In other 
words, sifted product portions and derived attributes 
are properties of an edge. Next we define our model 
in detail.  

4.1 Node and Related Properties 

Products which are identified physically and 
logically in the application domain are called 
objects. For logical identifying each object of 
interest possesses an identity. The set of possible 
identities of an application domain is denoted by ID.  

In processes, different products are manufactured 
or manipulated. Products can be divided in different 
portions (patches) based on their types or 
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manipulation needs. The product portion is defined 
as follows:  

Definition 1: Product portion is a tuple P-
Name, C, ID-set, R where P-Name is the name of 
product, C is the amount of the portion, ID-set is the 
set of object identities in the portion, and R is the 
ratio of the portion related the underlying total 
amount of the products.    

In Definition 1 the ratio R is calculated by some 
application specific method based on e.g. the weight 
of the product portion related to the total weight of 
products in the underlying process, or used time 
related to total time needed in the process. For a 
product portion associated with other than objects, 
ID-set is empty and the portion is manipulated as a 
mass without interest on individual products.  

An attribute describes some information bound 
to a process. The attributes are divided into the three 
categories based on their nature as follows: 

1. Input attribute describes costs, used materials 
and other resources needed in a process. For 
example the used fuel is an input attribute. In 
the present approach the input attribute has a 
numeric value. 

2. Output attribute describes other matters than 
products that a process produces. For example, 
a process may produce some tons of CO-gas. 
The output attribute has a numeric value. 

3. Info attribute contains other data or documents 
associated with a process. The value of an info 
attribute is a set of strings or documents.   

An attribute involves two values: one for the 
underlying process (ordinal value) and another for 
the previous production chain (cumulated value). 
The cumulated value is derived from previous 
processes based on the specific rules given later in 
Definition 6. So far we can assume that ordinal and 
cumulated values are the same. The attribute with its 
properties is defined as follows:   

Definition 2: Attribute is a tuple -Name, T, V, 
W where A-Name is the name of attribute, T is the 
type of the attribute ( {input, output, info}), V is 
the ordinal value of the attribute, and W the 
cumulated value of the attribute. 

Now, we are able to define a process node 
involving product portions and attributes.   

Definition 3. Process node (simply node) is a 
tuple Nid, N-type, P-set, A-set where Nid is the 
identity of the node, N-type is the type of the 
process, P-set is the set of product portions and A-
set is the set of attributes associated with the node.  

The nodes are connected to each other via edges. 
Next we define the primitives associated with edges.   

4.2 Edge and Related Properties 

In a supply chain, information on previous processes 
(nodes) is propagated to forthcoming processes. This 
information consists of object identities and the 
values of attributes. An identity shift determines 
those objects that are transferred from a process to 
another or a mapping among objects. There are tree 
types of the identity shift. 1. Equivalence means that 
objects of the start and end nodes are the same. 2. 
Composition means that several objects are 
composed to single objects. 3. Division means that 
single objects are auto-identification into several 
objects.  Formally the identity shift is defined as 
follows: 

Definition 4: Identity shift is a mapping M 
among identities or the sets consisting of them. The 
mapping M may be:  

1. equivalence, where M:ID  ID and dom(M) = 
rng(M) 

2. division, where M:ID  P(ID) and Y  
rng(M) x  dom(M): |Y| > 1 

3. composition, where M:P(ID)  ID and y  
rng(M) X  dom(M): |X| > 1. 

Case 1 maintains the object identities, whereas in 
cases 2 and 3 object identities are typically changed. 
In case 2, a single object is mapped to a set of object 
identities, whereas in 3 a set of object identities is 
mapped to a single object identity. Further, only 
some objects may be selected for refining or objects 
for refining may be collected from several previous 
processes.  

For propagating information represented as 
attributes among nodes, the notation of the derived 
attribute is used. Attribute value propagation rules 
are based on the types of attributes, i.e. propagation 
for input and output attributes requires calculation 
whereas info attributes are propagated by collecting 
all the data and documents for forthcoming 
processes. These rules are involved in the definition 
of the edge below. 

A (shift) edge describes the connection between 
two nodes. An edge involves a set of derived 
attributes and a set of sifted product portions. A 
sifted product portion describes products that are 
shifted from a process to another. In order to 
maintain a product portion and the related objects, 
an identity shift is associated with shifted product 
portions. The edge is formally defined as follows:  

Definition 5. Shift edge (simply edge) is a tuple 
NS, NE, SP, D, where NS and NE are identities of 
the start and end nodes, SP is a sifted product 
portion, and D is a set of derived attributes.  
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 SP is a tuple P-Name, C, M, Rp, such that 
there exists P-Name,C’,ID-setS,_  NS.P-set 
and _,_, ID-setE,_ NE.P-set. The mapping M 
is an identity shift where objects in dom(M) 
belong to ID-setS and objects in rng(M) belong 
to ID-setE. C is the amount of the sifted product 
portion and Rp = C/C’ is the ratio of the sifted 
product portion.  

 A derived attribute ( D) is a tupleA-Name, 
A.T, DV where A  NS.A-set, i.e. A-Name 
is the name of an attribute in NS and A.T its 
type. DV is the value of the derived attribute. It 
is 
A.W,if A.T = info  
A.W  P.R  SP.Rp where P  NS.P-set: P.P-

Name =      SP.P-Name, if A.T  {input, 
output} 

In Definition 5, the sifted product portion is P-
Name, C, M, Rp where Rp is the ratio of the 
portion. This is calculated such that the sifted 
amount C is divided by the original amount C’ of the 
start node. This ratio is used for calculating the value 
of derived attributes. A derived attribute is a 3-tuple 
where the first and second members possess the 
name and the type of the attribute inferred from the 
start node. The value of a derived attribute is 
cumulated as such from the start node if the type of 
the attribute is info. Otherwise, the original value is 
multiplied by the ratio of the original product 
portion (P.R), and by the ratio of the sifted product 
portion (SP.Rp).  

In a traceability graph there are two kinds of 
nodes based on their roles in the graph. Initial nodes 
have no predecessors, i.e. there is no edge to them. 
Other nodes possess at least one predecessor. This 
distinction is essential because attribute values are 
cumulated in other nodes than initial ones. In initial 
nodes an attribute has the same cumulated value as 
the ordinal value. For attributes in the other nodes, 
the cumulated value is derived from previous nodes 
via edges. If the underlying attribute is an info 
attribute, then the cumulated value is the set 
consisting of the ordinal value and values of derived 
attributes in incoming edges. Otherwise it is the sum 
of the value of the ordinal attribute and the 
corresponding values of derived attributes in 
incoming edges. Formally, the cumulated value is 
defined as follows:  

Definition 6: Let A be an attribute in node N, V 
its ordinal value and S = {E|E.NE = N} the set of 
immediate incoming edges E to N, then the 
cumulated value W of A is  

 
 

 
 

 
 
 

The traceability graph involves the 
abovementioned primitives and it is defined as 
follows: 

Definition 7: Let N-Set be a set of process nodes 
and E-Set a set of shift edges, then N-Set, E-Set is 
a traceability graph. 

4.3 Sample System 

In order to illustrate the traceability graph let us 
consider an example from a forest industry. In 
Figure 1, a simplified production of glued laminated 
timber is illustrated. The processes included in the 
example are felling the trees (harvesting), sawing 
logs to boards, drying the boards and jointing the 
glued laminated timbers (glulam beams) from 
boards.  

The first phase of production has two nodes 
describing the amount of daily harvesting. 
Harvesting has attributes Diesel (input), CO2 
(output), Location (info) and Company (info).  
Harvesting nodes has tree product portions: Logs, 
Pulp wood and Harvesting waste. Only logs are 
transferred to the sawing node. A double headed 
arrow illustrates that in the sawing nodes, the objects 
(logs) from harvesting nodes are divided into several 
objects (boards). Information associated with logs is 
first allocated to shifted product portions and then 
the products of sawing. Then information is 
reallocated to forthcoming product portions in the 
supply chain. 

 
 
 
 
 
 
 
 
 
 

Figure 1: Sample Traceability Graph. 

Between Sawing and Drying nodes the objects 
are not changed. This is illustrated with a plain 
arrow. Objects from the preceding node can be 
moved as such, or only part of the objects can be 
moved, or all the objects can be moved from the 
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preceding node together with some objects from 
other nodes. 

In the gluing nodes the objects from the drying 
nodes are composed as an object of the gluing node. 
In other words objects from the drying nodes are 
components of objects in the gluing nodes. An arrow 
with a divided start illustrates this.  

In other words, the emissions, resources and 
other properties of the end products are accumulated 
through their supply chain. For example, calculating 
the CO2 footprint of a glulam beam all processes are 
taken into account and allocated among sub-
products. 

4.4 Schema 

Definitions 1-7 determine explicitly the instance 
level of the traceability graph but they also 
implicitly involve schema level descriptions. The 
schema is a framework that determines the structure 
of instances with possible constraints in terms of 
which restrictions for nodes and edges can be stated. 

At the schema level, a node type determines a set 
of similar nodes whereas an edge type determines a 
set of similar edges between similar nodes. A node 
type contains slots for a node id, node name, product 
portions and attributes, and possible constrains for 
them. Typical constraints are: 
 Types of product portions 
 Measures of product portions 
 Types of attributes 
 Measures of attributes 

 
As an example, we define the harvesting node 

type.  
N-type = ‘Harvesting’ 

PP: Name: PineSawLog, Measure: cubic meter 
PP: Name: PinePulpWood, Measure: cubic meter 
PP: Name: HarvestingWaste, Measure: ton 
Attribute: Name:Diesel, Type: input, Measure:liter 
Attribute: Name:CO2, Type: output, Measure: 

kilograms 
Attribute: Name: Location, Type: info
Attribute: Name: CompanyCode, Type: info 

 
An edge type contains slots for two node 

identities such that the type of the node can be 
specified. Further, there are slots for sifted product 
portions, identity mapping and derived attributes. 
The type (composition, division or equivalence) of 
mapping can be specified as well as the names, types 
and measures of the derived attributes. 

For example, an edge type between harvesting 
and sawing nodes can be specified as follows: 

Node type of NS = ‘Harvesting’ 
Node type of NE = ‘Sawing’ 
EdgeType = Division 
PP: Name: PineSawLog, Measure: cubic meter 
D_attribute: Name: CO2, Type: output, Measure: 

kilograms 
D_attribute: Name: Diesel, Type: input, Measure: liter
Attribute: Name: CompanyCode, Type: info
 

The schema level description may also contain 
other constraints or derivation rules. For example, 
the value of the CO2 attribute (output) may be 
derived from the values of the Diesel attribute 
(input).   

5 ANALYZING TRACEABILITY 
GRAPH 

For analyzing structural aspects of the traceability 
graph functions different function can be defined. 
For the sake of limited space we only two sample 
function needed in the sample queries. 
Successors of an object mean those objects for that 
the object has been raw material or component. The 
functions i_successors and successors yield the 
immediate and all successors, respectively. 

 
i_successors(id) = {id’  ID | E  E-Set  id  

rng(E.SP.M)   id’  dom(E.SP.M): id,id’  
E.SP.M} 
 

successors(id) =  
 

 
 

For example, if id1 is the identity of a log then   
successor(id1) all products that is sawed from the 
log or has a component come down the log. An 
object may belong to several nodes in process chain. 
The function node(id) yields all the nodes that the 
object with id has associated with: 
 
node(id)={N.Nid|NN-set: tN.P-set  dt.ID-set} 

 
Among these nodes the last one is of special 

interest because it refers to the final state of the 
object. The function last_node(id) returns it  as 
follows.  
 
last_node(id) = N| Nnode(id)  id  successors(id) 

 
Next we demonstrate querying possibilities of 

the traceability graph. 
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Sample Query 1: Calculating the Item Level 
Carbon Footprint 

The carbon footprint of an object can be 
calculated by using the cumulated value of the CO2 
attribute of the final node that the object has 
participated in. For example, let us assume that 
object with id5000 is a glulam beam then the carbon 
footprint associated with it can be achieved as 
follows: 
 

                                        
                                    

where t  N.P-set: id5000  t.ID-set  t'  N.A-
set: t.A-name = CO2 such that N = last_node(id)  

 
In other words t.R refers to the ratio R of the 

node t (a tuple) and t’.W refers to the cumulated 
value W of the attribute t’ (a tuple).  

The formula can easily be extended to concern 
several objects when the dispensation would be 
multi-valued set. 

 
Sample Query 2: Benchmarking 
Benchmarking the processes between companies 

and manufacturing facilities enables to identify the 
processes with biggest environmental impact so that 
we improve the environmental performance of the 
supply chain. We can calculate a key performance 
indicator for the nodes using the bench() functions.  
 nodes define the set of nodes used in 

benchmarking 
 prod_name defines the product portion used in 

benchmarking 
 prop_name defines the attribute used to 

calculate the key performance indicator. 
 group defines the attribute used to analyze the 

traceability graph. 
bench(nodes, prod_name, prop_name, group) = 

{x,y | x  t1.V: t1  N.A-set  t1.A-name = group  
 

 
  t1.T = info                       where 
 

    S = {t2.V| t2  N.A-set  t2.A-name = prop-name} 
    T = {t3.V| t3  N.P-set  t3.P-name = prod-name} 

       where N  nodes} 
 
According to Figure 1, #N1 and #N2 are 

identities of harvesting nodes of different companies 
The harvesting efficiency can be calculate as 
follows: 
 
bench({N1,N2},PineSawLog,Diesel,CompanyCode)  

The result a set of pairs that represents how 
much diesel companies have used per cubic meter of 
saw logs.  

6 DISCUSSION 

The presented data-centric workflow model enables 
tracing, monitoring, analyzing and querying the 
properties of processes and their mutual 
relationships. The formal specification allows 
services to handle the products lifecycle data 
formally. To be able to share the life cycle data in 
real a world supply chain, we must: 

1. ensure correspondence between logical objects 
with real life products of processes 

2. have an infrastructure that enables multiple 
companies in a supply chain to share and use 
the information regarding products.  

In tracing products, in addition to logical 
identities, they must be identified by physical 
identifiers. For physical products, various marking 
methods are in use: Imprinting, the finger print 
method, Laser marking, Label marking, Ink jet 
marking and transponder marking. In practice a 
physical identifier corresponds to an object identity 
in the database. This also gives natural interpretation 
for an object in the traceability graph.  

We have implemented a pilot project for using 
RFID (Radio Frequency IDentification) marking in 
forest industry for product level tracing (Junkkari 
and Sirkka, 2011; Björk et al. 2011). The product 
level marking needs marking of single products and 
their components. This is, of course, expensive and 
requires advanced infrastructure. Rougher marking 
reduces the costs but makes tracing vaguer. 
However, the price of RDIF techniques have 
decreased constantly which will enable item level 
tracing probably near in future. 

We have implemented the traceability graph on 
the top of a relational database and investigated 
possibilities to OLAP (Online Analytic Processing) 
analysis (Sirkka and Junkkari, 2012). According to 
our experience the present formalisms give a good 
background to analyze traceability data 
multidimensionally. The product, process, time and 
elementary flow are possible dimensions for 
reporting recourses and emissions for benchmarking 
and the decision support. 
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7 CONCLUSIONS 

We have presented a data-centric workflow model, 
called the traceability graph. It integrates data-
centric aspects of products and processes to 
traditional graph-based workflows. The approach 
supports attribute value propagation and aggregation 
in the supply chains. The input and output costs of 
processes can be allocated into products, which 
enables tracing and analyzing these costs precisely. 
The model can be applied to single products as well 
as larger patches. Unlike existing methods the 
traceability graph enables precisely calculated input 
costs (e.g. recourses) and output costs (e.g. 
emissions and waste) of products and processes. So 
far these have been based on average values from a 
large set of processes. Through the presented object 
transformation it is possible to model and 
manipulate data allocation and aggregation in the 
composition and division of objects in processes.  
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