
Data-Centric Workflow Approach to Lifecycle Data Management

Marko Junkkari1 and Antti Sirkka2
1School of Information Sciences, University of Tampere, Kanslerinrinne 1, Tampere, Finland

2Tieto Finland, Hatanpäänvaltatie 30, Tampere, Finland

Keywords: Data-Centric Workflow, Complex Objects, Physical Assembly, Data Model, Lifecycle Data Management,
Traceability Graph.

Abstract: Data-centric workflows focus on how the data is transferred between processes and how it is logically
stored. In addition to traditional workflow analysis, these can be applied to monitoring, tracing, and
analyzing data in processes and their mutual relationships. In many applications, e.g. manufacturing, the
tracing of products thorough entire lifecycle is becoming more and more important. In the present paper we
define the traceability graph that involves a framework for data that adapts to different levels of precision of
tracing. Advanced analyzing requires modeling of data in processes and methods for accumulating
resources and emissions thorough the lifecycle of products. This, in turns, requires explicit modeling and
presentation how objects are divided and/or composed and how information is cumulated via these tasks.
The traceability graph focuses on these issues. The traceability graph is formally defined by set theory that
is an established and exact specification method.

1 INTRODUCTION

The data-centric approach for designing workflows
is based on defining how the data is transferred
between processes and how it is logically stored
(Akram, Kewley and Allan, 2006; Caswell and
Nigam, 2003). The approach examines how
processes transform data and which entities send and
receive the data. The main goal of data-centric
workflows is to present the data sets in the
workflows. In other words, data-centric workflows
must involve an integrated data model for storing
and manipulating data.

Complex objects consist of objects that in turn
may consist of smaller objects (Motschnig-Pitrik and
Kaasböll, 1999). This makes their manipulation
demanding because both immediate and indirect
components must be taken into account in analyzing
information associated with complex objects.
Physical assemblies are complex objects with the
exclusivity constrain i.e. no component is shared
(Junkkari, 2005). Workflows are usually focused on
management of manufacturing of physical
assemblies and they describe how physical
assemblies are constructed. In manufacturing of
physical assemblies, objects may be composed of
components or an object may be divided into smaller

objects. In manufacturing, information related to
physical assemblies is cumulated via different types
of processes. Division and composition require
specific rules for information accumulation.

In the present study, we develop a data-centric
workflow approach, called the traceability graph,
focused on management of information allocation
and accumulation in object transformation (division
or composition). It supports dynamic data
management techniques for data refinement such as
aggregation, attribute value propagation, and derived
attributes. Integration of object transformation with
other dynamic data management issues gives an
advanced approach to analyze data associated with
processes, products the processes yield, and their
components.

In our approach a (database) object may
correspond to a real life entity, a set of real life
entities or mass of material that can be physically
identified thorough the part of a process chain in
which it is participating. This means that physical
entities of a patch are manipulated by a single object
in a database if physical entities cannot be
individually identified.

In data-centric workflows, the manipulation of
complex objects requires specific features because
objects may be changed into other objects in both
the logical (in databases) and physical (real world)

116 Junkkari M. and Sirkka A..
Data-Centric Workflow Approach to Lifecycle Data Management.
DOI: 10.5220/0005001001160124
In Proceedings of 3rd International Conference on Data Management Technologies and Applications (DATA-2014), pages 116-124
ISBN: 978-989-758-035-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

levels. This means that object transformation and
related data derivation rules must be modeled. In
addition, objects are manipulated in patches that can
be divided into subsets. In turn, patches may be
collected into larger patches. The above issues
means that there must be rules for determining how
resources, emissions and other information of
processes are allocated to products in object
transformation and how these are accumulated in a
workflow.

We use the term supply chain, borrowed from
manufacturing, to determine all the processes that
are participating directly or indirectly in the
production of a product. The supply chain is a
directed subgraph of a workflow diagram, i.e. the
result of a process is a raw material for another
process. Processes possess properties, such as
resources and emissions, associated with the result
products of processes. From data-oriented
perspective, these properties are accumulated in a
supply chain, i.e. the information on the preceding
processes of a process is also associated with the
process and its products. For example, for
calculating the used energy of a product, all history
(preceding processes) must be taken into account.
For modeling this accumulation of products, a
process contains two values: ordinal and cumulated
where the ordinal value is focused on an underlying
process whereas the cumulated value is aggregated
from previous processes. The information from a
process to another is transferred by derived
attributes.

Unlike existing methods our model enables
analyzing resources and emissions on the single
product level – not only average values. Nowadays a
common method for calculating the environmental
impact is to measure the input and output flows of
the whole supply chain during some time period and
calculate the average environmental impact for the
product (Puettmann and Wilson, 2005).

We aim to find the principal primitives needed to
model and manipulate data-centric aspects in
workflows in a way that enables tracing of products
at different granularity levels. We do not bind our
model to any existing data or workflow methods, i.e.
we give freedom to apply our model into existing
formalisms and systems.

 The rest of the paper is organized as follows.
In Section 2 we present a short survey on workflow
models and traceability. The used mathematical
notational conventions are given in Section 3 and the
traceability graph is defined in Section 4. The
analytic capabilities of the traceability graph are
demonstrated in Section 5. In Section 6, we discuss

implementation issues of the present model, and
finally, the conclusions are given in Section 7.

2 RELATED WORKS

In workflows, materials, documents and other
information are transferred from a process to another
(van der Aalst and van Hee, 2002; Bonner, 1999).
Different types of activities are typically
distinguished in workflow diagrams, like sending,
transforming and packing of materials. Some
modern modeling methods of information systems,
e.g. UML (Booch, Rumbaugh and Jacobson, 1999),
contain diagrams for dynamic aspects of programs
(interaction diagrams) and modeling of workflows
(activity diagram). The purpose of workflow model
of UML is to map real world activities to the
underlying software solution.

There are several formal methods for modeling
functionality of information systems that are not
primarily intended to any specific purpose. For
example Petri nets are traditionally used for defining
or describing functionality of computer programs,
but they are also proposed for exact representation
of workflow models (van der Aalst, 1998; van der
Aalst and van Hee, 2002). YAWL (van der Aalst
and Ter Hofsted, 2005), Temporal logic (Attie et al.,
1993), and Transaction Logic (Bonner, 1999) are
other good representatives for formalizing
workflows. These methods emphasize timing within
processes and supply chains. From our perspective,
timing is a secondary feature. Instead we emphasize
handling the data aggregation and movement
between processes.

Workflow models have also been investigated
from the perspective of how they support different
data-centric aspects (Curcin and Ghanem, 2008).
The main aspects include concentrating on process
functionality based on the data, i.e. each node has
behavior instructions with regard to the data.
Deutsch and others (2009) present an advanced data-
centric business processes model and its verification.
They define several essential primitives such the
artifacts schema, artifact instance, and service
logically integrated with each other. The main
difference between our study and their approach is
that we address the explicit object sifting,
transformation and derivation of the information
through processes.

The present study focuses on tracing based on
object transformation in a supply chain. In general,
the importance of traceability has been noticed in
software development (Gotel and Fincesteins, 1994,

Data-Centric�Workflow�Approach�to�Lifecycle�Data�Management

117

Sommerwille, 2007; Podeswa, 2009; Bouillon et al.,
2013; Breaux and Gordon, 2013; Rempel et al.,
2013) as well as in manufacturing (Cheng and
Simmons, 1994; Jansen-Vullers et al., 2003; 2004;
Campos and Hardwick, 2006; Folinas et al., 2006).
In software engineering it is essential to find the
origin of a requirement when a system is changed
(Gotel and Fincesteins, 1994; Sommerwille, 2007).
In this context, traceability is seen as a property of a
requirements specification that reflects the case of
finding related requirements (Sommerwille, 2007).
Requirements traceability refers to the ability to
describe and follow the life of a requirement (Gotel
and Fincesteins, 1994). In the context of UML
based system specification, tracing between the
behavioral and structural models has also noticed
essential (Podeswa, 2009). This relates to our
approach where aimed to integrated manipulation of
data structures and workflows / data-flows.

In the context of requirements traceability and
manufacturing, traceability is based on analyzing
workflows or data-flows (with possible class and
object diagrams) and there are different methods to
represent traceability data. We, in turn, develop
workflows for supporting information tracing
through object transformations.

3 NOTATIONAL CONVENTIONS

Standard set theory is used for representing the
traceability graph. Next we introduce only those
notational conventions which have widely used
alternative representations.
 Tuple is an ordered sequence of elements

represented between angle brackets.
 If t is a tuple and x its uniquely labeled member

then t.x refers to x in t. For example if t =
a, b,c  then t.b refers to the second member of

t.
 If it is not necessary to refer to a member of a

tuple the underline space can be used. For
example in 3-tuple _ x _  the first and last

members are not referred.
 The power set of the set S is denoted by P(S)
 Cartesian product between sets A and B is

denoted by A  B.
 Mapping f from a set X to another set Y is a 2-

place relation ( X  Y) denoted by f:X  Y.
X or Y may be a set consisting of sets, e.g. a
power set.

 If R is a 2-place relation R  X  Y then the
domain of R ({x  X | x,y   R}) is denoted

by dom(R), whereas the range ({y  Y |
x,y   R}) is denoted by rng(R).

A (directed) graph is a pair (N,E) where N is a set
of nodes (vertexes) and E is a set of edges.
Nodes and edges are represented by set theory
as follows:

 A node is represented as a tuple
Node id, P1, , Pn   , where Node-id is the

identity of the node and P1, …, Pn are the
properties associated with the node. For brevity,
Node-id can be used to refer to the node. Thus,
the notation Node-id.Pi refers to the property Pi
in the node having the underlying identity.

 A directed edge is represented as a tuple
Node idS, Node idE, P1, , Pn    , where

Node-idS and Node-idE are the identities of the
start and end nodes, respectively. P1 ,…,Pn are
the properties associated with the edge.

4 TRACEABILITY GRAPH

In the traceability graph each node describes a
process where resources are needed or new costs
(e.g. environmental impacts) emerge. A node
involves a set of attributes and a set of product
portions. These are the properties of the node. An
edge describes division, composition or transferring
of products portions. Each edge possesses a set of
product portions which are shifted to the following
process. In an edge neither new resources are needed
nor new costs are emerged, i.e. ordinary attributes
are not associated with an edge. Instead, an edge
may involve derived attributes that describe portions
of previous product portions and attributes. In other
words, sifted product portions and derived attributes
are properties of an edge. Next we define our model
in detail.

4.1 Node and Related Properties

Products which are identified physically and
logically in the application domain are called
objects. For logical identifying each object of
interest possesses an identity. The set of possible
identities of an application domain is denoted by ID.

In processes, different products are manufactured
or manipulated. Products can be divided in different
portions (patches) based on their types or

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

118

manipulation needs. The product portion is defined
as follows:

Definition 1: Product portion is a tuple P-
Name, C, ID-set, R where P-Name is the name of
product, C is the amount of the portion, ID-set is the
set of object identities in the portion, and R is the
ratio of the portion related the underlying total
amount of the products.

In Definition 1 the ratio R is calculated by some
application specific method based on e.g. the weight
of the product portion related to the total weight of
products in the underlying process, or used time
related to total time needed in the process. For a
product portion associated with other than objects,
ID-set is empty and the portion is manipulated as a
mass without interest on individual products.

An attribute describes some information bound
to a process. The attributes are divided into the three
categories based on their nature as follows:

1. Input attribute describes costs, used materials
and other resources needed in a process. For
example the used fuel is an input attribute. In
the present approach the input attribute has a
numeric value.

2. Output attribute describes other matters than
products that a process produces. For example,
a process may produce some tons of CO-gas.
The output attribute has a numeric value.

3. Info attribute contains other data or documents
associated with a process. The value of an info
attribute is a set of strings or documents.

An attribute involves two values: one for the
underlying process (ordinal value) and another for
the previous production chain (cumulated value).
The cumulated value is derived from previous
processes based on the specific rules given later in
Definition 6. So far we can assume that ordinal and
cumulated values are the same. The attribute with its
properties is defined as follows:

Definition 2: Attribute is a tuple -Name, T, V,
W where A-Name is the name of attribute, T is the
type of the attribute ( {input, output, info}), V is
the ordinal value of the attribute, and W the
cumulated value of the attribute.

Now, we are able to define a process node
involving product portions and attributes.

Definition 3. Process node (simply node) is a
tuple Nid, N-type, P-set, A-set where Nid is the
identity of the node, N-type is the type of the
process, P-set is the set of product portions and A-
set is the set of attributes associated with the node.

The nodes are connected to each other via edges.
Next we define the primitives associated with edges.

4.2 Edge and Related Properties

In a supply chain, information on previous processes
(nodes) is propagated to forthcoming processes. This
information consists of object identities and the
values of attributes. An identity shift determines
those objects that are transferred from a process to
another or a mapping among objects. There are tree
types of the identity shift. 1. Equivalence means that
objects of the start and end nodes are the same. 2.
Composition means that several objects are
composed to single objects. 3. Division means that
single objects are auto-identification into several
objects. Formally the identity shift is defined as
follows:

Definition 4: Identity shift is a mapping M
among identities or the sets consisting of them. The
mapping M may be:

1. equivalence, where M:ID  ID and dom(M) =
rng(M)

2. division, where M:ID  P(ID) and Y 
rng(M) x  dom(M): |Y| > 1

3. composition, where M:P(ID)  ID and y 
rng(M) X  dom(M): |X| > 1.

Case 1 maintains the object identities, whereas in
cases 2 and 3 object identities are typically changed.
In case 2, a single object is mapped to a set of object
identities, whereas in 3 a set of object identities is
mapped to a single object identity. Further, only
some objects may be selected for refining or objects
for refining may be collected from several previous
processes.

For propagating information represented as
attributes among nodes, the notation of the derived
attribute is used. Attribute value propagation rules
are based on the types of attributes, i.e. propagation
for input and output attributes requires calculation
whereas info attributes are propagated by collecting
all the data and documents for forthcoming
processes. These rules are involved in the definition
of the edge below.

A (shift) edge describes the connection between
two nodes. An edge involves a set of derived
attributes and a set of sifted product portions. A
sifted product portion describes products that are
shifted from a process to another. In order to
maintain a product portion and the related objects,
an identity shift is associated with shifted product
portions. The edge is formally defined as follows:

Definition 5. Shift edge (simply edge) is a tuple
NS, NE, SP, D, where NS and NE are identities of
the start and end nodes, SP is a sifted product
portion, and D is a set of derived attributes.

Data-Centric�Workflow�Approach�to�Lifecycle�Data�Management

119

 SP is a tuple P-Name, C, M, Rp, such that
there exists P-Name,C’,ID-setS,_  NS.P-set
and _,_, ID-setE,_ NE.P-set. The mapping M
is an identity shift where objects in dom(M)
belong to ID-setS and objects in rng(M) belong
to ID-setE. C is the amount of the sifted product
portion and Rp = C/C’ is the ratio of the sifted
product portion.

 A derived attribute ( D) is a tupleA-Name,
A.T, DV where A  NS.A-set, i.e. A-Name
is the name of an attribute in NS and A.T its
type. DV is the value of the derived attribute. It
is
A.W,if A.T = info
A.W  P.R  SP.Rp where P  NS.P-set: P.P-

Name = SP.P-Name, if A.T  {input,
output}

In Definition 5, the sifted product portion is P-
Name, C, M, Rp where Rp is the ratio of the
portion. This is calculated such that the sifted
amount C is divided by the original amount C’ of the
start node. This ratio is used for calculating the value
of derived attributes. A derived attribute is a 3-tuple
where the first and second members possess the
name and the type of the attribute inferred from the
start node. The value of a derived attribute is
cumulated as such from the start node if the type of
the attribute is info. Otherwise, the original value is
multiplied by the ratio of the original product
portion (P.R), and by the ratio of the sifted product
portion (SP.Rp).

In a traceability graph there are two kinds of
nodes based on their roles in the graph. Initial nodes
have no predecessors, i.e. there is no edge to them.
Other nodes possess at least one predecessor. This
distinction is essential because attribute values are
cumulated in other nodes than initial ones. In initial
nodes an attribute has the same cumulated value as
the ordinal value. For attributes in the other nodes,
the cumulated value is derived from previous nodes
via edges. If the underlying attribute is an info
attribute, then the cumulated value is the set
consisting of the ordinal value and values of derived
attributes in incoming edges. Otherwise it is the sum
of the value of the ordinal attribute and the
corresponding values of derived attributes in
incoming edges. Formally, the cumulated value is
defined as follows:

Definition 6: Let A be an attribute in node N, V
its ordinal value and S = {E|E.NE = N} the set of
immediate incoming edges E to N, then the
cumulated value W of A is

The traceability graph involves the
abovementioned primitives and it is defined as
follows:

Definition 7: Let N-Set be a set of process nodes
and E-Set a set of shift edges, then N-Set, E-Set is
a traceability graph.

4.3 Sample System

In order to illustrate the traceability graph let us
consider an example from a forest industry. In
Figure 1, a simplified production of glued laminated
timber is illustrated. The processes included in the
example are felling the trees (harvesting), sawing
logs to boards, drying the boards and jointing the
glued laminated timbers (glulam beams) from
boards.

The first phase of production has two nodes
describing the amount of daily harvesting.
Harvesting has attributes Diesel (input), CO2
(output), Location (info) and Company (info).
Harvesting nodes has tree product portions: Logs,
Pulp wood and Harvesting waste. Only logs are
transferred to the sawing node. A double headed
arrow illustrates that in the sawing nodes, the objects
(logs) from harvesting nodes are divided into several
objects (boards). Information associated with logs is
first allocated to shifted product portions and then
the products of sawing. Then information is
reallocated to forthcoming product portions in the
supply chain.

Figure 1: Sample Traceability Graph.

Between Sawing and Drying nodes the objects
are not changed. This is illustrated with a plain
arrow. Objects from the preceding node can be
moved as such, or only part of the objects can be
moved, or all the objects can be moved from the













 







S D_,_,_,

S D_,_,_,

output} {input, A.T if D, DV_,A, :DV V

 info A.T if D, DV_,A, :DV V 

Harvesting
#N1

Harvesting
#N2

Sawing
#N3

Drying
#N4

Drying
#N5

Gluing
#N6

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

120

preceding node together with some objects from
other nodes.

In the gluing nodes the objects from the drying
nodes are composed as an object of the gluing node.
In other words objects from the drying nodes are
components of objects in the gluing nodes. An arrow
with a divided start illustrates this.

In other words, the emissions, resources and
other properties of the end products are accumulated
through their supply chain. For example, calculating
the CO2 footprint of a glulam beam all processes are
taken into account and allocated among sub-
products.

4.4 Schema

Definitions 1-7 determine explicitly the instance
level of the traceability graph but they also
implicitly involve schema level descriptions. The
schema is a framework that determines the structure
of instances with possible constraints in terms of
which restrictions for nodes and edges can be stated.

At the schema level, a node type determines a set
of similar nodes whereas an edge type determines a
set of similar edges between similar nodes. A node
type contains slots for a node id, node name, product
portions and attributes, and possible constrains for
them. Typical constraints are:
 Types of product portions
 Measures of product portions
 Types of attributes
 Measures of attributes

As an example, we define the harvesting node

type.
N-type = ‘Harvesting’

PP: Name: PineSawLog, Measure: cubic meter
PP: Name: PinePulpWood, Measure: cubic meter
PP: Name: HarvestingWaste, Measure: ton
Attribute: Name:Diesel, Type: input, Measure:liter
Attribute: Name:CO2, Type: output, Measure:

kilograms
Attribute: Name: Location, Type: info
Attribute: Name: CompanyCode, Type: info

An edge type contains slots for two node

identities such that the type of the node can be
specified. Further, there are slots for sifted product
portions, identity mapping and derived attributes.
The type (composition, division or equivalence) of
mapping can be specified as well as the names, types
and measures of the derived attributes.

For example, an edge type between harvesting
and sawing nodes can be specified as follows:

Node type of NS = ‘Harvesting’
Node type of NE = ‘Sawing’
EdgeType = Division
PP: Name: PineSawLog, Measure: cubic meter
D_attribute: Name: CO2, Type: output, Measure:

kilograms
D_attribute: Name: Diesel, Type: input, Measure: liter
Attribute: Name: CompanyCode, Type: info

The schema level description may also contain
other constraints or derivation rules. For example,
the value of the CO2 attribute (output) may be
derived from the values of the Diesel attribute
(input).

5 ANALYZING TRACEABILITY
GRAPH

For analyzing structural aspects of the traceability
graph functions different function can be defined.
For the sake of limited space we only two sample
function needed in the sample queries.
Successors of an object mean those objects for that
the object has been raw material or component. The
functions i_successors and successors yield the
immediate and all successors, respectively.

i_successors(id) = {id’  ID | E  E-Set  id 

rng(E.SP.M)  id’  dom(E.SP.M): id,id’ 
E.SP.M}

successors(id) =

For example, if id1 is the identity of a log then
successor(id1) all products that is sawed from the
log or has a component come down the log. An
object may belong to several nodes in process chain.
The function node(id) yields all the nodes that the
object with id has associated with:

node(id)={N.Nid|NN-set: tN.P-set  dt.ID-set}

Among these nodes the last one is of special

interest because it refers to the final state of the
object. The function last_node(id) returns it as
follows.

last_node(id) = N| Nnode(id)  id  successors(id)

Next we demonstrate querying possibilities of

the traceability graph.












 otherwise ,

 S if (id),_ S where(i), S
S i
 successorsisuccessors



























Data-Centric�Workflow�Approach�to�Lifecycle�Data�Management

121

Sample Query 1: Calculating the Item Level
Carbon Footprint

The carbon footprint of an object can be
calculated by using the cumulated value of the CO2
attribute of the final node that the object has
participated in. For example, let us assume that
object with id5000 is a glulam beam then the carbon
footprint associated with it can be achieved as
follows:

where t  N.P-set: id5000  t.ID-set  t'  N.A-
set: t.A-name = CO2 such that N = last_node(id)

In other words t.R refers to the ratio R of the

node t (a tuple) and t’.W refers to the cumulated
value W of the attribute t’ (a tuple).

The formula can easily be extended to concern
several objects when the dispensation would be
multi-valued set.

Sample Query 2: Benchmarking
Benchmarking the processes between companies

and manufacturing facilities enables to identify the
processes with biggest environmental impact so that
we improve the environmental performance of the
supply chain. We can calculate a key performance
indicator for the nodes using the bench() functions.
 nodes define the set of nodes used in

benchmarking
 prod_name defines the product portion used in

benchmarking
 prop_name defines the attribute used to

calculate the key performance indicator.
 group defines the attribute used to analyze the

traceability graph.
bench(nodes, prod_name, prop_name, group) =

{x,y | x  t1.V: t1  N.A-set  t1.A-name = group

  t1.T = info  where

 S = {t2.V| t2  N.A-set  t2.A-name = prop-name}
 T = {t3.V| t3  N.P-set  t3.P-name = prod-name}

 where N  nodes}

According to Figure 1, #N1 and #N2 are

identities of harvesting nodes of different companies
The harvesting efficiency can be calculate as
follows:

bench({N1,N2},PineSawLog,Diesel,CompanyCode)

The result a set of pairs that represents how
much diesel companies have used per cubic meter of
saw logs.

6 DISCUSSION

The presented data-centric workflow model enables
tracing, monitoring, analyzing and querying the
properties of processes and their mutual
relationships. The formal specification allows
services to handle the products lifecycle data
formally. To be able to share the life cycle data in
real a world supply chain, we must:

1. ensure correspondence between logical objects
with real life products of processes

2. have an infrastructure that enables multiple
companies in a supply chain to share and use
the information regarding products.

In tracing products, in addition to logical
identities, they must be identified by physical
identifiers. For physical products, various marking
methods are in use: Imprinting, the finger print
method, Laser marking, Label marking, Ink jet
marking and transponder marking. In practice a
physical identifier corresponds to an object identity
in the database. This also gives natural interpretation
for an object in the traceability graph.

We have implemented a pilot project for using
RFID (Radio Frequency IDentification) marking in
forest industry for product level tracing (Junkkari
and Sirkka, 2011; Björk et al. 2011). The product
level marking needs marking of single products and
their components. This is, of course, expensive and
requires advanced infrastructure. Rougher marking
reduces the costs but makes tracing vaguer.
However, the price of RDIF techniques have
decreased constantly which will enable item level
tracing probably near in future.

We have implemented the traceability graph on
the top of a relational database and investigated
possibilities to OLAP (Online Analytic Processing)
analysis (Sirkka and Junkkari, 2012). According to
our experience the present formalisms give a good
background to analyze traceability data
multidimensionally. The product, process, time and
elementary flow are possible dimensions for
reporting recourses and emissions for benchmarking
and the decision support.

 t'.W t.R
|set}-{t.ID|

|}id5000{|















T j

S i

j

i
 y

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

122

7 CONCLUSIONS

We have presented a data-centric workflow model,
called the traceability graph. It integrates data-
centric aspects of products and processes to
traditional graph-based workflows. The approach
supports attribute value propagation and aggregation
in the supply chains. The input and output costs of
processes can be allocated into products, which
enables tracing and analyzing these costs precisely.
The model can be applied to single products as well
as larger patches. Unlike existing methods the
traceability graph enables precisely calculated input
costs (e.g. recourses) and output costs (e.g.
emissions and waste) of products and processes. So
far these have been based on average values from a
large set of processes. Through the presented object
transformation it is possible to model and
manipulate data allocation and aggregation in the
composition and division of objects in processes.

REFERENCES

van der Aalst, W.M.P., 1998. The application of Petri nets
to workflow management. The Journal of Circuits,
Systems and Computers, 8, 1, 21-66.

van der Aalst, W.M.P., Ter Hofstede, A.H.M., 2005.
YAWL: Yet another workflow language. Information
Systems, 30, 4, 245-275.

van der Aalst, W.M.P., van Hee, K., 2002. Workflow
Management, Models, Methods, and Systems, The
MIT Press, Cambridge, MA.

Akram, A., Kewley, J., Allan, R., 2006. A Data Centric
approach for Workflows. In Proceedings of EDOC
Workshops, 10.

Attie, P., Singh, M., Sheth, A., Rusinkiewicz, M., 1993.
Specifying and enforcing intertask dependencies. In
Proceedings of 19th International Conference on Very
Large Data Bases (VLDB’93) Morgan Kaufmann
Publishers, 134-145.

Björk, A., Erlandsson, M., Häkli, J., Jaakkola, K., Nilsson,
Å., Nummila, K., Puntanen, V., Sirkka, A. 2011.
Monitoring environmental performance of the forestry
supply chain using RFID, Computers in Industry, 62,
8-9, 830–841.

Bonner, A.J., 1999. Workflow, transactions and datalog.
In Proceedings of the Eighteenth ACM Symposium on
Principles of Database System (PODS’99), ACM
Press, 294-305.

Booch, G., Rumbaugh, J and Jacobson I., 1999. The
Unified Modeling Language User Guide, Addison-
Wesley, Reading, MA.

Podeswa, H., 2009. UML for the IT Business Analyst: A
Practical Guide to Requirements Gathering Using the
Unified Modeling Language, Course Technology,
Boston, MA, USA.

Bouillon, E., Mäder, P., Philippow. I., 2013. A survey on
usage scenarios for requirements traceability in
practice. In Proceeding of 20th International Working
Conference on Requirements Engineering:
Foundation for Software Quality, LNCS 7830, 158-
173.

Breaux, T.D., Gordon, D.G., 2013. Regulatory
requirements traceability and analysis using semi-
formal specifications. In Proceeding of 20th
International Working Conference on Requirements
Engineering: Foundation for Software Quality, LNCS
7830, 141-157

Campos, J.G., Hardwick, M., 2006. A traceability
information model for CNC manufacturing.
Computer-Aided Design, 38, 540-551.

Caswell, N.S., Nigam, A., 2003. Business artifacts: An
approach to operational specification. IBM Systems
Journal, 42, 3, , 428–445.

Cheng, M.J., Simmons, J.E.L., 1994. Traceability in
manufacturing systems. International Journal of
Operations & Production Management, 14, 10, 4-16.

Curcin, V., Ghanem, M., 2008. Scientific workflow
systems - can one size fit all? In Proceedings
Biomedical Engineering Conference (CIBEC 2008), 1-
9.

Deutch, A., Hull, R., Patrizi, F., Vianu, V., 2009.
Automatic verification of data-centric business
processes. In Proceedings of the 12th International
Conference on Database Theory, 252-267.

Folinas, D., Manikas, I., Manos, B., 2006. Traceability
data management for food chains. British Food
Journal, 108, 8, 622-633.

Gotel, O.C.Z., Finkelstein, A.C.W., 1994. An analysis of
the requirements traceability problem. In: IEEE
Proceedings of the First International Conference on
Requirements Engineering, 94–101.

Jansen-Vullers, M.H., van Dorp, C.A., Beulens, A.J.M.,
2003. Managing traceability information in
manufacture. International Journal of Information
Management, 23, 395-413.

Jansen-Vullers, M.H., Wortmann, J.C., Beulens, A.J.M.,
2004. Application of labels to trace material flows in
multi-echelon supply chains. Production Planning &
Control: The Management of Operations, 15, 3, 303-
312.

Junkkari, M., 2005. PSE: An object-oriented
representation for modeling and managing part-of
relationships. Journal of Intelligent Information
Systems, 25, 2, 131-157.

Junkkari, M., Sirkka, A., 2011. Using RFID for tracing
cumulated resources and emissions in supply chain,
International J. of Ad Hoc and Ubiquitous Computing,
8, 4, 220-229.

Motschnig-Pitrik, R., Kaasböll, J., 1999. Part-whole
relationship categories and their application in object-
oriented analysis. IEEE Transactions on Knowledge
and Data Engineering, 11, 5, 779-797.

Puettmann, M., Wilson, J., 2005. Gate-to-gate Life-Cycle
Inventory of Glued Laminated Timbers Production.
Wood Fiber Sci., 37, 99-113.

Data-Centric�Workflow�Approach�to�Lifecycle�Data�Management

123

Rempel, P., Mäder, P., Kuschke, T., Philippow, I., 2013.
Requirements traceability across organizational
boundaries - a survey and taxonomy. In Proceeding of
20th International Working Conference on
Requirements Engineering: Foundation for Software
Quality, LNCS 7830, 125-140.

Sirkka, A., Junkkari, M., 2012. Multidimensional Analysis
of Supply Chain Environmental Performance, Chapter
10 in Sustainable ICTs and Management Systems for
Green Computing, 231-250.

Sommerwille, I., 2007. Software Engineering, 8th edition,
Addison-Wesley, Harlow, England, 2007.

DATA�2014�-�3rd�International�Conference�on�Data�Management�Technologies�and�Applications

124

