
Transevol: A Tool to Evolve Legacy Model Transformations
by Example

Joseba A. Agirre, Goiuria Sagardui and Leire Etxeberria
Department of Computing, Mondragon University, Loramendi, Mondragon, Spain

Keywords: Model Driven Development, Model Transformation Development, Model Transformation by Example,
Model Transformation Execution Trace, Model Differences.

Abstract: The use of Model Driven Development (MDD) approach is increasing in industry. MDD approach raises
the level of abstraction using models as main artefacts of software engineering processes. The development
of model transformations is a critical step in MDD. Tasks for defining, specifying and maintaining model
transformation rules can be complex in MDD. Model Transformation By Example (MTBE) approaches
have been proposed to ease the development process of transformation rules. MTBE uses pair of
input/output models to define the model transformation. Starting from pairs of example models the
transformation rules are derived semi-automatically. The aim of our approach is to derive the adaptation
operations that must be implemented in a legacy model transformation to fulfil a new transformation
requirement. An MTBE approach and a tool to develop and evolve ATL transformation rules have been
developed. Our approach derives the transformations operations automatically using execution traceability
data and models differences. The developed MTBE approach can be applied to evolve legacy model
transformations. A real case study is introduced to demonstrate the usefulness of the tool.

1 INTRODUCTION

Model transformations are fundamental in Model
Driven Development (MDD). A model
transformation takes input models conforming to the
source metamodel and produces output models
conforming to the target meta-model. To express
meta-models and models several tool exist, for
example the popular Eclipse Modeling Framework
(EMF). On MDD, a model transformation is
specified through a set of transformation rules,
usually using transformation languages such as Atlas
Transformation Language (ATL) (Jouault et al.,
2008), QVT (OMG, 2011) or EPSILON (Kolovos et
al., 2008). There are two kinds of model
transformations: endogenous and exogenous (Mens,
and Van Gorp, 2006). Endogenous transformations
are transformations between models expressed with
the same meta-model. Exogenous transformations
are transformations between models expressed using
different meta-models. Tasks for defining,
specifying and maintaining transformation rules are
usually complex and critical in MDD.

In order to facilitate the development of
transformations rules reuse mechanisms (Wimmer et

al., 2012), reusable transformation design patterns
(Iacob et al., 2008) and refactoring operations
(Wimmer et al., 2012) have been described. Model
Transformation By Example (MTBE) (Varró, 2006)
approaches have been proposed to ease the
development process of transformation rules. By-
example approaches define transformations using
examples models. In MTBE starting from pairs of
example input/output models the transformation
rules are derived. Different MTBE approaches exists
(Kappel et al., 2012). MTBE approaches for model
transformation are classified in two types (I)
demonstration based and (II) correspondences based.
Model transformation by demonstration (MTBD)
(Sun et al., 2009) specifies the desired
transformation using modifications performed on
example models. MTBE based on correspondences,
uses pairs of input/output models and a mapping
data between them to derive the transformation
rules. MTBE approaches allow to specify the model
transformation using models, which is very intuitive
(Varró, 2006). Transformation rules are generated
semi-automatically so the model transformation
development process is improved (Sun et al., 2009).

234 Agirre J., Sagardui G. and Etxeberria L..
Transevol - A Tool to Evolve Legacy Model Transformations by Example.
DOI: 10.5220/0004999702340245
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 234-245
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Examples models can also be used to test the
implemeted transformations (Kappel et al., 2012).

Evolving legacy model transformations is a
complex task. The aim of the approach is to reduce
maintenance efforts when modifications are required
in a model transformation. Our approach is focused
on generating semi-automatically transformation
rules from pairs of example input/output models and
transformation rules execution traces (see figure 1).
The main characteristic of the approach is that it can
be used to evolve legacy model transformations.
Models differences, obtained after modifying a
source model and a target model, are the core of the
approach. Concretely the expected output model and
the present produced output model, when
transformation is executed, are compared. And
adaptations of the transformation implementation are
derived.

In this paper, we present a JAVA & EMF tool
(TransEvol) for semi-automatic derivation of ATL
model to model transformations to fulfill a new
transformation requirement. This paper provides the
following contributions to the study of MTBE (I)
MTBE approach based on model differences for
exogenous and endogenous model transformations,
(II) a MTBE approach applicable to ATL legacy
model transformations and (III) Validation of the
usefulness of the approach in a real legacy model
transformation using a tool that we have developed.

Figure 1: Approach for automatic model transformation
analysis to derive adaptation operations.

In the following sections we detail the solution
which guides the implementation of model
transformations. First, in section 2, the legacy model
transformation example that motivated the need for
automating the evolution of trasformation rules is
presented. Section 3 describes the MTBE approach
used for the model transformation development. The
fourth resumes the results of applying the approach
on the motivating example. Then in section 5 a brief

description of the related work is presented. Finally
in section 6 the conclusions and future work are
resumed.

2 LEGACY MODEL
TRANSFORMATION
EXAMPLE

In (Agirre et al., 2012) a MDD code generation
system is presented. The MDD system generates
ANSI-C code from component-based SW
architectures, previously designed in UML. The
MDD system generates the C code in two steps. As
in Model Driven Architecture (MDA) (Mellor,
2004) platform independent models (PIM) are
transformed into platform specific models (PSM),
and finally the PSM is transformed in code. In our
case study, UML designs are transformed to
intermediate models representing ANSI-C code
through a model to model (M2M) transformation.
SIMPLEC (Agirre et al., 2010) meta-model is used
to represent a subset of ANSI-C. The exogenous
M2M transformation is implemented using ATL
transformation language. Once the SIMPLEC
models are obtained, a model to text (M2T)
transformation is applied to SIMPLEC models to
generate ANSI-C code. XPAND2 (Open
Architecture Ware, 2010) based templates are used
to generate the output source code. Figure 2 resumes
the example MDD code generation system.

The M2M transformation is composed by 8 ATL
modules with 73 transformation rules and 44 helper
functions. The M2T transformation has 31 templates
to generate the ANSI-C code from SIMPLE-C
models. Originally, the MDD system of the case
study did not offer concurrency characteristics at the
design model and at the generated code. At one
point, to add concurrency capabilities was required.
This kind of situation is defined as abstraction
evolution (Van Deursen et al., 2007). In abstraction
evolution new domain concepts must be added to the
MDD system, so several artefacts of the MDD
system are affected. In this case, the source
metamodel (UML) does not support the abstractions
required to offer concurrency, so it is necessary to
extend the metamodel or to add a new metamodel.

The UML MARTE (Modeling and Analysis of
Real-Time and Embedded Systems) (OMG, 2009)
profile was selected to add concurrency concepts in
the design models. MARTE profile is an UML
extension that provides support for specification,
design, and verification of real time and embedded

Transevol�-�A�Tool�to�Evolve�Legacy�Model�Transformations�by�Example

235

systems in UML. Due to the division of the
generation in two stages the M2T transformation and
the SIMPLEC metamodel did not require any
change. Obviously, the source metamodel extension
implies a co-evolution of the M2M transformation.
The only documentation available about the M2M
transformation was a few input models, so an
exhaustive navigation was required to adapt
manually the complex M2M transformation.

Figure 2: UML to C MDD code generation system.

Our approach is based on defining the desired
transformation by editing a previous input model
and demonstrating the changes in transformations
that lead to a target model. To relate the differences
to a legacy model transformation an execution trace
data is required. Combining the example models
data with the transformation execution trace data the
adaptation operations that must be implemented in
the legacy model transformations are derived
automatically (see figure 1). This way the
development time is reduced and the probability to
incur in errors is reduced. A JAVA & EMF tool has
been developed to deduce automatically the
adaptation operations on ATL transformation rules.
The tool implements an algorithm to derive
adaptation operations using model differences and
execution trace data. A metamodel to express
adaptation operations on transformation rules have
been defined.

3 OUTPUT MODELS
DIFFERENCES DRIVEN
MODEL TRANSFORMATION
ANALYSIS

The aim of the approach is to derive the adaptation
operations that must be implemented in a legacy
model transformation to fulfil a new requirement.
Starting from pairs of example input/output models
the tool deduces a number of adaptations in the

transformation. The transformation analysis process
consists of the following phases (see figure 1):

1. Adapt manually a previous input model to
add the new requirement and obtain the
differential model between both models
(For example, the addition of a UML
MARTE task model to express the
concurrency).

2. Adapt manually a previous output model to
add the requirement and obtain the
differential model between the both
models (For example, adding SIMPLEC
elements that represents the implementation
of the designed task model).

3. Obtain the traceability between the
previous design model, the generated
output model and the transformation rules.

4. Deduce the adaptations to be made in the
transformation rules to fulfil the new
transformation requirement using
TransEvol.

5. Execute a Higher Order Transformation
(HOT) to semi-automatically adapt the
transformation rules.

6. Manually finish the transformation rules
implementation.

7. Validate the transformation implementation
using the manually generated input and
output model.

Figure 3, 4 and 5 show an example of the

artefacts that take part in the analysis process. Some
details of the case study have been omitted in the
interest of improving the understability. First, the
input model is modified manually to add a task
model with three periodic tasks to the example
design (see figure 3). To specify the model
transformation the ouput model must be modified to
integrate the SIMPLEC elements that correspond to
the designed task model. Three new methods are
added to the ouput model (see figure 4). Using this
information, the approach detects an one-to-one
mapping and a new matched rule must be generated.
To bind the new output elements with its container
element a binding statement also must be created in
the rule that generates the container. Figure 5 lists
the resulting transformation rules.

The transformation rules analysis tool,
TransEvol, relates EMFDiff (Toulmé, 2006)
differences types of the output models to adaptation
operations to apply on the model transformation.
The tool implements an algorithm that derive
adaptation operations from the difference model

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

236

between a model generated by the M2M
transformation (GOm, Generated output model) and
an expected output model (EOm)).

Figure 3: The task model aggregated to the example
design model.

Figure 4: The output model differences due to the task
model.

Figure 5: The required adaptation operations for the model
transformation to integrate the task model concepts.

This difference model is called Output models
differential (∆Om = EOm – GOm) and is generated
using EMFCompare (Brun and Pierantonio, 2008)
and conforms to EMFDiff metamodel. The EMFDiff
metamodel types used to analyze the model
transformation are: addition of an element
(ModelElementChangeLeft), removal of an element
(ModelElementChangeRight), change of an element
container (MoveModelElement), addition of an
attribute (AttributeChangeLeftTarget), addition of a
reference (ReferenceChangeLeftTarget),
modification of a reference (UpdateReference) and
modification of an attribute (UpdateAttribute). The
EMFDiff differences offer basically the data of the
new element, the deleted or updated element, the
element affected by the change and the container of
the new element.

3.1 Specifying Adaptation Operation
for the Transformation Rules

TransEvol tool uses a metamodel called
MMRuleAdaptation (figure 3) to express the
required adaptation operations for the transformation
rules. The transformation rules are subject to the
following refinement modifications: addRule,
splitRule, deleteRule, deleteOutputPatternElement,
deleteBinding, addInputPatternElement
addOutputPatternElement, addBinding,
moveOutputPatternElement, moveBinding,
updateBinding, UpdateFilter and UpdateSource.
After the analysis, the tool generates a model
expressing the required adaptation. Any
modification operation is defined as an
AdaptationTarget. Each adaptation target has a set of
adaptation operations. Each adaptation operation
requires different information to specify the
modification, see table 1. The metamodel uses ATL
metamodel elements to express the data related to
each modification operation. Table 1 collects the
data required to express each adaptation operation.

3.2 Relationship between Emfdiff
Difference Types and Adaptation
Operations

The tool relates EMFDiff differences types of the
output models with adaptation operations. Table 2
resumes the relation between EMFDiff types and
adaptation operations. Not always the same
difference type instance is related to the same
adaptation operation.

Transevol�-�A�Tool�to�Evolve�Legacy�Model�Transformations�by�Example

237

Figure 6: MMRuleAdaptation metamodel.

Table 1: MMAdapatationRule metamodel’s adaptation
operations.

Adaptation
operation

Required Data

Add Rule
newRule: ATL!Rule
relatedBinding: MMRuleAdaptation!AddBinding

Add MatchedRule
(extends addRule)

newRule: ATL!Rule
relatedBinding: MMRuleAdaptation!AddBinding

Add LazyRule
(extends addRule)

newRule: ATL!Rule
relatedBinding : MMRuleAdaptation!AddBinding

Split Rule
affectedRule: ATL!Rule
newRule: MMRuleAdaptation!AddRule

Add Binding
(extends
BindingOperation)

affectedRule: ATL!Rule
newBinding : ATL!Binding

Remove Binding
(extends
BindingOperation)

affectedRule: ATL!Rule
affectedBinding: ATL!Binding

Update Binding
(extends
BindingOperation)

affectedRule: ATL!Rule
affectedBinding: ATL!Binding
newValue:OCL!OclExpression

Move Binding
(extends
BindingOperation)

affectedRule: ATL!Rule
toRule: ATL!Rule
binding: ATL!Binding

Add filter to input
pattern

newFilter: OCL!OclExpression
affectedRule: ATL!Rule

Add input pattern
element

affectedRule: ATL!Rule
newInput:ATL!InputPatternElement

Add output
pattern elemen

affectedRule: ATL!Rule
outputPattern: ATL!OutputPatternElement

Delete out pattern
element

affectedRule: ATL!Rule
outputPattern: ATL!OutputPatternElement

3.3 Model Transformation Analysis
Algorithm

Using only the output models differences the
adaptations operations cannot be deduced correctly,
(for example the affected rule in a binding could not
be obtained). More information is required to deduce
the operations. The execution traceability data (ETr)
is fundamental for the automatic deduction of the
transformation rules modifications. ATL2Trace
(Joault, 2005) Higher-Order Transformation (HOT)
is applied to the transformation under development

to obtain the execution trace. Using the traceability
information the algorithm can deduce not only the
new transformation rules, also the adaptation
operations to apply on the legacy transformation
rules. To derive the modification operations also the
input models differential (∆Im) must be used.
Additionally input and output metamodel class
coverage (Fleurey et al., 2009) is required. The
metamodel class coverage represents each meta-
class is instantiated at least once. The algorithm uses
the differential of the input metamodel class
coverage (∆Imc) due to ∆Im. And also uses the
output metamodel class coverage differential
(∆Omc) due to ∆Om. Combining the ∆Om, ∆Im,
ETr, ∆Imc and ∆Omc the algorithm obtains the
modifications that must be done to adapt the
transformation rules for the new transformation
requirement.

To specify a model transformation example
∆Om, ∆Im, ETr, ∆Imc and ∆Omc models are
required. Each difference element is related to an
adaptation operation depending on the difference
type. The analysis algorithm fits correctly to
scenarios that have ∆Imc= 0 or ∆Imc=1 and
∆Omc>0. When ∆Imc is higher than one we
recommend to divide the examples in a set of
∆Imc=1 examples.

The algorithm first takes a difference element of
the ∆Om and decides which kind of difference is:

1. Addition of output model elements
2. Removal of an output model element
3. Change of an element container
4. Addition and modification of attributes
5. Addition and modification of references

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

238

Table 2: Relationship between EMFDiff metamodel types
and adaptation operations for model transformations.

EMFDiff
difference type

EMFDiff type
description

Adaptation
operations

ModelElement
ChangeLeft

Addition of an
element

Add matched rule
and add binding
Add lazy rule and
add binding

ModelElement
ChangeRight

Removal of an
element

Add filter
Remove rule

MoveModelEleme
nt

Change of
container

Split rule and modify
binding
Move binding

ReferenceChange
LeftTarget

Addition of a
reference

Add binding

UpdateReference
Update of a
reference value

Update binding
Add input pattern

AttributeChange
LeftTarget

Addition of an
attribute value

AddBinding

UpdateAttribute
Modification
of an attribute
value

Add binding
Update binding
Add input pattern

Once the type of the difference is decided, the
algorithm must deduce the modification that must be
applied to the model transformation. Depending on
the scenario of the model transformation the
adaptation operation for an output EMFDiff
difference type may be slightly different. For
example when some elements are added to the
output model (∆Om>0) a matched rule, a lazy rule
or an output pattern element must be added, and also
a binding must be created to associate the new
element with a previously created model element.
The addition of an output model element can be due
to a one-to-one mapping, one-to-many mapping
(different output elements types), one-to-many
mapping (same output elements type) or many-to-
many mapping. Depending on the scenario of the
element addition the adaptation operations vary. To
select the scenario the tool uses the ∆Om, ∆Im,
∆Imc and ∆Omc models data.

3.3.1 Addition of Elements: One-to-One
Mapping Scenario

The conditions to detect a one-to-one mapping
scenario are: (I) The number of
ModelElementChangeLeft in the ∆Im and the ∆Om
is equal to 1, (II) the metamodel class coverage
increment for the input and output metamodel must
be 1. This scenario requires a new matched rule. The
adaptation operation of adding a new matched rule is
compound by a new rule and a binding. The data
required to define the new matched rule is the Input
Pattern element, the output pattern element and the
rule name. The input pattern element is the type of
any of the added element of the ∆Im model. The

output pattern element is the type of one of the
added element of the ∆Om. The rule name is the
concatenation of both types. To create the binding
that relates the new target element to its container
the rule that created the container element must be
searched. To search the rule that creates the
container the execution traceability data is used.
Once the affected rule is founded the binding
statement is established.

3.3.2 Addition of Elements: One-to-Many
Mapping Scenario

The second kind of scenario is related to one-to-
many mappings. This kind of scenarios requires the
creation of a new output pattern element or a new
lazy rule. If different types of target elements are
created new output pattern elements are added to a
rule. If instances of the same type are created for an
input element type lazy rules are required. The
transformation examples can be specified
differently, table 3 resumes one-to-many scenarios
that the algorithm detects.

3.3.3 Addition of Elements: Many-to-Many
Mapping Scenario

Many-to-many scenario is defined when a set of
elements are added and both ∆Imc and ∆Omc are
higher than one. Two strategies can apply to this
scenario. The first strategy is to specify the
transformation example with a set of one-to-many
mapping examples, where ∆Imc is equal to 1 in each
step. When ∆Imc is greater than 1 the algorithm
must align input elements with output elements
using the similarity of its properties values. In those
cases false positives adaptation operations can be
deduced. For those cases a warning message is used.
That way the transformation rules developers can
analyse the adaptation operation model proposal and
change it manually.

3.3.4 Removal of an Output Model Element

Two removal scenarios are detected by the
algorithm. A matched rule is removed when ∆Omc =
-1. The other scenario occurs when ∆Omc = 0 and
some ModelElementChangeRight appears (see table
4). This scenario requires a filtering operation in the
input pattern element. In both cases the affected rule
is founded searching in the execution trace the rule
that generates the removed elements.

Transevol�-�A�Tool�to�Evolve�Legacy�Model�Transformations�by�Example

239

Table 3: One-to-many mapping scenarios.

Table 4: Removing output elements.

 Previous transformation Expected transformation

Legend:

 Arrow: Transformation
 Geometric shapes (left side of the arrow): Elements of

the input model
 Geometric shapes (right side of the arrow): Elements of

the Output model

3.3.5 Change of an Element Container

Sometimes without any modification in the input
models (∆Imc = 1 and ∆Im=0) the model
transformation evolves and requires to change the
instance of the container of an output element or
even the container type. Both scenarios are detected
by the algorithm. The first scenario involves a split

rule operation. To split the affected rule a copy of
the rule is done but filtering is added to the input
pattern and a binding must be modified. When the
type of the container changes a binding must be
deleted in the rule that created the previous container
and a binding must be added in the rule that created
the desired container. To search those affected rules
the execution trace of the previously executed
transformation is used.

3.3.6 Addition and Modification of
Attributes or References

The operations related to these scenarios are
modification of a binding or an addition of a
binding. In these cases, the execution trace is used to
search the affected rule. The information of the
output elements that have the difference
(Updateattribute, UpdateReference,
ReferenceChangeLeftElement and
AttributeChangeLeftElement) is used to search the

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

240

affected rule in the traceability data and to define the
binding statement.

3.3.7 the Algorithm: Summary

Using the differences models and the traceability
information the analysis of the transformation can be
done. The difference model is based on model
elements and not on metamodel elements, so several
differences may be referred to the same change to be
made in the transformation rules. We therefore must
filter the adaptation operations to obtain the final
adaptation operation model. Figure 4 represents a
simplification of the algorithm.

4 IMPLEMENTING THE
ADAPTATION OPERATIONS

Once the adaptation operations model is generated
the last step is to implement and validate the
adaptation operations applied to the transformation
rules. A HOT has been implemented to perform
automatically the adaptation operations on the ATL
module. The HOT takes as input the ATL module
and the adaptation model. Despite the tool can detect
the listed operations actually the HOT only
implements addRule, addBinding , splitRrule and
addFilter. The operations that are not executed by
the HOT must be implemented manually. Once the
transformation rules are adapted the new input
model and the desired output models are used to
validate the implementation of the transformation
rule.

Figure 6: Algorithm for adaptation operations deduction

5 VALIDATION OF THE
APPROACH

During the development of the tool several small
model examples were used to validate the detection
and generation of the different adaptation operations.
Those examples are toy examples so a legacy model
transformation was required to test the approach in a
real context. For a first validation of the tool in a real
context the case study presented in section 2, a
model transformation from UML to SIMPLEC, was
chosen. Following the result of applying the tool to
the case study will be shown. Then the threats to the
validity are listed.

5.1 Applying the Tool to the Case
Study

In this subsection, results from applying the tool to
the M2M transformation that generates SIMPLEC
models, representing C source code, from UML SW
designs, is presented. The M2M transformation is
implemented in ATL. The M2M transformation is
performed incrementally by superimposition
mechanism of ATL (Wagelaar et al., 2009). The new
requirement was to add concurrency capabilities to
the generated code. As presented before, to achieve
this objective, UML MARTE profile was selected
and the complex M2M transformation (8 files, 40
matched rules, 30 lazy rules and 44 helper functions)
required some changes.

To apply the tool a previously used UML design
was selected: a UML design of an automatic door
controller without concurrency. The M2M
transformation was executed to generate the output
model. Also the transformation execution trace
model was generated. To start with the analysis,
using UML MARTE a task model was added to the
automatic door controller design. The API selected
to express concurrency was a bare-metal API similar
to FreeRTOS API. On the next step, the expected
target output model with concurrency was created
changing manually the generated output model.
Finally, the difference models between the original
and the incremented models were generated using
EMFCompare Tool. A total of 13 differences were
detected between the input models and 12
differences were detected on the output models.

Instead of specifying all the differences in one
step the transformation example was divided in two
steps. (I) the platform provider, the concurrency
API, was specified as MARTE describes, (II) the

Transevol�-�A�Tool�to�Evolve�Legacy�Model�Transformations�by�Example

241

task model was designed and each task was related
to its behaviour.

In the firts step, the concurrency API model (two
functions: addTask and schedule) was defined using
MARTE stereotypes in the design model and a
header with the API definition was added to the
output model. The scenario was: ∆Imc=3, ∆Omc=0,
∆Im=4 and ∆Om=3. Three one-to-one mappings
were detected, so three matched rules were deduced
in this step: (I) the generation of the header of the
API model (II) the addTask function and (III) the
schedule function.

The second step requires the creation of the task
model. And also the assignment of the behaviour to
each task. In this case the scenario was: ∆Imc=3,
∆Omc=0, ∆Im=10 and ∆Om=10. Seven of the ∆Om
differences were ReferenceChangeLeftTarget type.
The remaining three differences were addition of
output elements. The adaptation operations deduced
were four addBinding operations, that affected
legacy transformation rules, and two
addMatchedRule due to two one-to-many mappings
detected. The models and the result corresponding to
the task model can be seen in figure 3, 4, and 5.

When the tool derives add rule operations also a
binding statement to attach the new elements with
the container is derived. In those cases, the binding
statement expression is implemented by a helper
function. The tool generates the helper header
definition and the call statement. The algorithm of
the helper functions is completed manually.

The final model transformation implementation

was validated applying the transformation to the new
design model and comparing the new generated
model with the expected model. All the deduced
adaptation operations were correct. To apply the tool
it is enough knowing the changes that are necessary
in the M2M transformation input and output models.
Previous knowledge of the model transformation
implementation is not required, so the time required
to adapt the M2M transformation is reduced.

5.2 Threats to Validty

The proposed case study is a real system and thus do
not consider a certain number of factors that could
affect the validation of the method:

 Correctness: Although initial case study
show promising results, as all the
transformation rules have been correctly
identified, algorithm should be proved in
more complex and different examples to
improve the coverage of the validation.

 Scalability: The selected case study has
legacy transformations (8 files, 40 matches
rules, 30 lazy rules and 44 helper functions)
and we deployed 13 differences in input
models and 12 differences in output
models. Although the case study is a real
system, validation with bigger case studies
is required.

 Negative constructions: the algorithm
supports the remove matched rule operation
and the add filter operation. In this real case
study there are not negative constructions.
However, the negative constructions have
been proved with toy examples during the
development of the tool.

 Many-to-many mapping: In the case study
there are not many to many mappings. At
present the tool can detect many to many
mappings. However some ambiguities
occurs generating the adaptation operations
using the tool. To deal with many to many
mappings the transformation must be
specified with a set of one to many
mapping examples.

6 RELATED WORK

The presented approach is highly related to MTBE.
There are previous MTBE approaches which
already deal with automatic generation of model
transformations starting from pairs of example
models. Most of the approaches are based on formal
mapping to derive the transformations (Bhalog and
Varró, 2009). (Strommer and Wimmer, 2008)
approach uses correspondence model between input
and output model to generate ATL transformation
rules. Instead offering a mapping model (García-
Magariño et al., 2009) annotates with extra
information the source metamodel and the target
metamodel to derive the required ATL
transformation rules. Our approach also creates ATL
transformation rules but a mapping between the
desired input and output model or extra information
besides the models differentials is not required.
In (Faunes et al., 2013) a genetic programming
based approach to derive model transformation rules
(implemented with JESS) from input/output models
is presented. This approach does not require fine-
grained transformation traces. But due to the nature
of the search algorithm the approach cannot be used
to evolve a legacy model to model transformation.
Something similar occurs with (Kessentini et al.,
2012) where a heuristic algorithm is used to generate

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

242

a new transformed model by similarity with other
transformation example models. This approach is a
self-tunning transformation so it cannot be used with
legacy model transformations.

MTBD are based on defining the desired
transformation by editing a source model and
demonstrating the changes that evolve to a target
model. Most of the MTBD are used on endogenous
model transformation (Sun and Gray, 2013) not as
MTBE based on correspondences, which can be
used with exogenous transformations. (Langer et al.,
2010) presents a MTBD approach that can be
applied to exogenous model transformation. This
approach uses a state-based comparison to determine
the executed modification operations after modelling
the desired transformation. Using an incremental
approach, in each step using a small transformation
rule demonstration, internal templates representing
the transformation rules are created. Once all the
steps are done the templates are transformed to ATL
transformation rules. This approach offers an
interactive step where the developer can annotate the
templates prior to generate the ATL rules to add
information about the matching strategies. Because
the approach uses templates created by
transformation rules demonstrations it is not easy to
apply this approach to legacy model transformations.
Negative application conditions as well as many-to-
one attribute correspondences are not considered.
Our approach derives the transformations operations
automatically using execution traceability data and
models differences. This way the approach can be
used to evolve legacy model transformations. (Levy
and Muniz, 2013) proposes a similar approach but
the generation of the transformation must be done
manually.

Most example-based approaches are
constructive, that is, the new information always
imply adding new elements to the artefact (a
transformation in this case). Deleting is more
complex. The presented approach can deal with
negative constructions.

Metamodel and transformation co-evolution
solution also exists. In (Garcia et al., 2012) input
metamodel differences are used to derive the
evolution on the transformation rules. In (Iovino et
al., 2012) weaving between metamodels and
transformation rules is used to analyze the impact on
the transfortion rules due to input metamodel
evolution. These works only derives the
modification on the transformation rules when
regular metamodel evolution, as attribute
modification or metaclass rename, occurs. When

new elements on the input metamodel appear, the
approach cannot derive the transformation rules.

Most of the MTBE cannot be applied to legacy
model transformations. The main contribution of
our MTBE approach is that it can be applied to
evolve ATL legacy model transformations. Our
approach can be applied to both exogenous and
endougenous model transformations. We also have
validated our approach in a real case study.

7 CONCLUSIONS AND FUTURE
WORK

An MTBE approach and a tool to evolve ATL
transformation have been presented. A metamodel
for expressing adaptation operations for
transformation rules and the algorithm to derive the
adaptation operations for M2M transformations have
been described. The tool has been used successfully
for adapting exogenous legacy model
transformations to new transformation requirements.
The tool generates semi-automatically adaptation
operations for ATL transformation rules. The
helpers used in the binding statements are only
defined and called. The implementation of the helper
functions must be done manually. The algorithm
used to derive adaptation operation and the
metamodel used to express the operations can be
used to express operations for transformation
languages such as QVT or EPSILON. The tool may
require some changes to work with other
transformation languages execution traces and also a
new HOT, must be implemented for each
transformation language.

The algorithm can detect one-to-one, one-to-
many and many to many mappings. Negative
construction examples are also detected. Actually
the derivation of many to many and many to one
mappings requires manual intervention. The tool
uses output models differentials and execution trace
data. In (Matragkas et al., 2013) the same data is
used to locate the implementation errors in
transformation rules implemented with EPSILON.
The tool can be used with that orientation but must
be analyzed how.

Once the functionality of the tool has been tested
with small examples and a medium real legacy
system, more validation on scalabilty and
correcteness are required. Currently, we are working
on the definition of a methodology for the
specification of correct example models. In short-
term the tool is going to be used in a legacy model

Transevol�-�A�Tool�to�Evolve�Legacy�Model�Transformations�by�Example

243

transformation to aggregate some security
requirements to the output models as in (Sun et al.,
2013).

ACKNOWLEDGEMENTS

This work has been developed in the DA2SEC
project context funded by the Department of
Education, Universities and Research of the Basque
Government. The work has been developed by the
embedded system group supported by the
Department of Education, Universities and Research
of the Basque Government.

REFERENCES

Agirre J., Sagardui, G., Etxeberria, L., 2010. Plataforma
DSDM para la Generación de Software Basado en
Componentes en Entornos Empotrados. JISBD (pp. 7-
15).

Agirre, J., Sagardui, G., Etxeberria, L., 2012. A flexible
model driven software development process for
component based embedded control systems. III
Jornadas de Computación Empotradas JCE,
SARTECO.

Balogh, Z., Varró, D., 2009. Model transformation by
example using inductive logic programming. Software
and System Modeling 8(3): 347-364.

Brun, C., Pierantonio, A., 2008. Model differences in the
Eclipse modelling framework. EJIP.

Faunes, M., Sahraoui, H., Boukadoum, M., 2013. Genetic-
Programming Approach to Learn Model
Transformation Rules from Examples. In Theory and
Practice of Model Transformations (pp. 17-32).
Springer Berlin Heidelberg.

García, J., Diaz, O., Azanza, M., 2013. Model
transformation co-evolution: A semi-automatic
approach. In Software Language Engineering (pp.
144-163). Springer Berlin Heidelberg..

García-Magariño, I., Gómez-Sanz, J. J., Fuentes-
Fernández, R., 2009. Model transformation by-
example: an algorithm for generating many-to-many
transformation rules in several model transformation
languages. In Theory and Practice of Model
Transformations (pp. 52-66). Springer Berlin
Heidelberg

Iacob, M. E., Steen, M. W., Heerink, L., 2008. Reusable
model transformation patterns. In Enterprise
Distributed Object Computing Conference Workshops,
2008 12th (pp. 1-10). IEEE.

Iovino, L., Pierantonio, A., Malavolta, I., 2012. On the
Impact Significance of Metamodel Evolution in MDE.
Journal of Object Technology 11(3): 3: 1-33.

Joault, F., 2005. Loosely Coupled Traceability for ATL. In
Proceedings of the European Conference on Model

Driven Architecture workshop on traceability.
ECMDA.

Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I., 2008.
ATL: A model transformation tool. Sci. Comput.
Program. 72(1-2): 31-39.

Kappel, G., Langer, P., Retschitzegger, W., Schwinger,
W., & Wimmer, M., 2012. Model transformation by-
example: a survey of the first wave. In Conceptual
Modelling and Its Theoretical Foundations (pp. 197-
215). Springer Berlin Heidelberg.

Kessentini, M., Sahraoui, H., Boukadoum, M., Omar, O.
B., 2012. Search-based model transformation by
example. Software & Systems Modeling, 11(2), 209-
226

Kolovos, D. S., Paige, R. F., Polack, F. A., 2008. The
epsilon transformation language. In Theory and
practice of model transformations (pp. 46-60).
Springer Berlin Heidelberg.

Langer, P., Wimmer, M., Kappel, G., 2010. Model-to-
model transformations by demonstration. In Theory
and Practice of Model Transformations (pp. 153-167).
Springer Berlin Heidelberg.

Levy, F., Muniz, P., 2013. Applying MTBE Manually: a
Method and an Example. MDEBE@MoDELS.

Matragkas, N., Kolovos, D., Paige, R., Zolotas, A., 2013.
A Traceability-Driven Approach to Model
Transformation Testing. AMT@MoDELS.

Mellor, S. J., 2004. MDA distilled: principles of model-
driven architecture. Addison-Wesley Professional.

Mens, T., Van Gorp, P., 2006. A taxonomy of model
transformation. Electronic Notes in Theoretical
Computer Science, 152, 125-142.

Object Management Group (OMG), 2009. Modeling and
Analysis of Real-time and Embedded systems
(MARTE), Version 1.0, http://www.omg.org/
spec/MARTE/1.0/.

Object Management Group (OMG), 2011. Meta Object
Facility (MOF) 2.0 Query/View/Transformation
(QVT) Specification, version 1.1.

Open Architecture Ware (oAW), 2010. XPand language
reference.http://www.openarchitectureware.org/pub/d
ocumentation/4.0/r20_xPandReference.pdf.

Strommer, M., Wimmer, M., 2008. A framework for
model transformation by-example: Concepts and tool
support. In Objects, Components, Models and Patterns
(pp. 372-391). TOOLS.Springer Berlin Heidelberg.

Sun, Y., Gray, J., 2013. End-User support for debugging
demonstration-based model transformation execution.
In Modelling Foundations and Applications (pp. 86-
100). Springer Berlin Heidelberg.

Sun, Y., Gray, J., Delamare, R., Baudry, B., White, J.,
2013. Automating the maintenance of nonfunctional
system properties using demonstration-based model
transformation. Journal of Software: Evolution and
Process 25(12): 1335-1356.

Sun, Y., White, J., Gray, J., 2009. Model transformation
by demonstration. In Model Driven Engineering
Languages and Systems (pp. 712-726). Springer Berlin
Heidelberg.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

244

Toulmé, A., 2006. Presentation of EMF Compare Utility.
Eclipse Modeling Sympossium.

Van Deursen, A., Visser, E., Warmer, J., 2007. Model-
driven software evolution: A research agenda.
Proceedings of Int. Workshop on Model-Driven
Software Evolution (MoDSE), ECSMR'07.

Varró, D. (2006). Model transformation by example. In
Model Driven Engineering Languages and Systems
(pp. 410-424). Springer Berlin Heidelberg.

Wagelaar, D., Van Der Straeten, R., Deridder, D., 2009.
Module superimposition: a composition technique for
rule-based model transformation languages. Software
and Systems Modeling 9(3), 285-309.

Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W.,
Schönböck, J., Schwinger, W., 2012. Fact or Fiction–
Reuse in Rule-Based Model-to-Model Transformation
Languages. In Theory and Practice of Model
Transformations (pp. 280-295). Springer Berlin
Heidelberg.

Wimmer, M., Perez, S. M., Jouault, F., Cabot, J., 2012. A
Catalogue of Refactorings for Model-to-Model
Transformations. Journal of Object Technology,
11(2), 2-1.

Transevol�-�A�Tool�to�Evolve�Legacy�Model�Transformations�by�Example

245

