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Abstract: The use of Model Driven Development (MDD) approach is increasing in industry. MDD approach raises 
the level of abstraction using models as main artefacts of software engineering processes. The development 
of model transformations is a critical step in MDD. Tasks for defining, specifying and maintaining model 
transformation rules can be complex in MDD. Model Transformation By Example (MTBE) approaches 
have been proposed to ease the development process of transformation rules. MTBE uses pair of 
input/output models to define the model transformation. Starting from pairs of example models the 
transformation rules are derived semi-automatically. The aim of our approach is to derive the adaptation 
operations that must be implemented in a legacy model transformation to fulfil a new transformation 
requirement. An MTBE approach and a tool to develop and evolve ATL transformation rules have been 
developed. Our approach derives the transformations operations automatically using execution traceability 
data and models differences. The developed MTBE approach can be applied to evolve legacy model 
transformations. A real case study is introduced to demonstrate the usefulness of the tool.  

1 INTRODUCTION 

Model transformations are fundamental in Model 
Driven Development (MDD). A model 
transformation takes input models conforming to the 
source metamodel and produces output models 
conforming to the target meta-model. To express 
meta-models and models several tool exist, for 
example the popular Eclipse Modeling Framework 
(EMF). On MDD, a model transformation is 
specified through a set of transformation rules, 
usually using transformation languages such as Atlas 
Transformation Language (ATL) (Jouault et al., 
2008), QVT (OMG, 2011) or EPSILON (Kolovos et 
al., 2008). There are two kinds of model 
transformations: endogenous and exogenous (Mens, 
and Van Gorp, 2006). Endogenous transformations 
are transformations between models expressed with 
the same meta-model. Exogenous transformations 
are transformations between models expressed using 
different meta-models. Tasks for defining, 
specifying and maintaining transformation rules are 
usually complex and critical in MDD. 

In order to facilitate the development of 
transformations rules reuse mechanisms (Wimmer et 

al., 2012), reusable transformation design patterns 
(Iacob et al., 2008) and refactoring operations 
(Wimmer et al., 2012) have been described. Model 
Transformation By Example (MTBE) (Varró, 2006) 
approaches have been proposed to ease the 
development process of transformation rules. By-
example approaches define transformations using 
examples models. In MTBE starting from pairs of 
example input/output models the transformation 
rules are derived. Different MTBE approaches exists 
(Kappel et al., 2012). MTBE approaches for model 
transformation are classified in two types (I) 
demonstration based and (II) correspondences based. 
Model transformation by demonstration (MTBD) 
(Sun et al., 2009) specifies the desired 
transformation using modifications performed on 
example models. MTBE based on correspondences, 
uses pairs of input/output models and a mapping 
data between them to derive the transformation 
rules. MTBE approaches allow to  specify the model 
transformation using models, which is very intuitive 
(Varró, 2006). Transformation rules are generated 
semi-automatically so the model transformation 
development process is improved (Sun et al., 2009). 
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Examples models can also be used to test the  
implemeted  transformations (Kappel et al., 2012). 

Evolving legacy model transformations is a 
complex task. The aim of the approach is to reduce 
maintenance efforts when modifications are required 
in a model transformation. Our approach is focused 
on generating semi-automatically transformation 
rules from pairs of example input/output models and 
transformation rules execution traces (see figure 1). 
The main characteristic of the approach is that it can 
be used to evolve legacy model transformations. 
Models differences, obtained after modifying a 
source model and a  target  model, are the core of the 
approach. Concretely the expected output model and 
the present produced output model, when 
transformation is executed, are compared. And 
adaptations of the transformation implementation are 
derived.  

In this paper, we present a JAVA & EMF tool 
(TransEvol) for semi-automatic derivation of ATL 
model to model transformations to fulfill a new 
transformation requirement. This paper provides the 
following contributions to the study of MTBE (I) 
MTBE approach based on model differences for 
exogenous and endogenous model transformations, 
(II) a MTBE approach applicable to ATL legacy 
model transformations and (III) Validation of the 
usefulness of the approach in a real legacy model 
transformation using a tool that we have developed. 

 

 

Figure 1: Approach for automatic model transformation 
analysis to derive adaptation operations. 

In the following sections we detail the solution 
which guides the implementation of model 
transformations. First, in section 2, the legacy model 
transformation example that motivated the need for 
automating the evolution of trasformation rules is 
presented. Section 3 describes the MTBE approach 
used for the model transformation development. The 
fourth resumes the results of applying the approach 
on the motivating example. Then in section 5 a brief 

description of the related work is presented. Finally 
in section 6 the conclusions and future work are 
resumed. 

2 LEGACY MODEL 
TRANSFORMATION 
EXAMPLE 

In (Agirre et al., 2012) a MDD code generation 
system is presented. The MDD system generates 
ANSI-C code from component-based SW 
architectures, previously designed in UML. The 
MDD system generates the C code in two steps.  As 
in Model Driven Architecture (MDA) (Mellor, 
2004) platform independent models (PIM) are 
transformed into platform specific models (PSM), 
and finally the PSM is transformed in code. In our 
case study, UML designs are transformed to 
intermediate models representing ANSI-C code 
through a model to model (M2M) transformation. 
SIMPLEC (Agirre et al., 2010)  meta-model is used 
to represent a subset of ANSI-C. The exogenous 
M2M transformation is implemented using ATL 
transformation language. Once the SIMPLEC 
models are obtained, a model to text (M2T) 
transformation is applied to SIMPLEC models to 
generate ANSI-C code. XPAND2 (Open 
Architecture Ware, 2010) based templates are used 
to generate the output source code. Figure 2 resumes 
the example MDD code generation system. 

The M2M transformation is composed by 8 ATL 
modules with 73 transformation rules and 44 helper 
functions. The M2T transformation has 31 templates 
to generate the ANSI-C code from SIMPLE-C 
models. Originally, the MDD system of the case 
study did not offer concurrency characteristics at the 
design model and at the generated code. At one 
point, to add concurrency capabilities was required. 
This kind of situation is defined as abstraction 
evolution (Van Deursen et al., 2007). In abstraction 
evolution new domain concepts must be added to the 
MDD system, so several artefacts of the MDD 
system are affected. In this case, the source 
metamodel (UML) does not support the abstractions 
required to offer concurrency, so it is necessary to 
extend the metamodel or to add a new metamodel.  

The UML MARTE (Modeling and Analysis of 
Real-Time and Embedded Systems) (OMG, 2009) 
profile was selected to add concurrency concepts in 
the design models. MARTE profile is an UML 
extension that provides support for specification, 
design, and verification  of  real time and embedded 
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systems in UML. Due to the division of the 
generation in two stages the M2T transformation and 
the SIMPLEC metamodel did not require any 
change. Obviously, the source metamodel extension 
implies a co-evolution of the M2M transformation. 
The only documentation available about the M2M 
transformation was a few input models, so an 
exhaustive navigation was required to adapt 
manually the complex M2M transformation. 

 

 

Figure 2: UML to C  MDD code generation system. 

Our approach is based on defining the desired 
transformation by editing a previous input model 
and demonstrating the changes in transformations 
that lead to a target model. To relate the differences 
to a legacy model transformation an execution trace 
data is required. Combining the example models 
data with the transformation execution trace data the 
adaptation operations that must be implemented in 
the legacy model transformations are derived 
automatically (see figure 1). This way the 
development time is reduced and the probability to 
incur in errors is reduced. A JAVA & EMF tool has 
been developed to deduce automatically the 
adaptation operations on ATL transformation rules. 
The tool implements an algorithm to derive 
adaptation operations using model differences and 
execution trace data. A metamodel to express 
adaptation operations on transformation rules have 
been defined. 

3 OUTPUT MODELS 
DIFFERENCES DRIVEN 
MODEL TRANSFORMATION 
ANALYSIS 

The aim of the approach is to derive the adaptation 
operations that must be implemented in a legacy 
model transformation to fulfil a new requirement. 
Starting from pairs of example input/output models 
the tool deduces a number of adaptations in the 

transformation. The transformation analysis process 
consists of the following phases (see figure 1): 
 

1. Adapt manually a previous input model to 
add the new requirement and obtain the 
differential model between  both models 
(For example, the addition of a UML 
MARTE task model to express the 
concurrency).  

2. Adapt manually a previous output model to 
add the requirement and obtain the 
differential model  between the both 
models (For example, adding SIMPLEC 
elements that represents the implementation 
of  the designed task model). 

3. Obtain the traceability between the 
previous design model, the generated  
output model and the transformation rules. 

4. Deduce the adaptations to be made in the 
transformation rules to fulfil the new 
transformation requirement using 
TransEvol. 

5. Execute a Higher Order Transformation 
(HOT) to semi-automatically adapt the 
transformation rules. 

6. Manually finish the transformation rules 
implementation. 

7. Validate the transformation implementation 
using the manually generated input and 
output model. 

 
Figure 3, 4 and 5 show an example of the 

artefacts that take part in the analysis process.  Some 
details of the case study have been omitted in the 
interest of improving the understability. First, the 
input model is modified manually to add a task 
model with three periodic tasks to the example 
design (see figure 3). To specify the model 
transformation the ouput model must be modified to 
integrate the SIMPLEC elements that correspond to 
the designed task model. Three new methods are 
added to the ouput model (see figure 4). Using this 
information, the approach detects an one-to-one 
mapping and a new matched rule must be generated. 
To bind the new output elements with its container 
element a binding statement also must be created in 
the rule that generates the container. Figure 5 lists 
the resulting transformation rules. 

The transformation rules analysis tool, 
TransEvol, relates EMFDiff (Toulmé, 2006) 
differences types of the output models to adaptation 
operations to apply on the model transformation. 
The tool implements an algorithm that derive 
adaptation operations from the difference model  

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

236



 

between a model generated by the M2M 
transformation (GOm, Generated output model) and 
an expected output model (EOm)). 
 

 

Figure 3: The task model aggregated to the example 
design model. 

 

 

Figure 4: The output model differences due to the task 
model. 

 
Figure 5: The required adaptation operations for the model 
transformation to integrate the task model concepts. 

This difference model is called Output models 
differential (∆Om = EOm – GOm) and is generated 
using EMFCompare (Brun and Pierantonio, 2008) 
and conforms to EMFDiff metamodel. The EMFDiff 
metamodel types used to analyze the model 
transformation are: addition of an element 
(ModelElementChangeLeft), removal of an element 
(ModelElementChangeRight), change of an element 
container (MoveModelElement), addition of an 
attribute (AttributeChangeLeftTarget), addition of a 
reference (ReferenceChangeLeftTarget), 
modification of a reference (UpdateReference) and 
modification of an attribute (UpdateAttribute). The 
EMFDiff differences offer basically the data of the 
new element, the deleted or updated element, the 
element affected by the change and the container of 
the new element.  

3.1 Specifying Adaptation Operation 
for the Transformation Rules 

TransEvol tool uses a metamodel called 
MMRuleAdaptation (figure 3) to express the 
required adaptation operations for the transformation 
rules. The transformation rules are subject to the 
following refinement modifications: addRule, 
splitRule, deleteRule, deleteOutputPatternElement, 
deleteBinding, addInputPatternElement 
addOutputPatternElement, addBinding, 
moveOutputPatternElement, moveBinding, 
updateBinding, UpdateFilter and UpdateSource.  
After the analysis, the tool generates a model 
expressing the required adaptation. Any 
modification operation is defined as an 
AdaptationTarget. Each adaptation target has a set of 
adaptation operations. Each adaptation operation 
requires different information to specify the 
modification, see table 1. The metamodel uses ATL 
metamodel elements to express the data related to 
each modification operation. Table 1 collects the 
data required to express each adaptation operation. 

3.2 Relationship between Emfdiff 
Difference Types and Adaptation 
Operations 

The tool relates EMFDiff differences types of the 
output models with adaptation operations. Table 2 
resumes the relation between EMFDiff types and 
adaptation operations. Not always the same 
difference type instance is related to the same 
adaptation operation. 
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Figure 6: MMRuleAdaptation metamodel. 

Table 1: MMAdapatationRule metamodel’s adaptation 
operations. 

Adaptation 
operation 

Required Data 

Add Rule 
newRule: ATL!Rule 
relatedBinding: MMRuleAdaptation!AddBinding 

Add MatchedRule  
(extends addRule ) 

newRule: ATL!Rule 
relatedBinding: MMRuleAdaptation!AddBinding 

Add LazyRule 
(extends addRule ) 

newRule: ATL!Rule 
relatedBinding : MMRuleAdaptation!AddBinding 

Split Rule 
affectedRule: ATL!Rule 
newRule: MMRuleAdaptation!AddRule 

Add Binding  
(extends 
BindingOperation) 

affectedRule: ATL!Rule 
newBinding : ATL!Binding  

Remove Binding 
(extends 
BindingOperation) 

affectedRule: ATL!Rule 
affectedBinding: ATL!Binding 

Update Binding 
(extends 
BindingOperation) 

affectedRule: ATL!Rule 
affectedBinding: ATL!Binding 
newValue:OCL!OclExpression 

Move Binding 
(extends 
BindingOperation) 

affectedRule: ATL!Rule 
toRule: ATL!Rule 
binding: ATL!Binding 

Add filter to input 
pattern 

newFilter: OCL!OclExpression 
affectedRule: ATL!Rule 

Add input pattern 
element 

affectedRule: ATL!Rule 
newInput:ATL!InputPatternElement 

Add output  
pattern elemen 

affectedRule: ATL!Rule 
outputPattern: ATL!OutputPatternElement 

Delete out pattern 
element 

affectedRule: ATL!Rule 
outputPattern: ATL!OutputPatternElement 

3.3 Model Transformation Analysis 
Algorithm 

Using only the output models differences the 
adaptations operations cannot be deduced correctly, 
(for example the affected rule in a binding could not 
be obtained). More information is required to deduce 
the operations. The execution traceability data (ETr) 
is fundamental for the automatic deduction of the 
transformation rules modifications. ATL2Trace 
(Joault, 2005) Higher-Order Transformation (HOT) 
is applied to the transformation under development 

to obtain the execution trace. Using the traceability 
information the algorithm can deduce not only the 
new transformation rules, also the adaptation 
operations to apply on the legacy transformation 
rules. To derive the modification operations also the 
input models differential (∆Im) must be used. 
Additionally input and output metamodel class 
coverage (Fleurey et al., 2009) is required. The 
metamodel class coverage represents each meta-
class is instantiated at least once. The algorithm uses 
the differential of the input metamodel class 
coverage (∆Imc) due to ∆Im. And also uses the 
output metamodel class coverage differential 
(∆Omc) due to ∆Om. Combining the ∆Om, ∆Im, 
ETr, ∆Imc and ∆Omc the algorithm obtains the 
modifications that must be done to adapt the 
transformation rules for the new transformation 
requirement. 

To specify a model transformation example 
∆Om, ∆Im, ETr, ∆Imc and ∆Omc models are 
required. Each difference element is related to an 
adaptation operation depending on the difference 
type. The analysis algorithm fits correctly to 
scenarios that have ∆Imc= 0 or ∆Imc=1 and 
∆Omc>0. When ∆Imc is higher than one we 
recommend to divide the examples in a set of 
∆Imc=1 examples.  

The algorithm first takes a difference element of 
the ∆Om and decides which kind of difference is: 

 

1. Addition of output model elements 
2. Removal of an output model element 
3. Change of an element container 
4. Addition and modification of attributes 
5. Addition and modification of references 
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Table 2: Relationship between EMFDiff metamodel types 
and adaptation operations for model transformations. 

EMFDiff 
difference type 

EMFDiff type 
description 

Adaptation 
operations 

ModelElement 
ChangeLeft 

Addition of  an 
element 

Add matched rule 
and  add binding  
Add lazy rule and  
add binding 

ModelElement 
ChangeRight 

Removal of an 
element  

Add filter 
Remove rule 

MoveModelEleme
nt 

Change of 
container 

Split rule and modify 
binding 
Move binding 

ReferenceChange 
LeftTarget 

Addition of a 
reference 

Add binding 

UpdateReference 
Update of a 
reference value 

Update  binding 
Add input pattern 

AttributeChange 
LeftTarget 

Addition of an 
attribute value 

AddBinding  

UpdateAttribute 
Modification 
of an attribute 
value 

Add binding  
Update binding 
Add input pattern 

 

Once the type of the difference is decided, the 
algorithm must deduce the modification that must be 
applied to the model transformation. Depending on 
the scenario of the model transformation the 
adaptation operation for an output EMFDiff 
difference type may be slightly different. For 
example when some elements are added to the 
output model (∆Om>0) a matched rule, a lazy rule 
or an output pattern element must be added, and also 
a binding must be created to associate the new 
element with a previously created model element. 
The addition of an output model element can be due 
to a one-to-one mapping, one-to-many mapping 
(different output elements types), one-to-many 
mapping (same output elements type) or many-to-
many mapping. Depending on the scenario of the 
element addition the adaptation operations vary. To 
select the scenario the tool uses the ∆Om, ∆Im,  
∆Imc and ∆Omc models data.  

3.3.1 Addition of Elements: One-to-One 
Mapping Scenario  

The conditions to detect a one-to-one mapping 
scenario are: (I) The number of  
ModelElementChangeLeft in the ∆Im and the ∆Om 
is equal to 1, (II) the metamodel class coverage 
increment for the input and output metamodel must 
be 1. This scenario requires a new matched rule. The 
adaptation operation of adding a new matched rule is 
compound by a new rule and a binding. The data 
required to define the new matched rule is the Input 
Pattern element, the output pattern element and the 
rule name. The input pattern element is the type of 
any of the added element of the ∆Im model. The 

output pattern element is the type of one of the 
added element of the ∆Om. The rule name is the 
concatenation of both types. To create the binding 
that relates the new target element to its container 
the rule that created the container element must be 
searched. To search the rule that creates the 
container the execution traceability data is used. 
Once the affected rule is founded the binding 
statement is established.  

3.3.2 Addition of Elements: One-to-Many 
Mapping Scenario  

The second kind of scenario is related to one-to-
many mappings. This kind of scenarios requires the 
creation of a new output pattern element or a new 
lazy rule. If different types of target elements are 
created new output pattern elements are added to a 
rule. If instances of the same type are created for an 
input element type lazy rules are required. The 
transformation examples can be specified 
differently, table 3 resumes one-to-many scenarios 
that the algorithm detects.   

3.3.3 Addition of Elements: Many-to-Many 
Mapping Scenario 

Many-to-many scenario is defined when a set of 
elements are added and both ∆Imc and ∆Omc are 
higher than one. Two strategies can apply to this 
scenario. The first strategy is to specify the 
transformation example with a set of one-to-many 
mapping examples, where ∆Imc is equal to 1 in each 
step. When ∆Imc is greater than 1 the algorithm 
must align input elements with output elements 
using the similarity of its properties values. In those 
cases false positives adaptation operations can be 
deduced. For those cases a warning message is used. 
That way the transformation rules developers can 
analyse the adaptation operation model proposal and 
change it manually. 

3.3.4 Removal of an Output Model Element 

Two removal scenarios are detected by the 
algorithm. A matched rule is removed when ∆Omc = 
-1. The other scenario occurs when ∆Omc = 0 and 
some ModelElementChangeRight appears (see table 
4). This scenario requires a filtering operation in the 
input pattern element. In both cases the affected rule 
is founded searching in the execution trace the rule 
that generates the removed elements. 
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Table 3: One-to-many mapping scenarios. 

 
 

Table 4: Removing output elements. 

  Previous transformation Expected transformation 
 

 

 

 
Legend: 

 Arrow: Transformation 
 Geometric shapes (left side of the arrow): Elements of 

the input model 
 Geometric shapes (right side of the arrow): Elements of 

the Output model 

3.3.5 Change of an Element Container 

Sometimes without any modification in the input 
models (∆Imc = 1 and ∆Im=0) the model 
transformation evolves and requires to change the 
instance of the container of an output element or 
even the container type. Both scenarios are detected 
by the algorithm. The first scenario involves a split 

rule operation. To split the affected rule a copy of 
the rule is done but filtering is added to the input 
pattern and a binding must be modified. When the 
type of the container changes a binding must be 
deleted in the rule that created the previous container 
and a binding must be added in the rule that created 
the desired container. To search those affected rules 
the execution trace of the previously executed 
transformation is used. 

3.3.6 Addition and Modification of 
Attributes or References 

The operations related to these scenarios are 
modification of a binding or an addition of a 
binding. In these cases, the execution trace is used to 
search the affected rule. The information of the 
output elements that have the difference 
(Updateattribute, UpdateReference, 
ReferenceChangeLeftElement and 
AttributeChangeLeftElement) is used to search the 
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affected rule in the traceability data and to define the 
binding statement. 

3.3.7 the Algorithm: Summary 

Using the differences models and the traceability 
information the analysis of the transformation can be 
done. The difference model is based on model 
elements and not on metamodel elements, so several 
differences may be referred to the same change to be 
made in the transformation rules. We therefore must 
filter the adaptation operations to obtain the final 
adaptation operation model. Figure 4 represents a 
simplification of the algorithm. 

4 IMPLEMENTING THE 
ADAPTATION OPERATIONS 

Once the adaptation operations model is generated 
the last step is to implement and validate the 
adaptation operations applied to the transformation 
rules. A HOT has been implemented to perform 
automatically the adaptation operations on the ATL 
module. The HOT takes as input the ATL module 
and the adaptation model. Despite the tool can detect 
the listed operations actually the HOT only 
implements addRule, addBinding , splitRrule and 
addFilter. The operations that are not executed by 
the HOT must be implemented manually. Once the 
transformation rules are adapted the new input 
model and the desired output models are used to 
validate the implementation of the transformation 
rule. 

Figure 6: Algorithm for adaptation operations deduction  

5 VALIDATION OF THE 
APPROACH 

During the development of the tool several small 
model examples were used to validate the detection 
and generation of the different adaptation operations. 
Those examples are toy examples so a legacy model 
transformation was required to test the approach in a 
real context. For a first validation of the tool in a real 
context the case study presented in section 2, a 
model transformation from UML to SIMPLEC,  was 
chosen. Following the result of applying the tool  to 
the case study will be shown. Then the threats to  the 
validity are listed.  

5.1 Applying the Tool to the Case 
Study 

In this subsection, results from applying the tool to 
the M2M transformation that generates SIMPLEC 
models, representing C source code, from UML SW 
designs, is presented. The M2M transformation is 
implemented in ATL. The M2M transformation is 
performed incrementally by superimposition 
mechanism of ATL (Wagelaar et al., 2009). The new  
requirement was to add concurrency capabilities to 
the generated code. As presented before, to achieve 
this objective, UML MARTE profile was selected 
and the complex M2M transformation (8 files, 40 
matched rules, 30 lazy rules and 44 helper functions) 
required some changes.  

To apply the tool a previously used UML design 
was selected: a UML design of an automatic door 
controller without concurrency. The M2M 
transformation was executed to generate the output 
model. Also the transformation execution trace 
model was generated. To start with the analysis, 
using UML MARTE a task model was added to the 
automatic door controller design. The API selected 
to express concurrency was a bare-metal API similar 
to FreeRTOS API. On the next step, the expected 
target output model with concurrency was created 
changing manually the generated output model. 
Finally, the difference models between the original 
and the incremented models were generated using 
EMFCompare Tool. A total of 13 differences were 
detected between the input models and 12 
differences were detected on the output models.  

Instead of specifying all the differences in one 
step the transformation example was divided in two 
steps. (I) the platform provider, the concurrency 
API, was specified as MARTE describes, (II) the 
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task model was designed and each task was related 
to its behaviour.  

In the firts step, the concurrency API model (two 
functions: addTask and schedule) was defined using 
MARTE stereotypes in the design model and a 
header with the API definition was added to the 
output model. The scenario was: ∆Imc=3, ∆Omc=0, 
∆Im=4 and ∆Om=3. Three one-to-one mappings 
were detected, so three matched rules were deduced 
in this step: (I) the generation of the header of the 
API model (II) the addTask function and (III) the 
schedule function. 

The second step requires the creation of the task 
model.  And also the assignment of the behaviour to 
each task. In this case the scenario was: ∆Imc=3, 
∆Omc=0, ∆Im=10 and ∆Om=10. Seven of the ∆Om 
differences were ReferenceChangeLeftTarget type. 
The remaining three differences were addition of 
output elements. The adaptation operations deduced 
were four addBinding operations, that affected 
legacy transformation rules, and two 
addMatchedRule  due to two one-to-many mappings 
detected. The models and the result corresponding to 
the task model can be seen in figure 3, 4, and 5. 

When the tool derives add rule operations also a 
binding statement to attach the new elements with 
the container is derived. In those cases, the binding 
statement expression is implemented by a helper 
function. The tool generates the helper header 
definition and the call statement. The algorithm of 
the helper functions is completed manually. 

 
The  final model transformation implementation  

was validated applying the transformation to the new 
design model and comparing the new generated 
model with the expected model. All the deduced 
adaptation operations were correct. To apply the tool 
it is enough knowing the changes that are necessary 
in the M2M transformation input and output models. 
Previous knowledge of the model transformation 
implementation is not required, so the time required 
to adapt the M2M transformation is reduced.  

5.2 Threats to Validty 

The proposed case study is a real system and thus do 
not consider a certain number of factors that could 
affect the validation of the method: 

 Correctness: Although initial case study 
show promising results, as all the 
transformation rules have been correctly 
identified, algorithm should be proved in 
more complex and different examples to 
improve the coverage of the validation.  

 Scalability: The selected case study has 
legacy transformations (8 files, 40 matches 
rules, 30 lazy rules and 44 helper functions) 
and we deployed 13 differences in input 
models and 12 differences in output 
models. Although the case study is a real 
system, validation with bigger case studies 
is required. 

 Negative constructions: the algorithm 
supports the remove matched rule operation 
and the add filter operation. In this real case 
study there are not negative constructions. 
However, the negative constructions have 
been proved with toy examples during the 
development of the tool. 

 Many-to-many mapping: In the case study 
there are not  many to many mappings. At 
present the tool can detect many to many 
mappings. However some ambiguities 
occurs  generating the adaptation operations 
using the tool. To deal with many to many 
mappings the transformation must be 
specified with a set of one to many 
mapping examples. 

6 RELATED WORK 

The presented approach is highly related to MTBE. 
There are previous MTBE  approaches which 
already deal with automatic generation of model 
transformations starting from pairs of example 
models. Most of the approaches are based on formal 
mapping to derive the transformations (Bhalog and 
Varró, 2009). (Strommer and Wimmer, 2008) 
approach uses correspondence model between input 
and output model to generate ATL transformation 
rules. Instead offering a mapping model (García-
Magariño et al., 2009) annotates with extra 
information the source metamodel and the target 
metamodel to derive the required ATL 
transformation rules. Our approach also creates ATL 
transformation rules but a mapping between the 
desired input and output model or extra information 
besides the models differentials is not required.  
In (Faunes et al., 2013) a genetic programming 
based approach to derive model transformation rules 
(implemented with JESS) from input/output models 
is presented. This approach does not require fine-
grained transformation traces. But due to the nature 
of the search algorithm the approach cannot be used 
to evolve a legacy model to model transformation. 
Something similar occurs with (Kessentini et al., 
2012) where a heuristic algorithm is used to generate 
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a new transformed model by similarity with other 
transformation example models. This approach is a 
self-tunning transformation so it cannot be used with 
legacy model transformations.  

MTBD are based on defining the desired 
transformation by editing a source model and 
demonstrating the changes that evolve to a target 
model. Most of the MTBD are used on endogenous 
model transformation (Sun and Gray, 2013) not as 
MTBE based on correspondences, which can be 
used with exogenous transformations. (Langer et al., 
2010) presents a MTBD approach that can be 
applied to exogenous model transformation. This 
approach uses a state-based comparison to determine 
the executed modification operations after modelling 
the desired transformation. Using an incremental 
approach, in each step using a small transformation 
rule demonstration, internal templates representing 
the transformation rules are created.  Once all the 
steps are done the templates are transformed to ATL 
transformation rules. This approach offers an 
interactive step where the developer can annotate the 
templates prior to generate the ATL rules to add 
information about the matching strategies. Because 
the approach uses templates created by 
transformation rules demonstrations it is not easy to 
apply this approach to legacy model transformations. 
Negative application conditions as well as many-to-
one attribute correspondences are not considered. 
Our approach derives the transformations operations 
automatically using execution traceability data and 
models differences. This way the approach can be 
used to evolve legacy model transformations. (Levy 
and Muniz, 2013) proposes a similar approach but 
the generation of the transformation must be done 
manually.  

Most example-based approaches are 
constructive, that is, the new information always 
imply adding new elements to the artefact (a 
transformation in this case). Deleting is more 
complex. The presented approach can deal with 
negative constructions. 

Metamodel and transformation co-evolution 
solution also exists. In (Garcia et al., 2012) input 
metamodel differences are used to derive the 
evolution on the transformation rules. In (Iovino et 
al., 2012) weaving between metamodels and 
transformation rules is used to analyze the impact on 
the transfortion rules due to input metamodel 
evolution. These works only derives the 
modification on the transformation rules when 
regular metamodel evolution, as attribute 
modification or metaclass rename, occurs. When 

new elements on the input metamodel appear, the 
approach cannot derive the transformation rules.  

Most of the MTBE cannot  be applied to legacy 
model transformations. The main contribution  of 
our MTBE approach is that it can be applied to 
evolve ATL legacy model transformations. Our 
approach can be applied to both exogenous and 
endougenous model transformations. We also have 
validated our approach in a real case study. 

7 CONCLUSIONS AND FUTURE 
WORK 

An MTBE approach and a tool to evolve ATL 
transformation have been presented. A metamodel 
for expressing adaptation operations for 
transformation rules and the algorithm to derive the 
adaptation operations for M2M transformations have 
been described. The tool has been used successfully 
for adapting exogenous legacy model 
transformations to new transformation requirements. 
The tool generates semi-automatically adaptation 
operations for ATL transformation rules. The 
helpers used in the binding statements are only 
defined and called. The implementation of the helper 
functions must be done manually. The algorithm 
used to derive adaptation operation and the 
metamodel used to express the operations can be 
used to express operations for transformation 
languages such as QVT or EPSILON. The tool may 
require some changes to work with other 
transformation languages execution traces and also a 
new HOT, must be implemented for each 
transformation language. 

The algorithm can detect one-to-one, one-to-
many and many to many mappings. Negative 
construction examples are also detected. Actually 
the derivation of many to many and many to one 
mappings requires manual intervention. The tool 
uses output models differentials and execution trace 
data. In (Matragkas et al., 2013) the same data is 
used to locate the implementation errors in 
transformation rules implemented with EPSILON. 
The tool can be used with that orientation but must 
be analyzed how.  

Once the functionality of the tool has been tested 
with small examples and a medium real legacy 
system, more validation on scalabilty and 
correcteness are required. Currently, we are working 
on the definition of a methodology for the 
specification of correct example models. In short-
term the tool is going to be used in a legacy model 
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transformation to aggregate some security 
requirements to the output models as in (Sun et al., 
2013).  
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