
Dilemma Structures between Contracting Parties in Software
Development Projects

Cornelia Gaebert
Research Group on Strategic Information Management, European Research Center for Information Systems

c/o University of Muenster, Leonardo Campus 11, D-48149 Muenster, Germany

Keywords: Software Development Project, Outsourcing, Failure, Information Asymmetry, Dilemma Structures,
Incomplete Contract.

Abstract: The risk of failure of software development projects has been high for decades. One main reason identified
by empirical studies is that the requirement specifications have gaps at the start of the project. Research on
requirement analysis and project management primarily focuses on the improvement of methods and the
behavior of the project participants. In our study, we suggest switching to the contracting level, describing
the interaction of the involved organizations in terms of game theory. Organizations pursue economic
targets. As we will show, the customer and the supplier are in a dilemma situation regarding the effort for
closing the gaps in the requirement specifications. This results in a high risk for the quality of the software
system. In support of our theoretical argument, we carried out an empirical investigation that shows that
gaps in requirements and conflicts in the project exist of nearly every project. The most commonly used
contract model is a fixed-price contract. From our model, we can derive suggestions for the contract design
of software development projects as well as for the cooperation behavior during the project.

1 INTRODUCTION

Despite project management improvements and
professionalization of the software development
process, the number of failing software development
projects has remained high for decades (Standish
Group, 2010; El Emam and Koru, 2008).

Organizations expect to mitigate this risk by
outsourcing (Chua et al., 2012). They expect, that
the supplier takes the risk for the project failing
when working under autonomy. The customer
considers the supplier to be responsible for budget,
time, and quality.

Researchers in the field of software project
management and software engineering have focused
their studies on the project’s internal problems, even
when external suppliers carry out the projects
(Natovich, 2003; Al-Ahmad et al., 2009). Moreover,
they provide recommendations for practical action
straight from the success factors derived from
reasons of failure (see also Dwivedi et al., 2013).
They consider the qualifications of all stakeholders
as well as the continuous improvement of project
management (Buhl and Meier, 2010), such as the

change from structured to agile project management
(Zannier and Maurer, 2007).

This paper shifts the spotlight on the relationship
between customer and supplier. We argue for
describing the software development project at the
contracting level, as a cooperation of two parties: the
one that needs a software system to meet their
individual requirements, and the one that has the
ability to produce the software system. We call the
first party the customer, and the second the supplier.
First of all, both parties pursue economic targets.

The aim of this paper is to show that a formal
description of the cooperation between the supplier
and customer of a software development project will
open new perspectives for understanding the failure
of these projects. We provide a theoretical rationale
for the failure of software development projects.
Therefore, we introduce and justify a model of the
software development project as a two-party
interaction game, in which the delivery of
information is the crucial element in each
interaction. Using this approach, it will be possible
to analyze contractual situations for software
projects with respect to risks of failure. We will
show how the structure of this interaction results in a

539Gaebert C..
Dilemma Structures between Contracting Parties in Software Development Projects.
DOI: 10.5220/0004996405390548
In Proceedings of the 9th International Conference on Software Engineering and Applications (ICSOFT-EA-2014), pages 539-548
ISBN: 978-989-758-036-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

high risk of failure for such projects. Nonetheless,
from our model we can derive some suggestions for
the contract design of software development
projects, and for the cooperation behavior during the
project.

We base our argument on the number one reason
for failure, incomplete, ambiguous, and changing
requirements (Standish Group, 1995; El Emam and
Koru, 2008; Standish Group, 2010; Liu et al., 2011;
McGee and Greer, 2012). In this paper, we call this
deficit requirement gaps. As we will show in section
2.1, this is inherent in the setting of a software
development project. Therefore, the customer and
supplier need to interact with each other to establish
clear requirements, explain changes and exchange
information over time. In section 2.2 we briefly
show the possible behavior of the actors in this
situation. Regarding the delivery of needed
information, the parties are in a situation called the
prisoner’s dilemma. Therefore, we introduce in
section 2.3 the prisoner’s dilemma as a formal
description (Trucker, 1950). Section 2.4 describes
the software development projects in terms of game
theory. We must ultimately expect that when both
parties defect from cooperation, the project tends to
fail. Finally, we show in section 2.5, that even under
the mostly agreeable fixed-price contract (Oestreich,
2006), the cusomer want to save costs. However, the
customer will be dissatisfied with the quality of the
developed software. Consequently, the contract is
unable to fulfill its function and the project tends to
fail.

In section 3 we support this theoretical
argumentation using a two-step empirical
investigation. First, we interviewed experts, both
customers and suppliers, using a formal
questionnaire. Second, we conducted in-depth expert
interviews. The empirical results show the relevance
of these concepts for the understanding of problems
in software development projects.

Finally, in section 4 we summarize these
suggestions and describe some directions for further
research, starting with this model.

2 THE PROJECT AS A TWO
PARTY GAME

Researchers in the field of software project
management focus primarily on the control of
decisions and activities of the acting participants and
stakeholders within the development organization
(Keil et al., 2004; Rustagi et al., 2008). They often

describe them as rational agents having goals and
making decisions for the cooperation with other
actors, with the purpose of achieving a maximum of
benefit (Yilmaz and O’Connor, 2012; Cockburn,
2004). However, as shown by Tollefsen (2002), we
can also consider organizations like companies or
public authorities as rational agents who have their
own goals and make rational decisions for reaching
these goals.

At the organizational level, regarding a software
development project, we can define two kinds of
actors: First, there are organizations acting as the
customer; and second are the organizations acting as
the supplier. The customer has business goals that
result in requirements for a software system, which
are described in a requirement specification
document. The supplier has the ability to develop an
information system that meets those requirements.
Therefore, the customer and supplier sign a contract
to carry out a software development project.

2.1 System-Inherent Causes for
Incomplete Requirement
Specifications

In an ideal world, the requirement specification is
complete, unambiguous, and clear. In such a world,
the supplier has calculated all efforts for the
implementation of the requirements before signing
the contract. Based on the specification, the
designers and developers will implement the needed
system. No communication and no interaction
between the parties will be necessary during the
project.

Unfortunately, requirements are not complete
and unambiguous. As shown in research literature
(Liu et al., 2011; McGee and Greer, 2012), and as
stated by all experts in our empirical survey (see
section 3), gaps exist in the requirements
specifications. Researchers and practitioners have
exerted a lot of effort in developing methods for
producing better specifications without gaps,
misunderstandings, and unclear descriptions.

Nevertheless, as we will argue in the following,
there are system-inherent causes for the gaps in
requirement specifications.

First, software requirement specifications contain
knowledge in a strict sense only about the past and
the present. For instance, the customer knows
problems that exist with the currently used system,
the present market situation, and business cases.
About the future, there are only assumptions. In
particular, how the new system will change the

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

540

business processes is not a matter of fact, but a
matter of expectation and anticipation.

Second, the requirement engineer can only
document consciously available knowledge, and to
some extent subconsciously available knowledge.
However, in all business processes, relevant
conditions and information exist that no one knows
about (Kano et al., 1984). The customer has
knowledge primarily regarding the business for
which the software system is needed. In contrast, the
supplier has knowledge regarding technical issues,
like the properties of used frameworks and
development techniques. Furthermore, on the
supplier’s side, experiences from other projects
regarding user acceptance and performance
problems exist. This knowledge is also relevant for
the development of a software system, but in the
moment of documenting the requirements it is not
avaialable.

Third, the software developmet project needs
time. The cutomer and the supplier interact and
exchange information during the project’s
development. As their settings change, new
requirements may arise.

Consequently, we have to accept the fact, that
requirement specifications will contain gaps also in
the future, and even if research in requirement
engineering finds new and better methods.

2.2 Possible Choices of Rational Actors

As we have shown, the customer and the supplier
must sign the contract based on an incomplete
requirement specification. Closing the gaps is part of
each software development project, and there is no
way to avoid this situation. The question arises, how
a rational actor will behave in this situation.

Both actors have the choice to participate in the
closing of specification gaps, or to avoid these
efforts and to demand this effort from the other
party. Therefore, we have to analyze four cases.

(1) The customer tries to avoid effort, whereas
the supplier exerts effort in closing the gaps. The
customer may argue that the supplier should
calculate these efforts during the calculation of the
projects costs. Furthermore, the supplier has seen the
specification before signing the contract and has
commited to implement the needed system, if
necessary by detailing the requirements. In such
cases, customers will argue that there are no real
gaps in the requirements but there are some details
left to be defined during the system design phase.
Thus, the supplier is responsible for specifying these
details. The customer will avoid delivering resources

for clarification. The supplier must specify
assumptions and define suggestions, and the
customer is free to accept or to reject them.

 The result is an enormous effort on the
supplier’s side, whereas the customer will save on
costs and will get the needed system with little effort
on their own part.

(2) The reverse situation is also possible. The
supplier can avoid exerting effort in closing the gaps
and can demand all information needed from the
customer. If the supplier finds a specification gap
during the design and the implementation of the
system, he will ask the customer for clarification and
deny sending their own experts or making his own
suggestions based on experiences from other
projects. In this case, there will be high costs on the
customer’s side, whereas the supplier incurs no extra
costs for closing the gaps. Furthermore, the supplier
has the ability to initiate change requests to get extra
payments.

(3) It is possible, that both parties avoid any
effort in closing the requirement gaps. The supplier
may implement the system without asking the
customer if there is a problem with the specification.
Alternatively, if the supplier asks, he can be satisfied
with any answer from the customer and does not
reflect it on own expieriences. The customer may
also avoid effort for clarification. Both sides may see
the other side as being responsible for closing the
gaps and may ignore arising problems. The result of
this behavior is that both sides save efforts during
the project, but in the end, the system does not meet
the real business requirements of the customer. The
project is highly risky, and if it fails, the customer
will not pay the price for the development.
Therefore, in such a case, both parties will probably
lose their investments.

(4) Finally, both parties may cooperate, sending
their experts and delivering all information and
experiences for finding the right solution in the case
of requirement gaps. The efforts on both sides then
are high; however, the project can finish with a
system that meets the requirements.

Clearly, the fourth case is the best way to finish a
project successfully. However, in reality, both the
customer and the supplier have to save costs by
avoiding extra effort. Therefore, it is not self-evident
that the parties cooperate as described in this
scenario.

For some time game theory has described the
structure of the situation as prisoner’s dilemma
(Tucker, 1950). In recent years, the prisoner's
dilemma has already been used in the analysis of
dilemma structures between developers within

Dilemma�Structures�between�Contracting�Parties�in�Software�Development�Projects

541

software development projects (Hazzan and
Dubinsky, 2005; Yilmaz et al., 2010). We will use
this model as an analytical tool for understanding the
situation of the projects’ parties. First, we will
introduce the original picture, giving the model its
name. Then we will apply it to the project situation.

2.3 The Prisoner’s Dilemma

In the prisoner’s dilemma, a prosecutor questions
two prisoners individually. Both prisoners (player)
can deny the alleged offense (cooperate with each
other), and both result in an imprisonment of 5
years. However, each of them can also admit and
incriminate the other (defect). If only one of them
admits, he or she gets the acquittal (leniency) and
the other gets 20 years of imprisonment. If both
confess, each receives 10 years of imprisonment.
Although it would be best for both prisoners, if they
denied the offense, they will both confess because of
the incentive conditions of the situation. The special
situation in capturing the dilemma situation is that
both actors miss the potential gains from cooperation
just because they follow their own incentives and
thus act rationally.

Figure 1: Prisoner’s dilemma.

Figure 1 depicts the situation and the preferences
of the prisoners in a schematic way. We enter the
payoff for each player in four quadrants: A, B, C,
and D. We enter the results of player X in the lower-
left corner of each quadrant, and we list the payoffs
of player Y in the upper-right corner. The arrows in
the figure mark the advantage calculi. The horizontal
arrows describe the tendency of Y; the vertical
arrows describe the tendency of X.

For X and Y, defecting is the dominant strategy,
which they will choose. Both prisoners make their
rational decisions independently from the other,
knowing the possible choices that the other may
make. If the other cooperates, for each prisoner it

would be best to defect, because he will be free. If
the other one defects, for each it is also the better
choice to defect. Consequently, both prisoners will
defect and will get a bad result. If both decide to
cooperate, the result would be much better.

The frame in the lower-left quadrant C shows the
(Nash) equilibrium, the result that rational actors
will get in a prisoner’s dilemma situation.

2.4 the Customer and the Supplier in a
Dilemma Situation

Now, for applying the prisoner’s dilemma to the
software development project, we identify the player
Y with the customer and player X with the supplier.
If the customer defects and the supplier cooperate,
the latter will close all specification gaps at his own
cost, and the customer will get the best result (case 1
in section 2.2, quadrant D in Figure 1). In contrast, if
the supplier defects by avoiding the needed effort,
and the customer works hard to close all gaps, it will
be the best for the supplier (case 2, quadrant A in
Figure 1). If both parties cooperate, both incur some
costs, but they get the best system as the result of the
project (case 4, quadrant B in Figure 1). Finally, if
neither the customer nor the supplier work on
closing the gaps, they will exert less effort, but the
result is a bad system that does not meet the
requirements (case 3, quadrant C in Figure 1).

If both the supplier and the customer in a
software development project act as rational actors,
they both must avoid any effort in closing gaps in
the requirement specification – the result will be a
bad system.

Please note, only the order of evaluation is in
this situation crucial for the result, not the concrete
rating level (Axelrod, 2009). Therefore, we can
translate the payoff to simple numerical amounts for
the better representation of the problem structure of
the dilemma situation in the form of a prisoner’s
dilemma (Beckmann and Pies, 2006). Figure 2
depicts the four cases in four fields.

The supplier (player X) gets in quadrant A a
result of 4 (only the customer closes gaps). In
quadrant B, both get a payoff of 3 (both close gaps),
and in C a payoff of 2 (nobody closes gaps). In the D
quadrant, the supplier realized his worst result of 1
(only the supplier closes gaps). The customer (player
Y) obtains in quadrant D his best result with the
payment of 4. The customer achieves his worst
result in quadrant A with a payoff of 1. Divergent
preferences determine the order of evaluation of
possible results: For the supplier, it is A> B> C > D
and for the customer it is D> B> C > A. The payoff

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

542

matrix of the one is therefore the transposed payoff
matrix of the other.

Figure 2: The prisoner's dilemma of the software
development project in normal form with payoffs.

The rational actors achieve the dominant result
because there is no effective behavior binding, i.e.
the supplier and the customer are in a so-called
institutional vacuum (Beckmann and Pies, 2006). If
the supplier and the customer want to escape this
dilemma, they must prevent the institutional vacuum
so that they are no longer in a dilemma structure.
They can achieve this only through collective self-
commitment to cooperation, through simultaneous
abandonment of the solutions in the quadrants A and
D. Both can improve their payoff only in this way.
They must find rules that reward cooperation and
punish defection to guarantee effective behavior
binding. Following the cooperation agreement must
be the rational choice for the actors. Each actor will
decide this way, only if the achieved result is better
for him than the solution without agreement. The
agreement must eliminate the conflict. It causes the
actors no longer to operate independently (Gauthier,
1985). The players cooperate only if they know the
alternative solutions and if they are sure how the
other one will act (Davis, 1985).

Figure 3: Negative sanction for both.

If a negative sanction is established for both
players in the case of defection, the possible payoffs
change (Figure 3). The preferences are changing,
and so the order of evaluation of the results changes.
Cooperation will be the dominant strategy. The
enticing thing about this situation is that no actor
cares how the other player is set. The individual
gets, in any case, a payoff of 3 if he cooperates. The
actors found a new opportunity space by way of
rules. These rules change the incentives so that the
actors can still defect, but they do not want to defect.
It is not about improving the game, but about
playing another game.

2.5 Rational Behavior in Dilemma
Situations

As empirical studies show, contractual arrangements
between both parties vary between fixed-price and
time-and-material contracts (Kalnins and Mayer,
2004; Fink et al., 2013). Fixed-price contracts
consist as the name suggests of a fixed-price for the
developed software. In the case of a time-and-
material contract, the customer pays for a specified
amount per hour. Sometimes, the two contract types
are combined, such as a fixed-price for the initial
development and time-and-material for its
enhancement.

Figure 4: The software development project under fixed-
price with one-sided sanctions.

With a time-and-material contract, neither the
customer nor the supplier has incentives to avoid
efforts in closing the requirement gaps. This contract
type eliminates this conflict as long as the customer
is willing to pay. However, fixed-price contracts
dominate the contract types. Under the conditions of
a fixed-price contract, the customer in particular has
the chance to exert pressure on the supplier by
threatening to reject the system and to deny paying
the agreed-upon price. Some authors explicitly

Dilemma�Structures�between�Contracting�Parties�in�Software�Development�Projects

543

demand to control the suppliers’ work in detail
(Rustagi et al., 2008).

Because of the sanction for the supplier in such a
contract situation, the order of evaluation for the
supplier changes (Figure 4). The preferences of the
supplier switch from defecting to cooperating. The
customer receives the penalty as a bonus, so his
preference does not change. His payoff for defection
is always higher than his cooperation payoff. The
balance adjusts itself in quadrant D, where the
customer achieves his best result. The inescapable
conclusion of this finding is that the customer will
not want to cooperate in closing the gaps because,
no matter how the supplier chooses, he always
achieves his best result with defection. He just needs
to ensure that he collects the penalty from the
supplier in the case that the supplier has not
demonstrably fulfilled the contract. The actors will
not achieve the equilibrium solution in quadrant B.

Nevertheless, the supplier has options to deal
with the situation, and he must do this, if he is a
rational actor. As shown by Spremann (1990), in the
case of asymmetrically distributed information, there
are options for hidden actions. In software projects,
the supplier has the chance to save effort on quality
issues as performance, maintainability, reliability,
and other quality attributes. Problems from this
behavior will appear after finishing the project, and
due to the fact, that there are many possible causes
for problems, the supplier may deny the
responsibility for these problems. Therefore, also the
customer should have an interest in finding a
contract design as described in Figure 3.

Is it possible in a software development project
as under investigation of this study to implement
negative sanctions in the case of defection for both
parties? It is not difficult to implement sanctions
regarding the supplier. If the supplier does not meet
the milestones, or if the quality of the software
system is bad, it is possible for the customer to
deduct a penalty from the agreed price.

On the other side, a sanction for the customer
would mean that he has to pay a higher price. This
would escape the fixed-price condition, so it does
not seem possible to implement such a sanction.

3 EMPIRICAL SUPPORT OF THE
THEORETICAL ARGUMENT

We support our theoretical findings with an
empirical survey. First, it is essential that the
supplier gets mostly a fixed-price for the software

system. If the customer would pay an effort-based
price for all of the work done by the supplier, no
dilemma situation would arise. Second, do the
customer and supplier agree that there are gaps in
the requirement specifications delivered by the
customer by signing the contract? Third, is there a
potential conflict resulting from this situation? Do
both parties quite agree that there is conflict? To
support the practical relevance of these assumptions,
we carried out an empirical investigation.

For this empirical part of our study, we
conducted a two-step evaluation. First, we
developed a questionnaire in the form of a
standardized online survey as a special kind of
standardized survey (Klammer, 2005). Next, we
conducted personal interviews to deepen our
understanding of the results from the questionnaire.
The period of the evaluation was one year.

For the questionnaire, we chose the standardized
online survey to give the respondents an opportunity
to reflect and to question their own companies
(Schnell et al., 2011). The format of the online
survey itself was legitimate because the interviewees
were an IT-savvy group. Open answers
supplemented the closed questions to not be too
restrictive and to gather the covered information
(Mayer, 2012). In the following, we will analyze and
interpret the results descriptively.

Experienced project participants on both sides
(customer and supplier) were interviewed. The
questionnaire had to take the management
perspective as well as the view of the project
management into account. Because it is not possible
to address trivially the population of all
manufacturers and customers of custom software,
and because questioning the population about any
associated unacceptably high cost is not realistic, we
chose a smaller population. Therefore, we could not
achieve complete representativeness (Schnell et al.,
2011). For practical reasons, we addressed the 45
members of a network of IT companies in Germany.
Fifty additional addressees were available from
other contacts. To expand the circle of respondents
and to amplify the customer side, we used contacts
in social networks such as Facebook (approximately
30), Xing (approximately 20), and Twitter
(approximately 50). This ensured that the
respondents had experience in different contexts of
possible projects. Of the 200 addressees who were
requested to participate in the survey, 29 actually
completed the questionnaire (14 suppliers, 5
customers, 9 suppliers and customers (both), and 1
other).

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

544

An independent survey that evaluated the
willingness to participate in the survey suggested a
conscientious answering of the questions. A total of
48.3% of the respondents indicated that they belong
to management and that they have responsibility for
the contracts; 27.6% are project managers; 6.9% are
employees at the working level; and 17.2% perform
other activities, such as consulting. A total of 89.7%
of the respondents had 10 or more years of
experience with software development projects. The
participants represented a broad range of sizes of
projects with regard to the duration and number of
employees.

For the exemplary and in-depth interviews, we
conducted semi-structured expert interviews. We
questioned, on the one side, a consultant with
experience in software projects for approximately 15
years. He supports big companies in defining and
organizing the contractual issues of software
projects. On the other side, we spoke with a supplier
with experience in software projects for
approximately 20 years. He is an owner of a
software development company with 10
programmers. Considering the sensitivity of failure
research and the resulting difficulty in gaining
access to project details, this methodology was most
appropriate. The incomplete script of the semi-
structured interview format left room for
improvising questions (Myers and Newman, 2007).
The first interview lasted approximately 3 hours; the
second lasted 1.5 hours. We made extensive notes
during the interviews, which we evaluated afterward
through a qualitative content analysis. Because we
demanded appointed circumstances and facts, we
avoided free interpretation problems (Gläser and
Laudel, 2009).

3.1 Results from the Online Survey

The survey showed that the proportion of fixed-price
contracts for software development projects is
extremely high (Figure 5). Taking into account that
even the so-called agile fixed-price, time-and-
material (T&M) price with ceiling ultimately
determines the maximum total budget for the
consumer, the proportion of this type of contract is a
total of more than three quarters of the software
development projects. A manager on the side of the
supplier added in free text: “Even if it is charged at
T&M, the expectation of the customer is the
compliance with the budget / value of the order.”

On the bottom line, the T&M price with ceiling
and the agile fixed-price mean the implementation of
the requirements at fixed cost. Often the ceiling does

not differ significantly from the calculated expense.
An agile fixed-price, however, allows one to the
implementation of requirements when new
requirements emerge. Then, these new requirements
can replace earlier ones. However, such contractual
subtleties relate only to new requirements. A third
party (judge) can evaluate them. Nevertheless, this
rarely helps in cases of closing the requirement gaps.
Rather, closing gaps only makes unconscious
knowledge aware. For the customer, it appeared
typically obvious, whereas it was unknown to the
supplier and vice versa. Filling the gaps makes it
known explicitly.

Figure 5: Proportion of different types of contracts on
software development projects.

The customers predominantly determine the
contract model (Figure 6). Although 80% of the
customers indicate that they at least often determine
the contract model, suppliers say quite the opposite.
Two-thirds of them admit that they have little or no
influence on the contract model. One comment from
a project leader on the supplier side is: “I do not
understand the question. The contract model is in all
cases defined by the customer.” Thus, customers
clearly choose the contract design.

Figure 6: Answer to the question "Do you determine the
contract model?".

Customers and suppliers have different views on
emerging problems inside a fixed-price project, like
when an imbalance occurs in terms of time, cost, and
quality (Figure 7).

Dilemma�Structures�between�Contracting�Parties�in�Software�Development�Projects

545

Figure 7: Is an imbalance of time, cost, or quality in the
project under fixed-price problematic?.

Although 77% of the suppliers consider such a
situation always or usually as problematic, 60% of
the customers believe that this is rarely or almost
never a problem for them.

Against this background, it is important to
consider how the contract reflects gaps in the
requirement specifications and how the signed
contract supports the project itself. After all, such
gaps lead to increased interaction. Most respondents
stated for the vast number of projects (Figure 8) that
such gaps exist.

Figure 8: Frequency of requirement gaps.

Almost a third of the respondents said that such
gaps “always” happen; 93% say that this case occurs
at least often. However, a fixed-price contract hardly
takes this sufficiently into account. For suppliers to
do this seems hardly to be possible, as the notes to
the relevant questions show. They try to work with a
kind of overhead calculation but requirement gaps
"are rarely sufficiently taken into account."

However, contracts widely do not reflect this
fact. On the question, whether contractors
continuously update the contract during the project,
81% of participants responded that this rarely or
never happens.

 Customers and suppliers have a different
perspective regarding whether gaps leading to
unforeseen interaction would be renegotiated (Figure
9). Although customers are of the opinion that this
would always or at least often happen, 61% of the

suppliers believe that there are never or almost never
renegotiations.

Figure 9: Renegotiate customer and supplier requirement
gaps.

Two-thirds of all respondents say that gaps in the
requirement specifications always or almost always
lead to unplanned discussions. The contract usually
does not take into account the extra costs, which
interactions trigger.

3.2 Results from Interviews

We documented the interviews in a structured way
with references to each question and to the
paragraph of the answer. In the following, we give a
short overview of the results. In brackets, we note
the reference to the minutes of the interviews. For
example, (S Q3A2) references the supplier
interview, question 3, answer paragraph 2.

Both interview partners said that the mostly
preferred contract model is the fixed-price contract,
especially if the requirements are documented and if
they seem to be clear (C Q3A1, S Q5A2). This is
because of the customer’s restriction in having a
limited budget and that customers must calculate the
expected benefits against the costs beforehand (C
Q16A1, (S Q6A1). Nevertheless, because “it is very
seldom that the requirements are specified in a
formal way” (C Q10A1), it is almost impossible to
calculate the real costs. In addition, the supplier
stated: “The problem does not come from the fixed-
price itself, but from unclear, incomplete, or
changing requirements. And the problem is that the
customer is not willing to change the price if he
changes the requirements” (S Q6A3).

The interviews supported the finding from the
online survey, that the customers mostly dominate
the contract design (S Q5A2, C Q3A1).
Nevertheless, both interview partners gave hints,
that obligations for a cooperating behavior of the
customer are possible in practice (C Q14A4, S
Q11A6).

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

546

Because the requirement specifications were so
important, we asked our interview partners to
explain the reasons for the gaps, the possibilities for
dealing with these gaps, as well as the consequences.
Both sides cited the reasons as being “special” or
“exceptional use cases” that the experts were not
aware of during the requirements analysis or were
too difficult to model (C Q11A1; C Q11A4; S
Q10A1). Furthermore, the facts were “obvious” (C
Q11A3) or “self-evident” (S Q10A1) to the business
experts, so they did not speak about them.
Nonfunctional requirements were often unknown to
the users (S Q10A1).

Both interview partners showed a high degree of
uncertainty regarding the behavior, intentions, and
skills of the other side. Customers try to get certainty
beforehand from information like “descriptions of
credential projects, facts about the know-how of
their staff, information about the methods in
designing and processing a software project” (C
Q7A1). With “governance structures for the project”
(C Q5A1) the customer hopes to “get at early phases
of the project a good feeling of the progress and the
quality of the vendor’s work” (C Q6A1). However,
uncertainty remains high: “Nearly nobody can
distinguish the clever, good one from the slow and
poor one. And if the vendor mentions that there are
unforeseeable problems, you don’t know if he is
right or he is not professional enough for doing his
job” (C Q16A1).

Regarding the same issue, the interview partner
from the supplier side said, “a new management,
problems in his market, new relevant law, and
maybe, the customer does not need the software
anymore or the costs will be higher than the effects.
Then, maybe, the customer’s management tries to
cancel the project” (S Q11A5).

On the customer side, the strategy is to handle all
problems in a formal way and to avoid all
discussions regarding effort in narrowing the gaps in
the requirements (C Q11A5; C Q15A1). In contrast,
the supplier obviously has strategies of its own,
knowing that the customer cannot see all that the
supplier is doing (S Q12A1).

4 CONCLUSIONS

The objective of this paper was to describe the
software development project as an interaction
between two organizations, both acting as rational
agents, both having economic targets. We have
shown that these actors are in a dilemma situation,
known from game theory as the prisoner’s dilemma.

In such a situation, the individual rational behavior
of both actors leads to a result that does not satisfy
either parties—neither the customer nor the supplier.

The root cause of this situation is the
incompleteness of the requirement specifications. As
theoretical and empirical investigations show, a
specification without gaps is not possible. Therefore,
the parties must cooperate when closing the gaps.
Nonetheless, particularly under the most widely used
fixed-price contract, both parties must avoid efforts
in this cooperation.

Certainly, our investigation is not representative.
However, our aim was to support our theoretical
findings. As our survey shows, the customer often
dominates the contractual regulations. In this
situation, the customer can avoid the effort in
closing the requirement gaps, whereas the supplier is
forced to cooperate. As a rational agent, the supplier
will use information asymmetries to save effort by
hidden actions. This results in a poorly developed
software system. Based on our two-party model,
future research can analyze the dependencies of
asymmetrically distributed information and software
quality.

Using the game theory, we can describe the
problem, but we can also show the way out. We can
derive from the model the suggestion to connect
defection with a sanction, and therefore change the
situation. Defining the obligations for closing the
requirement gaps for both the customer and the
supplier within the contract can serve as such a
sanction. We suggest that customers and suppliers
agree on clear and tangible obligations for the
customer regarding the cooperation for filling the
gaps in requirement specifications. These
contractual obligations should contain information
on the necessary staff and the time required. Then, if
the customer fails to meet these obligations, the
parties may agree on a bonus for the supplier to be
offset with possible penalties. In further research, we
can include the theory of incomplete contracts.

Furthermore, we can use the results from
research about the prisoner’s dilemma (Axelrod,
2009). If both parties are willing and able to
cooperate, then it can be rational to start interactions
with cooperation. In this way, both sides need a
system to recognize and measure the behavior of the
other party. Because experience is a prerequisite for
trust, further research should examine whether the
methods and concepts in the software development
project are suitable for the formation of experience.
We can derive such concepts from approaches of
economic theories using the theoretical descriptions
of customer and supplier as rational agents.

Dilemma�Structures�between�Contracting�Parties�in�Software�Development�Projects

547

REFERENCES

Al-Ahmad, W., Al-Fagih, K., Khanfar, K., Alsamara, K.,
Abuleil, S., Abu-Salem, H., 2009. A Taxonomy of an
IT Project Failure: Root Causes. International
Management Review 5(1), 93-104.

Axelrod, R., 2009. Die Evolution der Kooperation,
Studienausgabe, München. 7nd edition.

Beckmann, M., Pies, I., 2006. Freiheit durch Bindung -
Zur ökonomischen Logik von Verhaltenskodizes,
Diskussionspapier Nr. 2006-9, Lehrstuhl für
Wirtschaftsethik der Martin-Luther-Universität Halle.

Buhl, H.U., Meier, M.C., 2011. Die Verantwortung der
Wirtschaftsinformatik bei IT-Großprojekten.
Wirtschaftsinformatik 2, 59-62.

Chua, C.E.H., Lim, W.-K., Soh, C., Sia, S.K., 2012. Client
strategies in vendor transition: A threat balancing
perspective. The Journal of Strategic Information
Systems 21(1), 72-83.

Cockburn, A., 2004. The End of Software Engineering and
the Start of Economic-Cooperative Gaming. ComSIS
1(1).

El Emam, K., Koru, A.G., 2008. A Replicated Survey of
IT Software Project Failures. IEEE Software 25(5),
84-90.

Davis, L.H., 1985. Prisoners, Paradox, and Rationality.
Paradoxes of Rationality and Cooperation. in:
Campell, R. and Sowden, L. (eds), Prisoner's
Dilemma and Newcomb's Problem. Vancouver, 46-59,
Reprint of American Philosophical Quarterly 14, 4,
1977, 319-327.

Dwivedi, Y.K., Ravichandran, K., Williams, M.D., Miller,
S., Lal,B., Antony, V., Muktha, K., 2013. IS/IT
Project Failures: A Review of the Extant Literature for
Deriving a Taxonomy of Failure Factors. IFIP
Advances in Information and Communication
Technology 402, 73-88.

Fink, L., Lichtenstein, Y., Wyss, S., 2013. Ex post
adaptions and hybrid contracts in software
development services. Applied Economics. 45(32),
4533-4544.

Gauthier, D., 1985. Maximization Constrained: The
Rationality of Cooperation. Paradoxes of Rationality
and Cooperation. in: Campell, R. and Sowden, L. (eds)
Prisoner's Dilemma and Newcomb's Problem,
Vancouver, 75-93.

Gläser, J., Laudel, G., 2010. Experteninterviews und
qualitative Inhaltsanalyse. VS Verlag, Wiesbaden, ,
4nd edition

Hazzan, O., Dubinsky, Y. 2005. Social Perspective of
Software Development Methods: The Case of the
Prisoner Dilemma and Extreme Programming. Lecture
Notes in Computer Science 3556, 74-81.

Kalnins, A., Mayer, K.J., 2004. Relationships and hybrid
Contracts: An Analysis of Contract Choice in
Information Technology. Journal of Law, Economics,
and Organization, 20(1), 207-229.

Kano, N., Seraku, N., Takahashi, F., Tsuji, S., 1984.
Attractive Quality and Must Be Quality; in: Quality -

Journal of the Japanese Society for Quality Control,
14(2), 39-44.

Keil, M., Smith, H.J., Pawlowski, S., Jin, L., 2004. ‘Why
Didn’t Somebody Tell Me?’: Climate, Information
Asymmetry, and Bad News About Troubled Projects.
SIGMIS Database, 35(2), 65-84.

Klammer, B., 2005. Empirische Sozialforschung. Eine
Einführung für Kommunikationswissenschaftler und
Journalisten. Utb, Konstanz.

Liu, J.Y.-C., Chen, H.-G., Chen, C.C., Sheu, T.S., 2011.
Relationships among interpersonal conflict,
requirements uncertainty, and software project
performance.

McGee, S., Greer, D., 2012. Towards an understanding of
the causes and effects of software requirements
change: two case studies. Requirement Engineering
17, 133-155.

Mayer, H., 2012. Interview und schriftliche Befragung.
Entwicklung, Durchführung und Auswertung.
Oldenbourg Wissenschaftsverlag, München.

Myers, M. D., Newman, M., 2007. The qualitative
interview in IS research: Examining the craft.
Information and Organization 17(1), 2-26.

Natovich, J., 2003. Vendor Related Risks in IT
Development: A Chronology of an Outsourced Project
Failure. Technology Analysis & Strategic Management
15(4), 409-419.

Rustagi, S., King, W.R., Kirsch, L.J., 2008. Predictors of
Formal Control Usage in IT Outsourcing Partnerships.
Information Systems Research 19(2), 126-143.

Schnell, R., Hill, P., Esser, E., 2011. Methoden der
Sozialforschung. Oldenbourg Wissenschaftsverlag,
München, 9nd edition.

Spremann, K., 1990. Asymmetrische Information. ZfB
60(5/6), 561-586.

Standish Group, 1995. CHAOS Report,
http://www.projectsmart.co.uk/docs/chaos-report.pdf,
21.06.2011.

Standish Group, 2010. CHAOS MANIFESTO, The Laws
of Chaos and the CHAOS 100 Best PM Practices.
https://secure.standishgroup.com/reports/reports.php#r
eports. accessed 26.06.2011.

Tollefsen, D., 2002. Organizations as true believers.
Journal of social philosophy 33(3), 395-410.

Tucker, A.W. 1950. Biographie, Prisoner's Dilemma.
http://www.princeton.edu/pr/news/95/q1/0126tucker.h
tml.

Yilmaz, M., O’Connor, R.V., Collins, J., 2010. Improving
Software Development Process through Economic
Mechanism Design Communications. Computer and
Information Science 99, 177-188.

Zannier, C., Maurer, F., 2007. Comparing Decision
Making in Agile and Non-agile Software
Organizations. Concas, G. et al. (eds). XP 2007, LNCS
4536, 1–8.

ICSOFT-EA�2014�-�9th�International�Conference�on�Software�Engineering�and�Applications

548

