
Signature-based High-level Simulation of Microthreaded Many-core
Architectures

Irfan Uddin, Raphael Poss and Chris Jesshope
Computer Systems Architecture group, Informatics Institute, University of Amsterdam,

Sciencepark 904, 1098 XH Amsterdam, The Netherlands.

Keywords: Performance estimation, many-core systems, high-level simulations.

Abstract: The simulation of fine-grained latency tolerance based on the dynamic state of the system in high-level simu-
lation of many-core systems is a challenging simulation problem. We have introduced a high-level simulation
technique for microthreaded many-core systems based on the assumption that the throughput of the program
can always be one cycle per instruction as these systems have fine-grained latency tolerance. However, this
assumption is not always true if there are insufficient threads in the pipeline and hence long latency operations
are not tolerated. In this paper we introduce Signatures to classify low-level instructions in high-level cate-
gories and estimate the performance of basic blocks during the simulation based on the concurrent threads in
the pipeline. The simulation of fine-grained latency tolerance improves accuracy in the high-level simulation
of many-core systems.

1 INTRODUCTION

Maintaining accuracy in the high-level simulation of
single-core systems is a difficult simulation problem.
This problem becomes challenging in many-core sys-
tems, where the throughput of a program depends on
the dynamic state of the system. The problem is fur-
ther exacerbated in a multi-threaded many-core sys-
tems, where multiple threads may be able to hide the
latency of long latency operations reducing the num-
ber of cycles per instruction in the throughput of the
program. For example a floating point operation may
take cycles to complete when there is only one thread
in the pipeline, or these cycles may be decreased with
the increasing number of threads.

In this paper we present a high-level simulation
technique for the fine-grained latency tolerance in mi-
crothreaded many-core systems. We identify different
low-level instructions of the architecture and classify
them into high-level classes referred as signatures.
This classification is made based on the number of
cycles taken by different instructions and how the cy-
cles can be tolerated based on the number of threads
currently active per core. Signatures are then used
in the high-level simulator to adapt the throughput of
the program during simulation to more accurately es-
timate program’s workload.

The simulation technique can be used in the high-

level simulation of fine-grained latency tolerance in
many-core systems. As long as we can track the num-
ber of active threads in the high-level simulation, the
signature of a basic block can be used to improve the
estimated simulated time of that basic block. Some of
the modern many-core systems with latency tolerance
are The Microgrid, TILE64, Sun/Oracle UltraSPARC
Tx series etc. In this paper, we present the simulation
technique to simulate the fine-grained latency toler-
ance in the context of the microthreaded many-core
systems which uses a multi-threaded processor with
data-flow synchronization and is able to tolerate la-
tencies of up to thousands of cycles in a typical con-
figuration (Bousias et al., 2009).

The rest of the paper is organized as follows.
We give a background to the microthreaded architec-
ture, cycle-accurate simulation and high-level simu-
lation in section 2. We introduce signatures in sec-
tion 3, fine-grained latency tolerance in the mi-
crothreaded architecture in section 4 and its simula-
tion in section 5. We present results collected from
the Signature-based high-level simulation framework
in section 6 and conclude the paper in section 7.

509
Uddin I., Poss R. and Jesshope C..
Signature-based High-level Simulation of Microthreaded Many-core Architectures.
DOI: 10.5220/0004982405090516
In Proceedings of the 4th International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH-2014),
pages 509-516
ISBN: 978-989-758-038-3
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 BACKGROUND

The Microgrid (Jesshope, 2004; Bernard et al., 2011;
Jesshope, 2008) is a general-purpose many-core ar-
chitecture and implements hardware multithreading
using data-flow scheduling with a concurrency man-
agement protocol in hardware to create and synchro-
nize threads within and across cores on a chip. The
programming model for the architecture is called the
microthreading model. Each core of the Microgrid
contains a single issue, in-order RISC pipeline with
an ISA similar to DEC/Alpha, and all cores are con-
nected to a single on-chip shared-memory distributed
cache (Jesshope et al., 2009; Bousias et al., 2009).
Each core implements the concurrency constructs of
the programming model in its ISA and is able to sup-
port hundreds of threads and their contexts, called
microthreads and tens of families (where a family is
an indexed groups of microthreads) simultaneously.
Family communication channels and family synchro-
nization are implemented in registers of the Micro-
grid (Uddin, 2013). To program the Microgrid, we
use a system-level language called SL (Poss, 2012)
which integrates the concurrency constructs of the mi-
crothreading model as language primitives.

The high-level simulator of the microthreaded
many-core systems (also known as HLSim) (Uddin
et al., 2011) was developed to make quick and reason-
ably accurate design decisions in the evaluation of the
architecture. It abstracts the details of instruction exe-
cution in the microthreaded cores in a large-scale sys-
tem and focus more on mapping, scheduling and com-
munication of threads and families. It is not a replace-
ment of the cycle-accurate simulator of the Micro-
grid (also known as MGSim (Lankamp et al., 2013)),
rather it is a tool in the designer’s toolbox for the eval-
uation of benchmarks on the microthreaded architec-
ture but at a different level of abstraction, which is
faster and less complicated. The first simulation mode
of HLSim is One-IPC, based on the assumption that
every instruction takes one cycle to complete (there-
fore named as One-IPC). This assumption is not real-
istic except for simple programs, because the number
of cycles depends on the type of instruction and the
number of active threads in the pipeline. A long la-
tency operation (e.g. floating operation) may take one
cycle to complete in the throughput when there are
many active threads. However with a single thread the
throughput is limited by the instruction latency. The
challenge in One-IPC HLSim is to predict the perfor-
mance of each individual instruction in order to accu-
rately model the fine-grained latency tolerance in the
architecture.

The high-level performance estimation is an im-

portant factor in the fast embedded system design.
However, it is not trivial to get such estimates without
a detailed implementation. In (Bammi et al., 2000)
performance estimation is used in both source-based
and object-based to annotate the code with timing and
other execution related information e.g. memory ac-
cesses and compare their execution with the cycle-
based processor models. In (Giusto et al., 2001), a
source-based estimation technique is presented using
the idea of Virtual instructions which are very similar
to our abstract instruction set, but are directly gen-
erated by a compiler framework. Software perfor-
mance is then calculated based on the accumulation
of the performance estimates of these virtual instruc-
tions. In (Eeckhout et al., 2003), a performance mod-
eling approach is used for statistical simulation of the
micro-architecture.

3 SIGNATURES

Signatures in HLSim are introduced in (Uddin et al.,
2012) and briefly explained here. A signature is a vec-
tor of three elements representing single latency, fixed
latency and variable latency instructions at indices 0,
1 and 2 respectively. The categorization of ISA of the
Microgrid (Corporation, 1992) into abstract instruc-
tion set (AIS) is shown in table 1.

We have introduced three categories in signatures
because with only two categories, we would loose ac-
curacy. With more than three categories, the gain is
negligible, and also we would have combinatoric ex-
plosion when using more categories in signatures dur-
ing the computation of throughput.

The load operation is blocking in the sense that the
read operation is suspended if the data is not fetched,
leading to the suspension of the thread. The time
taken by load operation is not known and therefore
placed in the variable latency operations. The store
operation is non-blocking, meaning that when it is is-
sued, the thread can continue execution without wait-
ing for the operation to complete. Although in table 1,
store is shown as variable latency operation, in the
implementation of HLSim we assume that all store
operations are single latency operations, because of
asynchronous completion.

4 FINE-GRAINED LATENCY
TOLERANCE IN THE
MICROGRID

In any program, a computation is preceded and fol-
lowed by memory operations which take a variable

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

510

Table 1: Categorization of ISA of the Microgrid in Abstract Instruction Set (AIS).

Index Abstract Instruction Set (AIS) Mnemonic Cycles

0 AIS SINGLE
LATENCY

Every instruction except in the two categories below and concurrency
instructions

1

1 AIS FIXED
LATENCY

ADD[F,G,S,T]
SUB[F,G,S,T]
MUL[F,G,S,T]
DIV[F,G,S,T]
SQRT[F,G,S,T]
MUL[L,V,Q]
DIV[L,V,Q]
UMULH BEQ, BGE, BGT, BLBC, BLBS, BLE, BLT, BNE, BR, BSR,
JMP, JSR, RET MB, FETCH, EXCB, TRAPB, WMB

3
3
3
8
10
3
3
2

2 AIS VARIABLE
LATENCY

LD[BU, WU, L*, Q*, S, T, G, F]
ST[B,W,L*,Q*,S,T,G,F]

<˜1000
<˜1000

amount of time as it depends on the locality of the
data i.e. the data is located in L1-, L2-, L3- cache
or off-chip memory. In single-threaded programs the
processor has to wait for memory operations to com-
plete and then continue with the computation. In
multi-threaded programs, when a memory operation
is issued, the thread is suspended and execution is
switched to another thread in the pipeline. Because
of data-flow scheduling in the Microgrid, the mem-
ory operation completes asynchronously and wakes
up the suspended thread. This way the long latency
operations can have latency tolerance in the through-
put of the program.

We show an experiment to demonstrate the latency
tolerance in the Microgrid using MGSim. We cre-
ate few families with instructions from different cat-
egories explained below. The extra cycles consumed
by long latency operations in these families are shown
in fig. 1. The x-axis shows the window size used
during the execution and the y-axis shows the cycles
taken by the long latency operations and are normal-
ized per instruction. The normalization is subtracting
the number of instructions from total latency, divided
by the number of instructions. In this experiment we
show three families for variable latency operations i.e.
short, medium and large. The idea is to show that
variable latency operations are difficult to simulate,
and changing a single parameter affects the through-
put and hence the extra cycles consumed. The details
of the created families is given below:

� One nop instruction per thread: An empty thread
has one nop (no-operation), because the fetch
stage needs to know when to terminate a thread.
When only one thread is active, it has an overhead
to schedule instructions. But as the window size
increases the latency is reducing. After window
size 8, we have a full pipeline and therefore, the
latency is close to 0.

� Single-cycle-latency instructions: When only one
thread is active, we have the overhead of creating
and cleaning thread, but as soon as the window
size is 2 or more the extra latency is reduced to
zero.

� Fixed-latency instructions: When only one thread
is active, it has the latency of 8 cycles. 6 cycles
are taken in the pipeline and extra 2 cycles in-
clude the overhead of creation and cleanup of the
thread. When the number of threads increases this
extra latency is reducing. After 8 or more threads
are active, the pipeline becomes full and the extra
latency is close to 0.

� Variable-latency instructions (short): We count
the time for creating a family on a single core. The
communication is only between the parent core
and the core in the delegated place, therefore the
latency of allocate, create and sync is considered
as short variable latency instructions.

� Variable-latency instructions (medium): We count
the time for creating a family on four cores. The
communication is between the parent core and
the four cores in the delegated place. The cycles
taken by allocate, create and sync is considered as
medium variable latency instructions.

� Variable-latency instructions (large): We count
the time for creating a family on 64 cores. Since a
large number of cores are used for the distribution
of threads, therefore the latency of allocate, create
and sync is considered as large variable latency
instructions.

Signature-based�High-level�Simulation�of�Microthreaded�Many-core�Architectures

511

 0

 5

 10

 15

 20

 25

 30

 35

 0 5 10 15

C
y
cl

e
s

d
e

d
ic

a
te

d
 t

o
 n

o
n

-l
o

ca
l
la

te
n

ci
e

s
n

o
rm

a
li
ze

d
 p

e
r

in
st

ru
ct

io
n

=
 (

to
ta

l
la

te
n

cy
 -

 n
r

o
f

in
st

ru
ct

io
n

s)
 /

 (
n

r
o

f
in

st
ru

ct
io

n
s)

Concurrent threads

Latency tolerance
for families of 100 threads

1 nop per thread
1-cycle instructions only

Fixed-latency instructions (FPU)
Variable-latency instructions (short)

Variable-latency instructions (medium)
Variable-latency instructions (large)

Figure 1: Latency tolerance exhibited by different types of
families, where every family creates 100 threads with dif-
ferent types of instructions and hence demonstrate different
latency tolerance.

0 10 20 245 455 460 470

Sig(5,5,5)

Clock

A
de

pe
nd

en
t f

am
ily

 o
f t

hr
ea

ds

Thread executing

Thread waiting

Start thread

End thread

Read shared

Write shared

Allocate familyCreate family

Sync family Release family

Wakeup event

Read/write by parent

Interleaving

Sig(x,y,z) = Signature(AIS_SINGLE_LATENCY, AIS_FIXED_LATENCY, AIS_VARIABLE_LATENCY)

Sig(5,0,0)
Sig(10,0,0)

Sig(10,0,0)
Sig(10,0,0)

0

0

1

2

3

Thread ID
Sig(5,5,5)

Sig(10,5,5)

Sig(5,5,10)

Sig(5,10,5)

Sig(5,0,0)

Sig(0,0,5)

Sig(0,5,0)

Fix
ed

 la
te

nc
y

fa
ct

or
 =

 2

Va
ria

bl
e

la
te

nc
y

fa
ct

or
 =

 6

Fix
ed

 lat
en

cy
fac

tor
 =

8

Var
iab

le l
ate

ncy
 fa

cto
r =

 33

Original: (5 x 5) + (5 x 5) + (5x5) = 75
Adapted: (5x5) + (5x5x2) + (5x5x6) = 225

Figure 2: Abstraction of instruction execution using signa-
tures with the latency factor model.

5 HIGH-LEVEL SIMULATION OF
FINE-GRAINED LATENCY
TOLERANCE

The abstracted instruction execution in case of signa-
ture is shown in fig. 2. We analyze threads based on
the indices of the signature i.e. we look for the thread
with minimum single latency, minimum fixed latency
and minimum variable latency instructions, making
sure that instructions of zero are not counted as the
minimum. The minimum number of instructions are
multiplied with the number of active threads and the
latency factor (c.f. section 5.1) in order to compute
the warp time. The active threads are the number of
threads which have instructions in any of the three cat-
egories of AIS. The simulation time is then advanced
and the numbers in the signatures are reduced as per
the calculated minimum number of instructions. This
process is summarized into three steps:

1. Calculate time warp:
Time warp = min(Sig[0](1::n))�n0

+min(Sig[1](1::n))� f ixed latency f actor�n1

+min(Sig[2](1::n))� variable latency f actor�n2
; where nx is the number of active threads such that
sig[x]> 0 with x 0, 1 or 2 and min(Sig[x](1::n))> 0.

2. Advance simulated time:
Clock+= Time warp

3. Reduce workload of all active threads:
Sig[0](1::n) �= min(Sig[0])&
Sig[1](1::n) �= min(Sig[1])&
Sig[2](1::n) �= min(Sig[2])

These steps continue to execute until the signa-
tures become of the form Sig(0;0;0), in which case
the event of the thread is completed and the applica-
tion model is notified to send the next event.

5.1 The latency hiding factor

The latency factor model gives approximate numbers
that can be used to adapt the throughput of the pro-
gram based on the type of instructions executing and
the number of threads in the pipeline. It is derived
from the experiment explained in section 4. The la-
tency hiding factor model is given in table 2. With
one active thread we have a high latency factor for
fixed and variable instructions. But as the number of
active threads increases, the latency hiding factor de-
creases. With 8 active threads the latency factor for
fixed latency instructions is 1. The variable latency
factor can also be 1, depending on the distribution of
an application on the Microgrid and the frequency of
having a full pipeline during the execution. Given that
our benchmarks are not very well distributed, we as-
sume that the variable latency factor when there are 8
or more active threads is 2.

With 8 or more active threads the throughput of
the program is similar to One-IPC HLSim, because
there are always enough active threads during the
computation of warp time and therefore the through-
put is always computed as one cycle per instruction
i.e. the assumption of One-IPC HLSim. The pri-
mary contribution of the latency factor model is that
it adapts the throughput of the program as per the dy-
namic number of active threads during the execution
of the program.

6 RESULTS

6.1 Ratio in simulated time

In order to see the difference in simulated time be-
tween Signature-based HLSim and MGSim, we com-
pute the ratio of cycles in both simulators and com-
pare this with the same ratio using One-IPC HLSim.

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

512

Table 2: The latency factor model.

Active Fixed latency Variable latency
threads factor factor

1 8 33
2 4 16
3 3 11
4 3 7
5 2 6
6 2 4
7 2 3

8 or more 1 2

 0

 5

 10

 15

 20

 25

3
2

6
4

1
2

8

2
5

6

5
1

2

1
0

2
4

2
0

4
8

4
0

9
6

8
1

9
2

1
6

3
8

4

3
2

7
6

8

6
5

5
3

6

R
a
ti

o
 (

si
m

u
la

te
d
 t

im
e
)

FFT data size

(Cycles in MGSim/Cycles in One-IPC HLSim)
(Cycles in MGSim/Cycles in Signature-based HLSim)

Figure 3: Ratio in simulated time of FFT using different
data sizes and executing on 64 simulated cores.

These ratios are shown in fig. 3 for different data
sizes. A value close to 1 means the simulators pre-
dict the same execution time.

The Signature-based HLSim is always more accu-
rate than One-IPC HLSim. The difference is more
significant with smaller data sizes, where there are
fewer threads per core. The difference is no more than
a factor of 3 for data sizes less than 512 over 64 cores,
which gives less than 4 threads per core. In this range
the dynamic adaptation of the simulator, where the
number of threads moderates the cost of long latency
operations shows the best accuracy. As the number
of threads increases the latency tolerance factor is re-
duced and the results of the two simulators converge
and both are about a factor of 10 out.

Two potential factors may contribute to the diver-
gence between MGSim and HLSim. The first is that
we do not limit the number of threads based on regis-
ter file size, so in this application we overestimate the
number of threads. Secondly, we are not considering
the differences in latency due to accessing different
levels of caches.

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
im

u
la

te
d
 t

im
e
 (

C
y
cl

e
s)

Window size

MGSim
One-IPC HLSim

Signature-based HLSim

Figure 4: The effect of changing the window size on the
execution of FFT of data size 28 executing on 23 cores.

6.2 The effect of window size on
simulated time

The simulated time of One-IPC HLSim, Signature-
based HLSim and MGSim in executing FFT of size
28 on 23 cores based on the window size in the range
of 1 to 16 is shown in fig. 4. We can see that the sim-
ulated time in One-IPC HLSim remain a straight line,
because the throughput is not adapted. In Signature-
based HLSim the simulated time is not the same as
in MGSim, but the behavior of simulated time based
on different number of active threads is similar in both
simulators. In both simulators, when there is only one
active thread, the simulated time is very high, but as
the number of threads increases the simulated time
starts to decrease because of latency tolerance. In ei-
ther case, the throughput as one instruction per cycle
is not achieved, because of the overhead of concur-
rency and long latency operations. This is an impor-
tant contribution of the Signature-based HLSim, as
based on the number of active threads and number of
instructions it has adapted the throughput. We do not
see this adaptation when there are always more than 8
active threads, but this experiment shows that the sim-
ulation technique presented in this paper improves the
accuracy of the high-level simulator.

6.3 Simulation time

We execute a Mandelbrot set approximation of dif-
ferent complex plane sizes and different number of
cores. FFT is memory-bound and Mandelbrot is
compute-bound. Which means that Mandelbrot is
more accurate in Signature-based HLSim than FFT.
Since we are not simulating memory operations in
Signature-based HLSim, there is no effect on the sim-
ulation time. We show the simulation time of Mandel-
brot to give a different application for evaluation. We
show two experiments of simulation time; in the first

Signature-based�High-level�Simulation�of�Microthreaded�Many-core�Architectures

513

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 4 8 16 32 64

S
im

u
la

ti
o
n
 t

im
e
 (

S
e
co

n
d
s)

Number of cores

MGSim
One-IPC HLSim

Signature-based HLSim

Figure 5: Simulation time in the execution of Mandelbrot
set (Complex Plane: 1000� 1000) on different number
of cores of One-IPC HLSim, Signature-based HLSim and
MGSim.

 0.01

 0.1

 1

 10

 100

 1000

 10000

10x10 31x31 100x100 316x316 1000x1000

S
im

u
la

ti
o
n
 t

im
e
 (

S
e
co

n
d
s)

Size of complex plane

Front-end HLSim (window size 256)
One-IPC HLSim (core 1)

One-IPC HLSim (cores 64)
Signature-based HLSim (core 1)

Signature-based HLSim (cores 64)
MGSim (core 1)

MGSim (cores 64)

Figure 6: Simulation time of Front-end HLSim, One-IPC
HLSim, Signature-based HLSim and MGSim in computing
Mandelbrot of different complex plane sizes.

experiment we execute a particular complex plane
on different number of cores. The simulation time
(i.e. simulation speed) of Mandelbrot approximation
set of complex plane size 1000�1000 across a range
of simulated cores is given in fig. 5. The x-axis shows
the number of simulated cores and the y-axis shows
the simulation time in the range of program execu-
tion. We can see that the simulation time of Signature-
based HLSim is the same as One-IPC HLSim, indi-
cating that we can achieve accuracy without affecting
the simulation speed.

In the second experiment we execute a complex
plane of different sizes using selected number of
cores. We show this experiment in different simula-
tors in fig. 6. The x-axis shows the size of the com-
plex plane and y-axis shows the simulation time in the
range of program execution.

In order to see the speedup in simulation time
by Signature-based HLSim compared to MGSim, we
compute the ratio in simulation time of simulating 1
and 64 cores in MGSim divided by the simulation
time in simulating 1 and 64 cores in Signature-based
HLSim respectively. This ratio is shown in fig. 7. The
ratio for Signature-based HLSim against MGSim re-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

10x10 31x31 100x100 316x316 1000x1000

R
a
ti

o
 i
n
 s

im
u
la

ti
o
n
 t

im
e

Size of complex plane

[Seconds in MGSim/Seconds in One-IPC HLSim] (core 1)
[Seconds in MGSim/Seconds in One-IPC HLSim] (cores64)

[Seconds in MGSim/Seconds in Signature-based HLSim] (core 1)
[Seconds in MGSim/Seconds in Signature-based HLSim] (cores64)

Figure 7: Ratio in simulation time of One-IPC HLSim
and Signature-based HLSim against MGSim in computing
Mandelbrot of different complex plane sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

G
O

L(
T
o
ru

s)

G
O

L(
G

ri
d
s)

FF
T

LM
K

7

M
a
n
d
e
lb

ro
t

M
a
tr

ix
M

u
lt

ip
ly

S
m

o
o
th

IP
C

Signature-based HLSim MGSim

Figure 8: Average IPC achieved by MGSim and Signature-
based HLSim.

mains exactly the same as One-IPC HLSim demon-
strating that the simulation speed is not affected.

6.4 IPC - Simulation accuracy

Instructions Per Cycle (IPC) shows the efficiency
(Not performance, as that also depends on the clock
frequency) of the architecture. For each core the IPC
should be as close to the number of instructions the ar-
chitecture is capable of issuing in each cycle. In case
of the Microgrid, with single issue, the IPC of each
core should be as close to 1 as possible. However, for
c cores, the overall IPC may be up to c, i.e. each core
may issue 1 instruction per cycle. We can also mea-
sure the average IPC, i.e. sum the IPC of c cores di-
vided by c. We show the IPC achieved by HLSim and
MGSim in fig. 8. We can see that in FFT, LMK7 and
Mandelbrot we see a closer IPC by Signature-based
HLSim to MGSim. In others the IPC is not closer
by different simulators, because of the different num-
ber of large latency operations and also because of the
dynamic state of the system.

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

514

 0

 500

 1000

 1500

 2000

G
O

L(
T
o
ru

s)

G
O

L(
G

ri
d
s)

FF
T

LM
K

7

M
a
n
d
e
lb

ro
t

M
a
tr

ix
M

u
lt

ip
ly

S
m

o
o
th

K
IP

S

Signature-based HLSim MGSim

Figure 9: Average IPS achieved by MGSim and Signature-
based HLSim.

6.5 IPS - Simulation speed

Instructions per second (IPS) is used to measure the
basic performance of an architecture, as we can mea-
sure the simulated instructions per second using a
known contemporary processor. The average IPS (av-
erage across all the cores) achieved by Signature-
based HLSim and MGSim is shown in fig. 9. We
can see that the IPS of MGSim is approximately 100
KIPS, and the IPS of Signature-based HLSim is ap-
proximately 1 MIPS. Different simulators used in in-
dustry and academia with their simulation speed in
terms of IPS are: COTSon (Argollo et al., 2009)
executes at 750KIPS, SimpleScalar (Austin et al.,
2002) executes at 150KIPS, Interval simulator (Carl-
son et al., 2011) executes at 350KIPS and Sesame (Er-
bas et al., 2007) executes at 300KIPS. MGSim (Bou-
sias et al., 2009) executes at 100KIPS. Compared to
the IPS of these simulators the IPS of HLSim is very
promising. It should be noted that the IPS of sim-
ulation frameworks given above are simulating only
few number of cores on the chip. In MGSim and
HLSim we have simulated 128 cores on a single chip.
Given this large number of simulated cores on a chip,
1 MIPS indicates a high simulation speed.

7 CONCLUSION

Signatures are introduced to estimate the number of
instructions in abstracted categories of basic blocks.
These signatures are then used to model the dynamic
adaptation of the program based on the currently ac-
tive threads per core. In this paper, we have simu-
lated load operation as a variable latency operation
and have treated store operation as single latency op-
eration. Also we have ignored the simulation of reg-
ister files in HLSim. In the future work we would
like to simulate store and register files in HLSim and
analyze if the accuracy can further be improved.

REFERENCES

Argollo, E., Falcón, A., Faraboschi, P., Monchiero, M., and
Ortega, D. (2009). Cotson: infrastructure for full sys-
tem simulation. SIGOPS Oper. Syst. Rev., 43(1):52–
61.

Austin, T., Larson, E., and Ernst, D. (2002). SimpleScalar:
An Infrastructure for Computer System Modeling.
Computer, 35(2):59–67.

Bammi, J. R., Kruijtzer, W., Lavagno, L., Harcourt, E., and
Lazarescu, M. T. (2000). Software performance es-
timation strategies in a system-level design tool. In
Proceedings of the eighth international workshop on
Hardware/software codesign, CODES ’00, pages 82–
86, New York, NY, USA. ACM.

Bernard, T. A. M., Grelck, C., Hicks, M. A., Jesshope,
C. R., and Poss, R. (2011). Resource-agnostic pro-
gramming for many-core microgrids. In Proceed-
ings of the 2010 conference on Parallel processing,
Euro-Par 2010, pages 109–116, Berlin, Heidelberg.
Springer-Verlag.

Bousias, K., Guang, L., Jesshope, C. R., and Lankamp,
M. (2009). Implementation and evaluation of a mi-
crothread architecture. J. Syst. Archit., 55:149–161.

Carlson, T. E., Heirman, W., and Eeckhout, L. (2011).
Sniper: exploring the level of abstraction for scalable
and accurate parallel multi-core simulation. In Pro-
ceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and
Analysis, SC ’11, pages 52:1–52:12, New York, NY,
USA. ACM.

Corporation, D. E. (1992). Alpha Architecture Handbook.
Eeckhout, L., Nussbaum, S., Smith, J. E., and Bosschere,

K. D. (2003). Statistical simulation: Adding effi-
ciency to the computer designer’s toolbox. IEEE Mi-
cro, 23:26–38.

Erbas, C., Pimentel, A. D., Thompson, M., and Polstra,
S. (2007). A framework for system-level modeling
and simulation of embedded systems architectures.
EURASIP J. Embedded Syst., 2007:2–2.

Giusto, P., Martin, G., and Harcourt, E. (2001). Reliable es-
timation of execution time of embedded software. In
Proceedings of the conference on Design, automation
and test in Europe, DATE ’01, pages 580–589, Piscat-
away, NJ, USA. IEEE Press.

Jesshope, C. (2008). A model for the design and pro-
gramming of multi-cores. Advances in Parallel Com-
puting, High Performance Computing and Grids in
Action(16):37–55.

Jesshope, C., Lankamp, M., and Zhang, L. (2009). The
implementation of an svp many-core processor and
the evaluation of its memory architecture. SIGARCH
Comput. Archit. News, 37:38–45.

Jesshope, C. R. (2004). Microgrids - the exploitation of
massive on-chip concurrency. In Grandinetti, L., ed-
itor, High Performance Computing Workshop, vol-
ume 14 of Advances in Parallel Computing, pages
203–223. Elsevier.

Lankamp, M., Poss, R., Yang, Q., Fu, J., Uddin, I., and
Jesshope, C. R. (2013). MGSim - Simulation tools

Signature-based�High-level�Simulation�of�Microthreaded�Many-core�Architectures

515

for multi-core processor architectures. Technical Re-
port arXiv:1302.1390v1 [cs.AR], University of Ams-
terdam.

Poss, R. (2012). SL—a “quick and dirty” but working in-
termediate language for SVP systems. Technical Re-
port arXiv:1208.4572v1 [cs.PL], University of Ams-
terdam.

Uddin, I. (2013). Microgrid - The microthreaded many-core
architecture. Technical report, University of Amster-
dam. arXiv Technical report.

Uddin, I., Jesshope, C. R., van Tol, M. W., and Poss, R.
(2012). Collecting signatures to model latency toler-
ance in high-level simulations of microthreaded cores.
In Proceedings of the 2012 Workshop on Rapid Sim-
ulation and Performance Evaluation: Methods and
Tools, RAPIDO ’12, pages 1–8, New York, NY, USA.
ACM.

Uddin, I., van Tol, M. W., and Jesshope, C. R. (2011). High-
level simulation of SVP many-core systems. Parallel
Processing Letters, 21(4):413–438.

SIMULTECH�2014�-�4th�International�Conference�on�Simulation�and�Modeling�Methodologies,�Technologies�and
Applications

516

