
Recommendations for Impact Analysis of Model Transformations
From the Requirements Model to the Platform-independent Model

Dmitri Valeri Panfilenko1, Andreas Emrich1, Christian Meyer2 and Peter Loos1

1DFKI GmbH, Saarbrücken, Germany
2t.e.a.m. Unternehmensberatung AG, Eschborn, Germany

Keywords: MDA, Impact Analysis, M2M Transformations, Recommendations.

Abstract: Model transformations are the core component of MDA. They make it possible to transform models
between different levels of abstraction, which allows the implicit in-built knowledge to be passed on from
domain experts to the IT professionals. What is not considered by the OMG, are the consequences that
changes at each level cause to the other MDA levels, which could be estimated through impact analysis
techniques. For example, if the course of a procurement process in a company is to be changed, this would
be performed by the proper experts at the technical level. However, it is difficult at this time to estimate the
resulting changes at the following adjacent levels. This shortcoming needs to be addressed and proper
recommendation support for the impact analysis of model transformations has to be elaborated.

1 INTRODUCTION

This paper emphasizes the extensibility of MDA.
Extensibility is present partly due to the fact that
MDA relies on a variety of other OMG standards
(OMG, 2003; OMG, 2011a; OMG, 2011b), which
are usually also very extensive. Another reason for
this lies in the vague definition of the OMG. As
pointed out by critics, such as Greenfield et al., 2006
MDA focuses too much on the platform
independence as its main aspect, and leaves many
complex aspects of software development largely
unanswered.

This paper seeks to combine techniques from
impact analysis with recommender systems
approaches by using the cost models of the impact
analysis as design criteria for recommender
mechanisms. The paper will deliver a blueprint for
how to combine these techniques and to enable a
method of modelling support for MDA tooling.

The paper will shortly outline the shortcomings
of contemporary approaches and tools in this area in
section 2 and will then explain how impact analysis
can be used for model transformations in section 3.
Section 4 will discuss appropriate cost models for
transformations and shows how to integrate these
with a recommender systems approach for model
transformations. The paper will conclude with a
summary and an outlook on future implementations

and the potential benefits of the outlined approach.

2 RELATED WORK

2.1 Approaches

There is a number of approaches for impact analysis
of model transformations and accordingly different
surveys for their classifications (to name a few:
Czarnecki and Helsen 2006; Mens and Van Gorp,
2006; Sendall and Kozaczynski, 2003). The most
interesting feature-based survey has been made by
Czarnecki and Helsen, in which they have drawn the
following types of the model-to-model
transformation approaches: direct manipulation,
structure-driven, operational, template-based,
relational, graph-transformation-based, and hybrid.

All of the presented approach types have their
pros and cons: direct manipulation is very low-level
and requires user interaction; structure-driven is well
applied to generating Enterprise Java Beans along
with database schemas from UML models, but
unclear whether they are applicable to other kinds of
applications; template-based are particularly well-
suited for code generation and model compilation,
although not providing traceability out of the box;
relational seem to be most applicable to model
synchronisation scenarios, though may experience

428 Valeri Panfilenko D., Emrich A., Meyer C. and Loos P..
Recommendations for Impact Analysis of Model Transformations - From the Requirements Model to the Platform-independent Model.
DOI: 10.5220/0004971604280434
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 428-434
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

performance draw-backs depending on the
constraints to be solved; graph-transformation-based
are without doubt the most theoretically sound
though lacking the coverage of all of the possible
model transformation landscape; hybrid solutions
are mixing the other approach types depending on
the given transformation scenarios.

The existing model transformation approaches
describe extensively the features of the supposed
changes to be made. At the same time, there is a
seeming lack of process description, a kind of
workflow behind the scene that would provide a
guideline for the stakeholders for assessing the
changes made to the model and their propagation to
the adjacent modelling levels, which draws the
attention of this paper.

2.2 Tools

There are four tools we provide overviews for in this
paper, namely AndroMDA, PowerDesigner,
Rational family, and Modelio. For each of these
tools, the feature highlights are addressed first and
then the support for modelling on different MDA-
levels as well as for M2M-transformation and its
impact analysis are questioned.

AndroMDA (pronounced "Andromeda") is an
open source tool supporting many features including
UML modelling and deployment onto different
platforms. AndroMDA is basically a transformation
engine offering modelling support for PIM- and
PSM levels as well as transformation to code. The
impact analysis features are not explicitly supported
or mentioned.

Sybase provides a commercial modelling tool
PowerDesigner for enterprise architecture
modelling, which supports several modelling
techniques on different levels of abstraction as
conceptual, logical and physical. Overall, it is a
powerful tool offering modelling on the CIM-, PIM-
and PSM-levels as well as a bridge to the execution
environments through support of the BPEL export,
which in addition supports impact and lineage
analysis of the certain model artefacts.

IBM’s Rational family is a well-known
commercial tool family supporting modelling of the
different aspects of the enterprise architecture with
established standards like UML targeting different
programming languages. This tool offers support for
modelling on CIM-, PIM- and PSM levels with code
generation to different programming languages and
some support for horizontal and vertical traceability,
as well as a defined impact analysis workflow.

Modelio is a famous commercial modelling tool

with explicit model-driven development support,
which offers support for modelling on CIM-, PIM
and PSM-levels, for code generation to different
programming languages and some support for role
management in the team solution as well as
dependency diagrams for impact analysis of the
models.

3 IMPACT ANALYSIS OF MODEL
TRANSFORMATIONS

This section elicitates the obstacles to impact
analysis of model transformations. In particular,
importance has been put on the fact that the whole
information contained in the source model should be
preserved during a transformation to a target model
and all the transformations should also be
isomorphisms or at least bijective homomorphisms.

3.1 Challenges of the Model
Transformations

The following challenges during conducting of the
model transformations should be considered and be
taken into account. The typical solutions are stated
in each case (Stahl et al., 2007; Kleppe et al., 2003):

 Deal with Quantities – If there is a need for a
function of all or only certain elements of a list that
satisfy a predetermined condition, this has to be
realized somehow. In Java this can be done using a
loop that goes through the elements one by one,
which might be too cumbersome when the number
of elements is large. Typical transformation
languages allow this to be implemented significantly
easier through involvement of the declarative
programming statements (Becker, 2009).
 Deal with Cycles – There are already difficulties
if two artefacts of the source model, A and B, refer
to the same object C in the target model, which
could be solved by storing the target model artefact
Ct in a cache, checking that it already exists and
therefore not regenerating it. It gets even more
difficult when there are cycles. This means that
model X references model Y, which itself refers
back to X. This cannot be solved as in the first case
with the cache, since none of the states has been
initialized and thus none of them stored in the cache.
Transformation tools solve this problem using model
traces (Balzert, 1999).
 Debug Capability of the Transformation
Language – It is quite possible that a small change
in the source model causes enormous changes in the

Recommendations�for�Impact�Analysis�of�Model�Transformations�-�From�the�Requirements�Model�to�the
Platform-independent�Model

429

target model after the transformation without any
obvious reason (Bohlen, 2003; Brown, 2004). Thus,
the exact process of transformation needs to be
reconstructed in order to find the exact cause, for
which the modelling tool requires certain debugging
functionality.
 Identify Incremental Transformations – In the
case of adding information specific to the target
model, this information should be preserved after the
regeneration or new transformation. In Stahl et al.,
2007 they consider this to be of minor importance
because the technical effort should be enormous and
practice would show that this requirement plays no
decisive role.
 Support Bidirectional Transformations –
Those transformations impose special requirements:
they can be executed not only in one direction from
the source to the target, but also vice versa. There
are basically two ways to define a bidirectional
transformation. Firstly, there may be a collection of
transformation rules which are applicable in both
directions. Secondly, there can be two separate
collections of rules, each of them representing the
inverse of the other (Beltran, 2007).

3.2 Model Transformation Types

A significant influence on the extent of anticipated
changes and thus the expected costs have the
connections between objects in the source and the
target model. Thus, four different types of
relationships can be distinguished (Berg, 2006;
Jouault, 2006):
 Injection: a simple dependency of an element of
the target model from one element of the source
model.
 Scattering: the relations reach out from one
source element to at least two elements of the target
model.
 Tangling: one target element corresponds to at
least two elements from the source model.
 Crosscutting: a mixture of scattering and
tangling. At the same time, the target element is
influenced by at least two elements from the source
model and one of these source elements also
influences another target element.

This nomenclature takes into account possible
changes of the model artefacts from the source
model to the target model. Other models
transformation classifications are conceivable
(Czarnecki, 2006). The focus of this article is set on
exogenous bidirectional model transformations in
context of MDA, specifically between CIM, PIM
and further PSM levels.

3.3 Impact Analysis Process of Model
Transformations

An overview of the process of impact analysis can
be seen in Figure 1. In the first step, changes in the
real world are observed. For example, this can be a
process within the company to process customer
orders, whereas the aim is to accelerate the
processing of orders from existing customers. These
changes have to be reflected in the highest
modelling level of the company. Following the
example above, this could be an EPC (event-driven
process chain) for the process representation on the
CIM level. The planned changes are sketched and
conducted on this level, after which the actual
impact analysis can begin using various techniques
we abstract of at the moment (Arnold, 1993; Pohl,
2008). The results of the impact analysis reflect the
changes in the currently existing system on the PIM
level that have to be done and which consequences
this would have. With aid of these results, the
changes can be estimated, planned and conducted.
The impact analysis might not end at the PIM level
and could be propagated to the PSM level. In this
case one has to be sure of the correct analysis in the
first place, as the incorrect estimates would be taken
into account for the further steps, resulting in the
skewed model changes estimations. Apart from the
sketched analysis estimations of impact, volume,
explanations and execution more features could be
integral parts of the comprehensive analysis:
illustrations to the propagating changes in the
system, access to the changes history, suggestions to
the changes strategies, test of the system with the
executed changes and so on (Arnold, 1993).

Figure 1: Proposed Impact Analysis Process of Model
Transformations.

The ideal of the impact analysis for model
transformations would be not to execute the
transformation every time a change is made for the

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

430

obvious performances reasons depending on the size
of the model, but rather to run a procedure in order
to assess the largest possible impact on the models
of the same, the adjusting and the consequent
abstraction levels. For that we need means of
assessing the impact due to changes made in the
source model, which would give tangible cost
estimates and thus get a solid basis for the decision
making stakeholders.

As can be seen in Figure 1, changes have to be
assessed according to their impact, possible
interrelations among changes or the artefacts in
question and how possible change action plans could
be executed. In artefact-centric software
engineering, a common technique in impact analysis
to analyse, which artefacts are affected by certain
changes in the software. According to Arnold and
Bohner (Arnold, 1993) it is about “identifying the
potential consequences of a change, or estimating
what needs to be modified to accomplish a change”.
In literature three main types of impact analysis
techniques are considered, namely: traceability,
dependency and experiential analysis (Arnold,
1993). Traceability describes structural, global links
among artefacts (e.g. “class Person implements
Requirement R01), whereas dependency analysis
deeply analyses the code and assesses whether a link
constraint has been touched by a certain change or
not. Even then, situations can occur, in which this
cannot be determined automatically, so a fallback to
experience knowledge involving real people –
designers, programmers, etc. – is necessary to
correctly assess these changes.

In order to assess different, possibly conflicting
alternatives of a change, certain cost models need to
be defined. Costs can be seen as an abstract
terminology, as it could represent monetary costs or
metrics such as TTF (time-to-fix).

The following figure depicts how this could be
applied to model-driven architectures:

Figure 2: Impact and Cost Analysis for MDA Artefacts.

In this sketch, we have different artefacts
distributed over the different levels of MDA: The
CIM, PIM and PSM level. In this example, we
mainly consider the traceability links as means for
determining the artefacts affected by a single
change. This network of dependencies is represented
as a directed graph, e.g., as a code class may depend
on a design document, but not necessarily vice-
versa.

An artefact (C) is changed on CIM level. All
dependent artefacts (depicted in orange) that have
ingoing links to our artefact C or other dependent
artefacts constitute the relevant sub-graph for impact
analysis. In addition to Figure 2, artefact-specific
analysis can reveal, whether certain fit criteria are
met (e.g. if the proposed change is relevant at all for
the dependent artefact).

Using this sub-graph, all relevant nodes (i.e.
artefacts) and edges (e.g., transformation tasks, tests)
have to be analysed regarding their costs. For
simplification purposes, in our example we only
show the costs related to artefacts.

A naive approach could add up the costs
recursively, in order to determine the total costs of a
change. However, this would not consider resource
constraints (e.g. artefact A2 can only be changed by
the developer that is on holidays) or opportunity
costs (e.g., if we have a combined assessment of
costs and time). In such cases, it is advisable to take
this to a new level and to apply techniques from
recommender systems research to this problem field.

The next section will explain how this basic
impact and cost analysis can be used to provide
recommendation support for model transformations
in MDA.

4 MODEL TRANSFORMATION
RECOMMENDATIONS

4.1 Cost Models of Model
Transformations

Depending on the underlying cost model there
should be different model changes graphs resulting
from the defined model transformations and the
previous model change traces.

Recommender system among others have two
major phases in their recommendation process:
filtering and ranking. Filtering refers to finding the
appropriate candidate objects for recommendations,
i.e., in our case model transformations. Ranking
comprises the evaluation of the different candidate

Recommendations�for�Impact�Analysis�of�Model�Transformations�-�From�the�Requirements�Model�to�the
Platform-independent�Model

431

objects according to multiple criteria and combines
them in a so-called ranking function that computes a
numerical score that denotes the relative usefulness
of the given candidate object in the given
recommendation scenario.

In our case, filtering could be realized by
applying state-of-the-art model traceability and
impact analysis approaches. They can determine
which artefacts are impacted by a change and can
derive appropriate change plans.

The ranking process would be rather more
difficult. Multiple criteria can be applied for
deciding which transformation alternatives are the
best. General change metrics could be included, but
also cost models for single artefact changes.
Moreover, testing and integration efforts for artefact
couplings could be a second degree impact that
needs to be assessed in terms of effort and costs.
This example could even be more complex, if an
outsourcing situation is given, where a company has
make-or-buy decisions, i.e., performing the change
themselves or delegating this task to a third
company. As these examples point out, the ranking
of such model transformation alternatives is highly
complex. At this point it is not clear, whether a
generic ranking function could be developed as a
best practice for the entire software industry, or
whether we need to develop tailorable and
customizable ranking models for such alternatives

4.2 Recommendations for Impact
Analysis of Model Transformations

This paper’s position refers to Gruhn et al., 2006,
who describe six following use cases. These use
cases would build a basis for the intended
application of the cost models recommendations to
the impact analysis of model transformations:
1. Refinement – An example is the case of
transformation between PIM and PSM (Gruhn,
2006). Here, the PIM is extended to include
platform-specific information and thus refines the
PSM (OMG, 2003). Furthermore is a transformation
from the analysis model to the design model is
thinkable, which both reside at the PIM level.
2. Abstraction – An important use case for
transformations (Gruhn, 2006). The development
process is not a waterfall one but rather an iterative
process which allows the review of artefacts at
different abstraction levels. Thus, a backward step
during the development might be necessary
(Frankel, 2003). The transformation ensures that the
abstract and the detailed models are synchronised
with each other (Mellor et al., 2004).

3. Migration – The transformations are used to
migrate a complete software system. It is necessary
if the technical platform changes, in which case the
transformation needs to produce a new system that
can be fully utilised without any restrictions and will
function properly. The more diverse the system
landscape, the more difficult this change and
therefore the transformation are (Gruhn, 2006).
4. Refactoring – This refers to „a change made to
the internal structure of software to make it easier to
understand and cheaper to modify without changing
its observable behaviour.“ (Fowler, 2008) Here,
transformations are used to extract common features
through generalisation or restructuring. The visible
behaviour of the software, however, always remains
unchanged.
5. Optimisation – Here, like in the refactoring, the
functions of source and target are equivalent.
Optimisation aims for the improvement of the space
or run-time efficiency of a program. Unlike
refactoring, though, optimisation is automated in its
execution and based on a target platform (Gruhn,
2006).
6. Changing the Presentation Form – This covers
the previously described M2T trans–formations, in
which a graphical model is converted to a textual
one (Gruhn, 2006). This type of transformation is
most efficient when it takes place automatically, like
for instance when changing class names in a UML
diagram that immediately reflects in the underlying
repository model (Mellor et al., 2004).

The directions of model transformation are
summarised in Figure 3.

Figure 3: Transformation directions (according to Gruhn
et al., 2006).

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

432

5 CONCLUSIONS AND FUTURE
WORK

The first contribution of this article is the
construction of a conceptual framework based on
established research, which allows the expected
changes to be categorised. Furthermore, it analyses
what changes are to be expected as a result of
transformations within and between model levels
from the requirements model to the platform-
independent models. This allows for better
evaluation and planning of the expected
consequences when future changes take place.

As a future work, it is promising to investigate
impact analysis for transformations on the PIM
level, such as by the transformation in PIM4Agents,
which was proposed in the SHAPE project.
Likewise, the impact of transformations on the PSM
and the code level are also worth consideration.

An automatic process of impact analysis should
be considered as the potential final goal of the
research. This would enable it to deliver very early
in an information change process, in which all
business sectors are involved. In combination with
the actually defined importance of observed effects,
this would constitute a complete recommender
system for deciding whether a change is reasonable
or not feasible at all. Such a system, however, would
require a lot of effort to be implemented in such a
way that the impact analysis would produce accurate
and reliable results in the real world. Before this
point can be reached, however, there is still an
enormous amount of research and development
effort that needs to be done. This especially relates
to the research that has to be carried out regarding
ranking functions for model transformation
alternatives and the alignment of multiple ranking
criteria.

ACKNOWLEDGEMENTS

This research was co-funded by the European Union
in the frame of the SHAPE FP7 project (ICT- 2007-
216408). The authors would like to express their
acknowledgments to SHAPE colleagues.

REFERENCES

Arnold, S. R.; Bohner, A. S., 1993. Impact Analysis –
Towards A Framework for Comparison. In: Card, N.
D.: Proceedings of the Conference on Software

Maintenanc. IEEE Computer Society, Washington DC.
Balzert, H., 1999. Lehrbuch der Objektmodellierung –

Analyse und Entwurf. Spektrum Akademischer
Verlag, Heidelberg et al.

Becker, J.; Mathas, C.; Wilkmann, A., 2009.
Geschäftsprozessmanagement. Springer, Berlin et al.

Beltran, J. C. F., 2007. Modellgetriebene Software-
entwicklung: MDA und MDSD in der Praxis. J.
Trompeter (Ed.). Entwickler. Press.

van den Berg, K., Tekinerdogan, B., & Nguyen, H. (2006,
July). Analysis of crosscutting in model
transformations. In ECMDA-TW Traceability
Workshop Proceedings (No. A219, pp. 51-64).

Bohlen, M., & Starke, G., 2003. MDA entzaubert.
OBJEKTspektrum, 3, 52-56.

Brown, A. W., 2004. Model driven architecture: Principles
and practice. Software and Systems Modelling, 3(4),
314-327.

Czarnecki, K., & Helsen, S. (2006). Feature-based survey
of model transformation approaches. IBM Systems
Journal, 45(3), 621-645.

Frankel, D. S., 2003: Model Driven Architecture –
Applying MDA to Enterprise Computing. Wiley,
Indianapolis.

Fowler, M., 2008: Refactoring – Improving the Design of
Existing Code. Addison-Wesley, Boston et al., 22nd
edition.

Greenfield, J.; Short, K., 2006: Software Factories –
Moderne Software-Architekturen mit SOA, MDA,
Patterns und agilen Methoden. moderne industrie
Buch, Bonn.

Gruhn, V.; Pieper, D.; Rötters, C., 2006: MDA® –
Effektives Software-Engineering mit UML 2® und
EclipseTM. Springer, Berlin et al.

Jouault, F., & Kurtev, I., 2006. Transforming models with
ATL. In Satellite Events at the MoDELS 2005
Conference (pp. 128-138). Springer Berlin Heidelberg.

Kleppe, A.; Warmer, J.; Bast, W., 2003: MDA Explained –
The Model Driven Architecture: Practice and
Promise. Addison-Wesley, Boston.

Mellor, S.; Scott, K.; Uhl, A.; Weise, D., 2004: MDA
Distilled – Principles of Model-Driven Architecture.
Addison-Wesley, Boston et al.

Mens, T,; Van Gorp, Pieter, 2006: A Taxonomy of Model
Transformation. Electr. Notes Theor. Comput. Sci.
152: 125-142.

Object Management Group (Ed.), 2003. MDA-Guide
Version 1.0.1. http://www.omg.org/cgi-bin/doc?omg/
03-06-01, Retrieved on 2013-11-04.

Object Management Group (Ed.), 2011a. OMG Unified
Modelling Language® (OMG UML), Infrastructure
Version 2.4.1. http://www.omg.org/spec/UML/2.4.1/
Infrastructure/PDF/, Retrieved on 2013-11-04.

Object Management Group (Ed.), 2011b. Query/View/
Transformation Specification – 1.1. http://www.omg.
org/spec/QVT/1.1/PDF/, Retrieved on 2013-11-04.

Object Management Group (Ed.), 2013. Committed Com-
panies and their Products. http://www.omg.org/mda/
committed-products.htm, Retrieved on 2013-11-04.

Pohl, K., 2008: Requirements Engineering – Grundlagen,

Recommendations�for�Impact�Analysis�of�Model�Transformations�-�From�the�Requirements�Model�to�the
Platform-independent�Model

433

Prinzipien, Techniken. dpunkt.verlag, Heidelberg, 2nd
edition.

Sendall, S., & Kozaczynski, W., 2003. Model
transformation: The heart and soul of model-driven
software development. Software, IEEE, 20(5), 42-45.

Stahl, T.; Völter, M.; Efftinge, S.; Haase, A., 2007:
Modellgetriebene Softwareentwicklung – Techniken,
Engineering, Management. dpunkt.verlag, Heidelberg,
2nd edition.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

434

