
Development of Open Source Software, a Qualitative View in a
Knowledge Management Approach

Luã Marcelo Muriana¹, Cristiano Maciel² and Ana Cristina Bicharra Garcia¹
1Institute of Computing, Federal Fluminense University UFF, Voluntários da Pátria Street, Niterói, Brazil

2Department of Computing, Federal University of Mato Grosso – UFMT, Cuiabá, Brazil

Keywords: Collective Intelligence, Open Source, Knowledge Management, Quality Assurance, Software Engineering,
Community.

Abstract: Open Source Software (OSS) is software that users have freedom to modify and share it with no cost
whatever their intentions. A major feature of this kind of software is its development in public, where the
collective intelligence (CI) is applied and the knowledge is shared. The communication is a fundamental
activity to these settings of development. To support the communication process, knowledge management
(KM) stimulates the communication and the information sharing among people. This way, a good
communication among users that are stimulated and coordinated addresses the final quality of the open
source project. This work surveys how KM stimulates quality assurance in developing open source settings.
It focuses on users, on the communication among them, and on the documentation they can help to write.

1 INTRODUCTION

In a traditional process of software development,
people stay in the same place developing activities
inherent to its process. But, in the last years
Distributed Software Development (DSD) emerged,
in which various organizations started to develop
software with a team of people from different
geographical areas.

In addition to this concept there is another one of
CI, that for Malone et al. (2009) means that different
groups work together on a way that seem intelligent.

CI has a new meaning in the last years,
especially with the advance on the web application
2.0. The diffusion of these simple and easy
technologies lets users interact. Currently, the users’
contributions are treated as a valuable factor for CI.
Users are also encouraged to contribute with
content, interact with other users and exchange

knowledge (Hwang et al., 2009). For DSD, the
organizations follow standards established by
themselves and traditional software engineering. In
contradiction to that, CI in Information Technology
area emerges in a scenario that OSS is highlighted.

OSS software is made available to the users to
change and distribute the software for any purpose,
and with no cost (GNU, 2013). Free software is the
type of software that the author can attain a license

for operation, copy, change and distribution. These
licenses are called copyleft. Copyleft is less
restrictive than copyright license, but various free
licenses impose restrictions on free code; for
example the joint use with closed code; or the
imposition of obligations as “changes on distributed
code should be available as source code”.

One of the characteristics of free software is the
public development, using CI.

However, when people think of Distributed
Development of OSS (DDOSS) some issues about
the software engineering emerge: How is the process
of software engineering executed? For Audy and
Priklandnicki (2008) the methods of software
engineering are structured approaches that give
details of ‘how’ develop good software. For the
authors, the methods involve a set of steps: planning
and project estimation, requirements analysis, data
structure design, architecture and program algorithm
processing, coding, testing, maintenance, and others.

But in environments of DDOSS, according to
Noll and Liu (2010) and Scacchi (2002), traditional
software engineering is not applied.

If classic software engineering is not applied in
open source development process, standards of
quality in software would be rarely followed in
these. For Shaikh and Ceron (2007), communication
and effective management, programming language

391Marcelo Muriana L., Maciel C. and Cristina Bicharra Garcia A..
Development of Open Source Software, a Qualitative View in a Knowledge Management Approach.
DOI: 10.5220/0004962903910399
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 391-399
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

and the choice of test strategy are three factors
which most affect the quality of OSS.

Communication, the focus of this research, can
be regarded as a fundamental activity for
development environments. But, as it does not
happen in the physical presence, it should be
encouraged and facilitated, once it is one of the
problems of CI and, consequently, the understanding
of information (Hwang et al., 2009). These problems
affect the quality of the final product developed.

The management of knowledge, aiming to
support this communication process, encourages the
communication and information sharing. Good
communication with users who are encouraged and
coordinated, affects the final quality of the open
source project.

This study therefore aims to analyze through
literature research, how OSS can be developed
throughout the process practices to assist the quality
assurance of software and how to tailor it to the
reality of these communities. The focus of this
analysis is the study of what the authors consider the
basis of open source communities, users and
communication among them. Then, this analysis
about the quality is based on KM, a subject which
encourages the diffusion of knowledge.

The other part of this study is structured as
follows: in Section 2 some studies related to these
issues are presented; Section 3 considers open
source communities; Section 4 discusses software
engineering and the documentation on the
development environment; Section 5 deals with
social media tools and how it supports the
communication among people; and Section 6
discusses quality assurance of software based on
KM and members of open source communities.

2 RELATED STUDIES

This study had the aim to analyze open source
communities and to know how to assure quality of
software considering KM on communication process
among users. For that purpose many studies have
been carried out.

Zhao and Elbaum (2000) conducted a survey that
aimed to: i) find out techniques of quality assurance
used in open source development, ii) determine
factors that affect quality assurance activities; iii)
understand the perception of open source developers
regarding quality assurance. The study was limited
to the process activities as the whole process, instead
of each step, being focused on software tests.

Tosi and Tahir (2013) analyzed 33 open source

projects well known to understand how developers
develop quality assurance on their open source
projects. However, as with Zhao and Elbaum (2000)
the focus was on Software Test.

Michlmayr et al. (2005) although, presented
factors that contribute to quality assurance, as
problems that interfere on its practice, the focus was
on the process as itself. The communication among
the users and the information sharing among them
was not considered as an important factor for quality
assurance.

Spinellis and Szyperski (2004) conducted a study
concerning how the reuse of coding can contribute
to quality assurance because this practice promotes
more developers to see the same code, detecting
problems and then correcting it.

Shaikh and Ceron (2007) investigated factors
that have influence on open source quality and the
relation among these factors. From this study,
authors mentioned three main factors about basic
characteristics of OSS quality: access quality,
development quality and design quality. Although
some criteria as availability and document updating
have been mentioned, the authors did not report the
importance of user participation and the
communication process among them for this
activity.

Aberdour (2007) presented an overview
concerning the assurance quality process during
whole open source development. However, KM was
not mentioned.

Concerning the quality, no other study was found
that considered the basis of open source community,
users and communication, or KM as a fundamental
theory for these communities.

3 OPEN SOURCE
COMMUNITIES

OSS is a type of software which users can change
and distribute with/without cost for any purpose
(GNU, 2013). In a developer’s perspective, Spinellis
and Szyperski (2004) says that OSS is the
combination of two important properties: visibility
of source code, and the right to derive the product
from the original. OSI (2013) commented that open
source does not mean that the user owns the access
to the source code of one software. In accordance
with GNU (2013), OSI (2013) says that a program is
free software when users may execute it for any
purpose and study how the program works and adapt
it to their needs. Also, users may redistribute copies

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

392

of the program.
Totally disagreeing to closed codes, and joining

the criteria defined by OSI (2013), groups of people
started to discuss the development of OSS in
communities created exclusively for this purpose.
Open Source Development is a revolutionary
development model (Bayrak and Davis, 2003)
because it allows people that are geographically
distributed to work simultaneously, or if they wish,
to work on the same project with common interests.

It can therefore be concluded that open source
communities use the concept of CI as a tool to
develop a joint work (Malone et al., 2009). For
Porruvecchio et al. (2010), OSS can be seen as a
result of sharing knowledge among people from a
community. In many existing characteristics of
communities that use CI as knowledge source,
Hintikka (2008) and Hwang et al. (2009) highlight:
the opinion diversity among people who join the
group, existing tools that support knowledge
sharing, participant independence and
decentralization, which is linked to DDS.

However, open source communities are not
focused on software documentation, and because of
this the documents tend to be incomplete. The
biggest focus of these communities is the universe
around the code development (Porruvecchio et al.,

2010). Therefore, the documentation needs to exist.
It is not necessary to describe the whole system, but
it needs to be able to clarify users doubts (Berglund
and Priestley, 2001).

4 SOFTWARE ENGINEERING
FOR OSS

Sommerville (2007) says that the process of
software development consists of four basic steps:
software specification, software development,
software validation and the evolution of the
software. Although, Noll and Liu (2010), Scacchi
(2002) and Noll (2008) affirm that supporters of
open source development do not use all the basic
steps. Some studies have then been made to
understand how the activities of software
engineering are made on open source development,
when the traditional process is not applied.

Studies carried out by Noll and Liu (2010) and
Noll (2008) aimed to understand how the
requirements are elicited, documented, accepted and
validated in small open source projects. Through the
analysis of elicitation in the web browser Firefox, it
was found that the majority of the characteristics are

elicited by developers based on their own
experiences, or the knowledge of the users’ needs.
The authors highlighted that requirements are
informally discussed and its validations happen
through discussion between the developers, and
rarely include users. The authors say also that the
documentation consists of only discussion files.

Scacchi (2002) focused on how requirement
engineering is applied on OSS development. The
study analyzed four open source communities and in
its results realized that many types of activities that
are used on this kind of development are equivalent
to traditional requirement engineering. However, to
support these activities, the authors mentioned web
applications such as email and boards are used as
support tools. The authors highlight the use of
informal language to describe the requirements.
They allege that participants of the development
community comprehend and easily condense the
idea when the information is written in a succinct
and informal manner. Lethbridge et al. (2003)
confirmed this observation saying that as the more
abstract the passages of the documents are, the more
valuable and useful they are considered by the users.

Therefore, there is no process of open source
development that is accepted worldwide (Acuna et
al., 2012). Each community open source uses its
peculiarity for the process, even though all of them
have the user as an important source of knowledge.

4.1 Software Documentation

To obtain high quality software, even if there are
documents to support the process, is not easy.
However, the documentation can improve the
quality of software code and the communication
between the members of a community (Dagenais
and Robillard, 2010).

It is highlighted that, in this study, when
documentation is mentioned it can refer to
traditional documentation of software engineering
and to documents as manuals which describes how
to use a specific product.

To understand in which circumstances the
documentation of open source communities are
created and kept, Dagenais and Robillard (2010)
analyzed 19 documentations of ten open source
projects and interviewed writers and readers of those
documents. The first proviso is that creating and
keeping these documents represents a big effort,
because it is not known which factors are considered
when documents are used and how these documents
influence the project.

For Treude and Storey (2011), developers had a

Development�of�Open�Source�Software,�a�Qualitative�View�in�a�Knowledge�Management�Approach

393

negative view of the documentation once written, it
only occurred because of the necessary official
requirements, and then it was almost always
incomplete and not actualized. In addition, Parnin et
al. (2005) said that when a document is written it
quickly becomes old and is therefore distrusted by
the users who do not use it.

To aggravate the situation, Lethbridge et al.
(2003) regarded that sometimes the documents are
not updated. The changes are registered only when
the alterations present a big difference from the
actual documentation

As an attempt to reduce the problems of an
incomplete or delayed documentation, Berglund and
Priestley (2001) said that even the documentation is
of a specific activity, it can be opened to the
community involved on that software through email
lists and forums, where readers and writers can
debate and dialogue questions. As many users are
involved in this writing process, the discussions
performed have more probability to be a source for
new requirements to be elicited, letting the
documentation evolve. Parnin et al. (2005) reported
that people are capable to produce a great source of
content and that this documentation is seen by many
users.

Therefore, the key factor for documentation and
for the whole process of OSS development is the
communication. In open source communities the
communication is fundamental to improve the group
work (Porruvecchio et al., 2010).

5 SOCIAL MEDIA AND
COMMUNICATION

In a study analyzed by Parnin et al. (2005), the
authors highlighted that because of an incomplete
documentation the users search for interactive media
on the web to try to solve problems that arise during
the development and/or use of some tool.

For Begel et al. (2010), social media has changed
the way that people collaborate and share
information. According to the authors, the traditional
process of software engineering involves a big time
spent at work for communication developers. In an
attempt to decrease this problem, some web
applications (email, file sharing, and communities)
have the ability to improve workers’
communication. With web 2.0, the use of social
relations expanded the production and sharing
information.

For the sharing information process, the

communication between the members has a
fundamental role, increasing and improving the
work group, promoting a collaborative environment.
The collaboration occurs in all levels of community
participants and has as an advantage the diversity of
skills, proposals and suggestions, and the
development of higher quality software
(Porruvecchio et al., 2010).

However, open source development requires a
framework that allows the community to cooperate,
develop and capture the qualities of this type of
development (Berglund and Priestley, 2001). The
communication in these groups can occur supported
by various tools: chats, forums, wikis, email lists and
others. These tools support idea exchange, helping
request and information sharing, as an important
indicator for the success of open source projects
(Porruvecchio et al., 2010).

Through social media, a new way for knowledge
exchange emerged (Treude et al., 2011). A diversity
of studies analyzed various tools of web 2.0 which
are highlighted under software engineering view, as
follows:
 Blog: a website where structure is quickly

updated from additions that are called articles.
Many subjects can be discussed and readers can
provide feedback. Feedback helps to improve
software. Treude and Storey (2011) said that
blogs are easily created and kept, but are not
always enough.

 Social Networks: social structures composed by
people or organizations, linked themselves by
one or many kind of relations, who share
common values and objectives.

 Communities Q & A (Questions and Answers):
Consists in environments focused on questions
and answers. Websites Q & A became
knowledge databases distributed among many
people, differently skilled and specialized
(Treude et al., 2011). Q&A environments are
tools which help the discussion process for the
development of software as a product. Parnin et
al. (2005) highlighted that the speed to get
answers on these environments is very quick.
Regarding software development, this kind of
website promotes the knowledge exchange
among programmers via the internet, and
according to the authors it can substitute the
documentation when it is scarce or non-existent
(Treude et al., 2011).

 Wikis: A specific kind of document collection in
hypertext or collaborative software used to create
it. Dagenais and Robillard (2010) said that
among many advantages of this tool, it is an easy

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

394

way to create documentation which allows
anyone to contribute to the documentation.
However, through prior studies, authors affirm
that wikis are abandoned by the users because
they are not controlled environments compared
to others and, consequently, allow SPAM and
information inconsistency.
Beside the applications mentioned before,

Berglund and Priestley (2001) mentioned email lists
that as Q&A environments help the discussion
process for the development of software. Begel et al.
(2010) also highlighted the use of microblogs that
have reduced the number of characters in each
interaction, and because of that it is a tool used by
the participants to share links, make appointments,
keep the developers aware of the activities, etc

Social media present various advantages on
software engineering (Begel et al., 2010):
 Social networks normally provide a complete

environment for communication.
 On these social media, work teams of software

engineers expose their goals and ideas.
 Users who join social networks would know how

to communicate and coordinate to develop a
product successfully, requiring tools that assist
the management and transfer of knowledge, and
let mutual collaboration occur. The idea is that
the community increases because the knowledge
distribution becomes more efficient and quick,
minimizing misleading information among
coworkers who cannot meet in person.
The authors said that a condition for social media

to bring benefits is the planned use of those tools.
In open source communities, KM is knowledge

sharing and free access to information. For the
sharing step, the communication among the
members has a fundamental role, increasing and
improving the work group and then promoting a
collaborative environment (Porruvecchio et al,
2010).

6 SOFTWARE QUALITY IN
OPEN SOURCE
DEVELOPMENT

Each open source project is different from the others
and has its own particulars (Porruvecchio et al,
2010). However, the basis of these projects is the
same: users and communication among them. By the
way, the authos affirmed that users should be
competent to understand and contribute with the
highest level of details on these projects. Then, KM

aims sharing of knowledge and mutual help.

6.1 Knowledge Management

KM is an activity supported by learning processes
by capturing and reusing past experiences. It is a
unique activity because of the focus on each person
and his/her ability, which are systematically shared
in the organization (Parnin et al., 2005).

In the context of OSS development, sharing is
the way that more people can assist the development
process of software (Rus and Lindvall, 2002).

The knowledge can be captured in many ways:
traditional manuals, videos, wikis, blogs etc. (Treude
and Storey, 2011).There are many kinds of
knowledge, and then a variety of tools should be
used to deal with this great source of knowledge.

In a study carried out by Porruvecchio et al.
(2010), an email list of developers of 70 Open
source projects that were hosted on SourceForge.net
was analyzed. The authors said that the
understanding of communication of members of this
group can help to improve efficiency and quality of
projects. The results showed that each member
communicates to at least one other user, that there
are one or two developers who assume the main
roles on the project and that there is one user who
communicated to the whole community. The last
user has the role of managing the knowledge among
all community members once the virtual
environment became a learning space through
requests for explanations and/or others members’
assistance.

Therefore, the authors checked the importance of
peer support on these communities. Peer support
consists on a mutual helpful relation between two
members. Endres et al. (2007) affirmed that peer
support is fundamental for open source communities
and report its essentiality to increase knowledge
sharing.

Rus and Lindvall (2002) said that organizations
should use knowledge learned from past projects to
decrease time and cost in the development process
of new products. Although the authors noted this
affirmation for organizations of software
development, it can be applied to open source
communities once individual experience of users can
be converted to knowledge for the development of
new projects.

Therefore, KM has a fundamental role in
practices of open source communities (Endres et al.,
2007), improving quality of performance, since they
promote an important contribution to build common
knowledge basis (Porruvecchio et al, 2010).

Development�of�Open�Source�Software,�a�Qualitative�View�in�a�Knowledge�Management�Approach

395

6.2 Users

A basic element for open source communities is the
user. It is through the users and their interests that
these communities develop their projects.
Porruvecchio et al. (2010) said that certain groups of
people are always part of a community and
providing the bases around a growing project.

Although the authors stated that participation in
open source community is open to everyone who
wishes, they highlight that control it is necessary.
One method pointed by them is the distribution of
levels of participation in the community: some users
have more permissions than others, but anyone who
wants to join the community is allowed. Then, a
social structure is pointed as a tool to accomplish
this control (Berglund and Priestley, 2001).

Porruvecchio et al. (2010) separated user group
into five levels: Users, Advanded Users, Errors
Repairers, Developers, and Manager.

Along the same creating thoughts of a social
structure in an open source community Spinellis and
Szyperski (2004) reports the Onion Model, which
divides users into four levels: common users, error
reporters, developers and core team?

Regardless of the social structure adopted in an
open source community, it is important to realize the
role of these users in those groups. Porruvecchio et
al. (2010) said that the developers discuss problems
they find during the development of a particular
feature or during a bug repair, or while users request
help to solve difficulties of using the software, or
warn about errors and bugs. Therefore, dealing with
such a wide variety of contributors, there is a great
sharing of knowledge and, consequently, the project
tends to be more powerful (Khanjani and Sulaiman,
2011).

According to Porruvecchio et al. (2010) and
Khanjani and Sulaiman (2011), the participation of
all kinds of users is encouraged as a practice that
should be encouraged on development
environments, regardless of the reasons that lead the
user to interact in these communities.

In a study carried out by Parnin et al. (2005),
they proposed a model of crowd documentation in a
large group of contributors which collaborate to the
documentation of API, the authors showed that the
documentation can emerge from questions and
answers. This also happens because the proposed
model encourages the participation of users through
the idea of awarding the best answer. Therefore, it
supports the process of quality assurance.

According to Dagenais and Robillar (2010), in a
study about how OSS documentation is created and

kept, the community is encouraged to join the
written process through questioning. These
questions help to repair bugs and then update the
documentation. The authors stated that community
feedback is essential because it helps to localize
which part of the document needs to be clarified.

However, Khanjani and Sulaiman (2011)
highlighted that to have many volunteers in open
source development requires a centralized
organization to coordinate activities and do
maintenance on the product. The author also stressed
that users help to improve the quality with more
correctness, completeness, safety, and quality
requirements, which justify the use of a social
structure proposed by Porruvecchio et al. (2010) or
by (Spinellis and Szyperski, 2004).

Therefore, for users to share knowledge, and
together, support the quality of the final product, the
communication is the starting point to develop an
efficient team (Porruvecchio et al., 2010).

6.3 Quality Assurance

Currently, software has been one of the most
requested products on the market. “The concern
about quality has become an essential requirement.
This is a basic idea to ensure software functionality
with minimal errors, defects and greater satisfaction
on quality expectations” (Maia, 2003).

Pressman (2000) said that the quality of software
is defined as the conformity to explicit functional
requirements and specified performance, following
standards for development of documents and follow
good practice of software engineering.

For open source development, developing with
quality depends on two factors: code revision and
testing data (Khanjani and Sulaiman, 2011). For
Shaikh and Ceron (2007), the access to the code is
fundamental for open source development, as it
allows the developers to have a high quality
contribution and makes the code available for
anyone to analyze it and detect bugs. To support
quality the seeking of various tools as emails’ list
and tools of management settings can be used
(Khanjani and Sulaiman, 2011). However, the
authors say that when we think about quality, some
aspects should be considered: level of service to be
improved, productivity and satisfaction of final user.
If these aspects are considered in software
development, the system efficiency for users and
developers will increase, and productivity also, once
users and developers are motivated to develop better
products and to find problems on the code
developed.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

396

However, for Khanjani and Sulaiman (2011),
seeking process for quality assurance on this kind of
development has some problems:
 There is no formal design for OSS development

and poor designs have poor codes and therefore
poor quality. The authors state that the
communication process and an appropriate
structure are important, and it attracts developers
to cooperate, but it is necessary to be attractive;

 The lack of knowledge of community
participants to repair bugs;

 The quality can be affected by the lack of
documentation. The documentation is focused on
the programming style desired, which will assist
new users to know the system and understand the
modifications and evolution on the code.
Michlmayr et al. (2005) added problems of open

source development as lack of volunteers, whicj
consist in a problem that some projects need to deal,
mainly the unpopular ones. The majority of
volunteers are only aimed at the code development.
There are not many people who want to help with
tests. Besides, the communication is another
problem which brings negative impacts to quality,
for example when bugs are not correctly reported.

Regarding documentation on knowledge of
community members and communication among
users tend to help with solving previously reported
problems.

Berglund and Priestley (2001) said that the
written process of documentation of many projects
can be elaborated using discussion topics of users.
These topics guide the documentation providing
information and then the documentation obtained in
the final process is focused on the user and its
quality tends to increase. However, care must be
taken to not transform the documents on a
repository, hindering the user to find the desired
information.

As a development perspective that states free
code, the communication among the members of
these communities needs to be facilitated
(Porruvecchio et al., 2010).

The connection among the members creates a
network in which sharing information facilitates
goal achievement and problem resolution
(Porruvecchio et al., 2010). In this way, KM
becomes the basis to promote sharing information as
common practice in these environments. The
participants have a variety of roles in open source
communities, and their activities are
complementary: they trust each other to improve the
final product. It is important to maintain the contact,
share information and give/get feedback. Raymond

(1999) said that a high quality level must be
attributed to the level of relation between the
members of a community.

Management and knowledge transference are
challenging activities that are essential to integrate
new collaborators in a project (Treude and Storey,
2011). However the authors report a study which
says that the documentation is not always useful and
is almost always outdated, making knowledge
transference difficult.

The number of messages exchanged among the
members in a community is an indicator of success
for the project as it shows interest of the community
on its development. In this way, an effective
communication tool is fundamental in these
environments (Porruvecchio et al., 2010).

In a study carried out by Parnin and Treude
(2011), it was found that blogs are the most common
means of communication covering almost 90% of
the subjects of this theme. The authors analyzed the
types of posts and found that the majority were
regarding tutorials followed by experience reports.
The analysis of the posts also showed that 81% of
the posts contained comments, building
interrelationships between authors and users. This
interaction resulted in improvements on code and
documentation.

Therefore, the importance of KM in development
environments was shown because it encourages the
sharing of information and then the good
communication among the members. Rus and
Lindvall, (2002) affirmed that sharing knowledge is
a risk prevention strategy to that is generally
ignored.

7 CONCLUSIONS

This study aimed to present a discussion about free
software communities and KM in these
communities, concerning the process of open
source software and its peculiarities, to ensure the
quality of the product developed. The study was
based on the purpose of CI and KM, to input quality
throughout the process of software development on
factors that are considered primordial for this study,
users and communication among them.

Users are the main reason to open source
development exists. If they do not fell themselves
motivated and encouraged to make part of the open
source community, as mentioned, the final quality
can be affected. As many studies reported, it is
important to encourage users’ participation, and for
that, to create a hierarchy among the users to

Development�of�Open�Source�Software,�a�Qualitative�View�in�a�Knowledge�Management�Approach

397

determine their participation and efficient ways to
promote good communication among the
community participants.

The communication among the community
members are fundamental to the DDS and thus, it
needs some ways to provide the interaction among
users. Through several social midias, users exchange
knowledge, and it can improve the quality of the
software. So, KM, besides just promoting the
communication among member of the community,
must support the knowledge exchange, which can be
used for diverse purposes, but it is worth
highlighting that do not mind its purpose, its
existence is a factor that assists the process of
quality assurance.

Quality Assurance is an activity that must be
considered throughout the development process, in
free or proprietary software. In this way,
mechanisms that promote the interaction among
users should be able to promote the exchange
knowledge.

REFERENCES

Aberdour, M. 2007. Achieving Quality in Open-Source
Software. In Software, IEEE, vol.24, no.1, pp.58,64.

Acuna, S. T., Castro, J. W. and Dieste, O. 2012. Juristo,
N., A systematic mapping study on the open source
software development process, Evaluation &
Assessment in Software Engineering (EASE 2012),
16th International Conference on , vol., no., pp.42,46,
14-15.

Audy, J. and Priklandnicki, R. 2008. Desenvolvimento
Distribuído de software. Rio de Janeiro, Elsevier.
<http://books.google.com.br/books?id=znis1KYslRA
C&printsec=frontcover#v=onepage&q&f=false>
Accessed in 29/03/2013.

Bayrak, C. and Davis, C. 2003. The relationship between
distributed systems and open software development.
Commun. ACM 46, 12 (December 2003),99-102.

Begel, A., DeLine, R. and Thomas Zimmermann. 2010.
Social media for software engineering. In Proceedings
of the FSE/SDP workshop on Future of software
engineering research (FoSER '10). ACM, New York,
NY, USA, 33-38.

Berglund. E. and Priestley, A. 2001. Open-source
documentation: in search of user-driven, just-in-time
writing. In Proceedings of the 19th annual
international conference on Computer documentation
(SIGDOC '01). ACM, New York, NY, USA, 132-141.

Dagenais, B. and Robillard, M. P. 2010. Creating and
evolving developer documentation: understanding the
decisions of open source contributors. In Proceedings
of the eighteenth ACM SIGSOFT international
symposium on Foundations of software engineering
(FSE '10). ACM, New York, NY, USA, 127-136.

Endres, M. L., Endres, S. P., Chowdhury, S. K. and
Intakhab Alam 2007. Tacit knowledge sharing, self-
efficacy theory, and application to the Open Source
community. In Journal of Knowledge Management,
Vol. 11 Iss: 3, pp.92 - 103.

GNU, 2013. O que é Software Livre? < http://
www.gnu.org/philosophy/free-sw.html> Accessed in
14/06/2013.

Hintikka, K. A. 2008. Web 2.0 and the collective
intelligence. In Proceedings of the 12th international
conference on Entertainment and media in the
ubiquitous era (MindTrek '08). ACM, New York, NY,
USA, 163-166.

Hwang, Y. C., Yuan, S. T. and Weng, J. H., 2009. A
study of the impacts of positive/negative feedback on
collective wisdom– case study on social bookmarking
sites. In Journal Information Systems Frontiers,
Springer, Volume 13, Issue 2 , pp 265-279.

Khanjani, A. and Sulaiman, R. 2011. The process of
quality assurance under open source software
development, Computers & Informatics (ISCI). In
IEEE Symposium on, vol., no., pp.548,552, 20-23
March 2011.

Lethbridge, T.C., Singer, J. and Forward, A. 2003. How
software engineers use documentation: the state of the
practice. In Software, IEEE, vol.20, no.6, pp.35,39.

Maia, J. R. C. 2003. Garantia a Qualidade de Projeto
Orientado a Objeto. Project Management Institute.
Santa Catarina.<http://www.euax.com.br/system/
attachments/4/original/2006.013Metricas_software.pdf
?1265047553> Accessed in 10/09/2011.

Malone, T. W., Laubacher, R. and Dellarocas, C. 2009.
Harnessing Crowd: Mapping the Genome of
Collective Intelligence. Working Paper no. 2009-001,
MIT Center for Collective Intelligence.

Michlmayr, M., Hunt, F., Probert, D. 2005. Quality
Practives and Problems in Free Software Projects. In
Proceedings of the 1st International Conference on
Open Source Systems. Genova, Italy, 24-28. <
http://oss2005.case.unibz.it/Papers/47.pdf:> Accessed
in 08/06/2013.

Noll, J. 2008. Requirements Acquisition in Open Source
Development: Firefox 2.0 In IFIP International
Federation for Information Processing, Volume 275;
Open Source Development, Communities and Quality;
Barbara Russo, Ernesto Damiani, Scott Hissam, Björn
Lundell, Giancarlo Succi; (Boston: Springer), pp. 69–
79.

Noll, J. and Liu, W. 2010. Requirements elicitation in
open source software development: a case study. In
Proceedings of the 3rd International Workshop on
Emerging Trends in Free/Libre/Open source Software
Research and Development (FLOSS '10). ACM, New
York, NY, USA, 35-40.

OSI, 2013. The Open Source Definition.
<http://opensource.org/docs/osd> Accessed in
14/06/2013.

Parnin, C. and Treude, C. 2011. Measuring API
documentation on the web. In Proceedings of the 2nd
International Workshop on Web 2.0 for Software

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

398

Engineering (Web2SE '11). ACM, New York, NY,
USA, 25-30.

Parnin, C., Treude, C. Grammel, L. and Storey, M. 2005.
Crowd Documentation: Exploring the Coverage and
the Dynamics of API Discussions on Stack Overflow
<http://www.cc.gatech.edu/~vector/papers/CrowdDoc-
GIT-CS-12-05.pdf> Accessed in 15/05/2013.

Porruvecchio, G., Uras, S. and Concas, G. 2010.
Knowledge management aspects in open source
communities. In Proceedings of the 9th WSEAS
international conference on Telecommunications and
informatics (TELE-INFO'10), V. Niola, J. Quartieri, F.
Neri, A. A. Caballero, F. Rivas-Echeverria, and N.
Mastorakis (Eds.). World Scientific and Engineering
Academy and Society, Stevens Point, Wisconsin,
USA, 52-60.

Pressman, R. S., 2000. Software Engineering – A
Practitioner’s Approach, 5º ed. McGraw-Hill
International, London.

Raymond, E. S. 1999. The Cathedral and the Bazaar.
Sebastopol, CA: O’Reilly & Associates.

Rus, I. and Lindvall, M. 2002. Knowledge management in
software engineering, Software. In IEEE, vol.19, no.3,
pp.26,38.

Scacchi, W. 2002. Understanding the requirements for
developing open source software systems. Software. In
IEE Proceedings - , vol.149, no.1, pp.24,39.

Shaikh, S. A. and Ceron, A. 2007. Towards a quality
model for Open source Software (OSS). <
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.
1.1.97.1973&rep=rep1&type=pdf.> Accessed in
01/06/2013.

Sommerville, 2007. “Engenharia de Software São Paulo”.
Pearson Adisson-Wesley. Brazil, 7th edition.

Spinellis, D. and Szyperski, C. 2004. How is open source
affecting software development?. In Software, IEEE,
vol.21, no.1, pp.28,33. DOI: 10.1109/
MS.2004.1259204.

Tosi, D. and Tahir, A. 2013. A Survey on How well-know
Open Source Software Projects are Tested. In
Communications in Computer and Information
Science. Springer, Volume 170, 42-57.

Treude, C. and Storey, M. 2011. Effective communication
of software development knowledge through
community portals. In Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European
conference on Foundations of software engineering
(ESEC/FSE '11). ACM, New York, NY, USA, 91-101.

Treude, C., Barzilay, O. and Margaret-Anne Storey. 2011.
How do programmers ask and answer questions on the
web? (NIER track). In Proceedings of the 33rd
International Conference on Software Engineering
(ICSE '11). ACM, New York, NY, USA, 804-807.

Zhao, L. and Elbaum, S. 2000. A survey on quality related
activities in open source. In SIGSOFT Softw. Eng.
Notes 25, 3 (May 2000), 54-57.

Development�of�Open�Source�Software,�a�Qualitative�View�in�a�Knowledge�Management�Approach

399

