
Formalizing Artifact-Centric Business Processes
Towards a Conformance Testing Approach

Hemza Merouani1, Farid Mokhati2 and Hassina Seridi-Bouchelaghem3
1Departement of Mathematics and Computer Sciences, ReLa(CS)2 Laboratory, University of Oum El-Bouaghi,

Oum El-Bouaghi, Algeria
2Department of Mathematics and Computer Sciences, LAMIS Laboratory, University of Oum El-Bouaghi,

Oum El-Bouaghi, Algeria
3Department of Computer Sciences, LabGed Laboratory, University of Annaba, Annaba, Algeria

Keywords: Business Process Management, Data-Centric Business Processes, Business Artifact, Maude-Strategy
Language, Formalization, Validation by Simulation, Conformance Testing.

Abstract: Recently, Artifact-Centric Business Processes have emerged as an approach in which processes are centred
on data as a “first-class citizen”. A key challenge faced by such processes is to develop effective
mechanisms that support formal specification, validation and verification of their static and dynamic
behaviours i.e., the data of interest and how they evolve. We present, in this paper, a novel approach that
allows on one hand, formalizing Artifact-Centric Business Process Models described in UML as an
executable formal specification in the Maude and its strategy language and, on the other hand, testing
whether the implementation of such models is conformant to its specification using all possible scenarios
that are described as Maude strategies. One of the main reasons for using Maude-Strategy language is due to
its execution environment in which the use of a wide range of formal methods is facilitated.

1 INTRODUCTION

Business Process Management (BPM) is “the
discipline that combines knowledge from
information technology and knowledge from
management sciences and applies this to operational
business processes” (Weske, 2012). Business
processes are the cornerstone of BPM; a business
process (BP), by definition, is “a collection of
activities that takes one or more kinds of input and
creates an output that is of value for the customer”
(Hammer, 1993). BPs occur in almost all
organizations, such as schools, government
agencies, business, hospitals, etc. and often in the
form of routine tasks in the daily life such as
shopping, banking, shipping and checking in/out
books from libraries.

During the last two decades, BPM has received
extensive attention due to its potential for
significantly improving enterprise productivity and
diminution costs. Being widely adopted by industry,
both researchers and practitioners in the BPM
community have focused only on studying control
flow aspects that define how a BP is supposed to

operate, but giving little importance (or none at all)
to the information produced as a consequence of the
process execution. A common drawback of such
modelling notations (such as BPMN, EPCs, Petri
Nets etc.) is being activity centric i.e., lacking the
connection between the process and the data
manipulated during its executions. This reflects also
in the corresponding verification techniques, which
often abstract away from the data component. This
problem affects many contemporary process-aware
information systems, incrementing the amount of
redundancies and potential errors in the development
phase (Solomakhin et al., 2013).

To tackle this problem, IBM introduced data-
centric business process models that give data a
foundational role in the context of business process
design (Nigam and Caswell, 2003). In particular,
such models are based around Business Artifacts
(BA) and their lifecycles. BA, sometimes referred as
a business record, “is a concrete, identifiable, self-
describing piece of information through which
business stakeholders add value to the business”.
They are key business-relevant objects that combine
both data and behavioural properties that are used as

368 Merouani H., Mokhati F. and Seridi-Bouchelaghem H..
Formalizing Artifact-Centric Business Processes - Towards a Conformance Testing Approach.
DOI: 10.5220/0004951803680374
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 368-374
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

primitive driving the process modelling.
(Nigam and Caswell, 2003) defined operational

specifications of a business artifact, and from there
many research efforts, methodologies and meta-
models have originated. Furthermore, the formal
foundations of the artifact-centric paradigm are
being investigated (Gerede et al., 2007)
(Bhattacharya et al., 2007) in order to capture the
relationship between processes and data and to
support formal reasoning.

In fact, the lack of formalism and rigor in
existing artifact-centric design models often leads to
ambiguities and different interpretations. Those
weaknesses combined with the inherent complexity
of business processes management systems generate
business processes without any rigorous
conceptualization and many problems in their
development process. Using formal notations to
specify behaviour of artifact-centric business process
models makes it possible to produce precise
description. This also offers a better support to their
verification and validation process.

In the setting of artifact-centric business process
modelling, there are three levels in the specification
of the solution for a given process:
 Definition of the data involved in the process,
 Identification of the basic actions that manipulate

those data, and
 Specification of how those basic actions must be

used by the process to reach the goal.
BALSA framework (Bhattacharya, 2009) is an

artifact-centric design methodology which is based
on the definition of a Business Operation Model
(BOM). These latter are defined across four explicit
inter-related but separable dimensions: (1) Business
Artifacts, (2) Lifecycles, (3) Services, and (4) the
Associations of services to artifacts. BOMs serve as
basis for system implementation and they are used
as input for the conceptual flow and workflow
realization phases. More recently, (Estañol et al.,
2013) identified the UML diagrams that can be used
to represent a process from an artifact-centric
perspective following the BALSA framework. The
importance of their contribution lies in the fact that
UML is a high-level, technology-independent
standard in the world of conceptual modelling and,
in our opinion, it can be automatically translated into
Maude (Clavel et al., 2011) and the translation can
be used for reasoning purposes.

Maude is based on a sound and complete logic
called rewriting logic (Meseguer, 1992).
The advantages of using Maude in this context are
many. First of all, it supports concurrent object-
oriented computation. These properties of rewriting

logic make it an ideal framework to support business
artifact formalization. Secondly, since Maude is
based on (conditional) rewrite rules, it is very natural
to express the evolution of an artifact from state to
another. And, last but not least, Maude allows us the
separation between the first two levels above, data
and actions (i.e. business entities with lifecycles) by
distinguishing at the logic level equations from
rewriting rules. Furthermore, Maude strategy
language (Martí-Oliet et al., 2009) completed
Maude by a third level of strategies to control and
determine the right sequencing of those actions.

In this paper, we advocate the feasibility and the
interest of: (1) Formalizing both static and
behavioural properties of BALSA framework
described in UML as an executable formal
specification with Maude and its strategy language
(2) Testing whether the implementation of such
models is conformant to its specification using all
possible scenarios which are described as Maude
strategies. We are concerned with conformance
testing approach for its ability to identify problems
in either finite or infinite state systems where the
state space becomes too large for model-checking.

The remainder of this paper is organized as
follows: In section 2, we give a general outline on
the major related works. We briefly present, in
section 3, the BALSA framework, Maude as well as
the Maude Strategy language. Section 4 presents our
approach. In section 5, we give some conclusions
and future work directions.

2 RELATED WORKS

In recent years, modelling, specification and analysis
of artifact-centric business processes have attracted a
lot of attention from the research community.

From modelling and specification viewpoint,
business process models are habitually the first
interface between business managers and software
engineers. Different formalisms and notations are
used to represent the four elements in the BALSA
framework, (i.e. business artifacts, lifecycles,
services and associations). A first challenge in this
perspective is to find: (1) a rich and flexible
modelling notation that provides understanding and
access to all facets of BALSA framework and, (2) an
appropriate formal notations which allows producing
rigorous and precise descriptions efficiently
supporting verification and validation process.
Table 1 gives a brief overview of some recent and
important works that deal with data-centric business
process modelling. In our work, we chose to

Formalizing�Artifact-Centric�Business�Processes�-�Towards�a�Conformance�Testing�Approach

369

combine the advantages of the graphical modelling
notation UML defined in (Estañol et al., 2013) and
the formal specification language Maude-Strategy in
a single technique.

From formal analysis perspective, little is
understood about artifact-centric business process.
In general, the verification problem is undecidable
because model-checking technique in the presence
of data as a “first class citizen” makes the set of
possible states infinite (Hull, 2008) (Gerede et al.,
2007) (Bhattacharya et al., 2007). In this paper, we
are concerned with testing technique. Testing can be
used for identifying errors in infinite state systems.
After validating the generated formal specification
written in the Maude-Strategy language, we can use
it for testing the conformity of the implementation
models to their specifications.

Table 1: Some formalism and notations used to represent
the four elements of BALSA framework.

 Artifact Lifecycle Service Association

B
ha

tta
ch

ar
ya

et

 a
l.,

 2
00

9 Entity-
Relationship
model
(ER)

State
Machine

Input,
Output, Pre-
condition &
Effects

Event
&Condition
&Action
(ECA) rule

H
ar

iri

et
 a

l.,

20
11

 Data Base
schema

State
Machine

Pre & Post-
Condition

Condition
&Action

D
eu

tsc
h

et
 a

l.,

20
11

 Attributes &
variables

Variable
Pre & Post-
Condition

Business
Rule

H
ul

l e
t a

l.,

20
11

Guard-
Stage-
Milestone
(GSM)

Guard-
Stage-
Milestone
(GSM)

/ /

Lo
hm

an
n

&
 W

olf
,

20
14

Petri Nets Petri Nets / Petri Nets

Es
tan

ol

et
al

.,
20

13
 UML Class

Diagram

UML
State
Machine

OCL
Contract

UML
Activity
Diagram

3 BASIC CONCEPTS

Before presenting the technical details of our
approach, we present in this section some
fundamental notions used in this study.

3.1 BALSA Framework in UML

In this sub-section, we give a brief description of the
four BALSA dimensions and theirs representation

using UML diagrams. For more details see
(Bhattacharya et al., 2009) (Hull et al., 2009) and
(Estañol et al., 2013).

3.1.1 Business Artifacts

The information models of business artifacts are
intended to hold all of the information needed in
completing business process execution. A business
artifact has an identity, a set of attributes and
relationship with other artifacts. In UML, a class
diagram is used to show the business entities and
how they are related to each other, represented as
classes and associations respectively. Each class has
a series of attributes.

3.1.2 Business Artifact Lifecycle

Lifecycles represent key stages in the evolution of
an artifact, from its creation to its final disposition
and archiving. Macro-lifecycles is represented as
UML state machine.

3.1.3 Service

Services are units of work that make changes to one
or more business artifacts. Typically, several
services are applied during each stage of the
lifecycle of an artifact. Services are specified by
means of an OCL operation contract which consists
in a set of input parameters and output parameters, a
pre-condition and a post-condition.

3.1.4 Association

Associations are used to relate services and artifacts
from the micro-level lifecycle of artifact; the goal is
to define the right sequencing of services execution.
In UML, activity diagram is used for specifying each
external event in state machine diagrams when each
service is represented as an action, arrows and
control nodes show the order in which actions have
to be executed.

3.2 Maude and Its Strategy Language

Maude (Clavel et al., 2011) is a specification and
programming language based on rewriting logic
(Meseguer, 1992) which allows the description of
concurrent systems, this type of logic unifies all
formal models of concurrency. The rewriting rules
are of the form RL: [t] -> [t’] if C, which
indicates that, according to rule RL, term t becomes
t’ if a certain condition C is verified, the condition
is also optional. Three types of modules are defined

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

370

in Maude. Functional modules allow defining data
types and their functions. System modules allow
defining the dynamic behaviour of a system. This
type of module augments the functional modules by
introducing rewriting rules. Finally, object-oriented
modules, offer a more appropriate syntax to describe
the basic entities of the object paradigm.

Once the Maude specifications become
executable, we must ensure that the rewriting
process does not go in undesired directions and
eventually terminates. Maude-Strategy language
(Martí-Oliet et al., 2009) can be used to control how
rules are applied to rewrite a term in an attempt to
control the non-determinism in the execution
process. Strategies are defined in a separate module
and they defined how those basic rewriting rules
must be used to reach the desired solution. Besides
providing basic strategies through the use of rule
labels, the strategy language permits combining
these strategies into more complex ones using
several combinators: concatenation (;), union (|),
and iteration (E* for zero or more iterations and E+
for one or more iterations). Additionally, there is the
combinatory orelse is a typical if-then-else. Given
a Maude system module M, the user can write one or
more strategy modules to define strategies for M.
Such strategy modules have the following form:

smod STRAT is
 protecting M .
 including STRATj .
 ...
 strat E1 : T11 ... T1m @ K1 .
 sd E1(P11,...,P1m) := Exp1 .
 ...
 strat En : Tn1 ... Tnp @ Kn .
 csd En(Qn1,...,Qnp) := Expn' if C
endsm

where M is the system module whose rewrites are
being controlled, STRATj are imported strategy sub-
modules, E1, ...,En are identifiers, and Exp1,...,Expn
are strategy expressions. The strategy rewriting
command is: srew T using E, which rewrites a
term T using a strategy expression E.

4 OUR APPROACH

Significant research challenge for data-centric
workflow is the integration of reasoning into various
stages of the business processes lifecycle. Due to the
lack of effective and efficient tools, business
processes management systems models in practice
are not designed using rigorous techniques nor
analyzed with verifiers, this leads to many issues

(Hull et al., 2009). Figure 1 illustrates the proposed
approach. Our long-term goal in this work is to
develop a novel methodology with sound tools to
design, formalize, implement and testing the
conformity of the implementation of such models to
their formal specifications. The dashed red bold-line
rectangle in the figure 1 correspond to the first steps
for reaching this goal that we advocate in this
section: (1) modelling, (2) formalizing the data-
centric business processes models, (3) validating the
generated formal specification and (4) generating the
tests cases from the validated formal specification.

Figure 1: The methodologies of our approach.

4.1 Modelling

Business process models are habitually the first
interface between business managers and software
engineers. Partly due to the traditional division of
academic disciplines it is often the case that in an
application context these two groups of people have
different technical backgrounds. As a result,
business process models that are understandable and
usable by one community are typically not
understandable and usable by the other. This leads to
significant communication problems, and a

Formalizing�Artifact-Centric�Business�Processes�-�Towards�a�Conformance�Testing�Approach

371

significant cost (Hull et al., 2009).
In our work, we chose UML to represent

business process models. The graphical modelling
notation UML is a high-level, technology-
independent standard in the world of conceptual
modelling. Outputs of this step are:
(1) UML class diagram shows the business artifacts
and how they are related to each other, (2) set of
UML state machines represent the macro-level
lifecycle of artifacts, (3) set of OCL contracts
represent services and (4) a set of UML activity
diagrams represent the micro-level lifecycle of
artifacts.

4.2 Formalisation Process

In this section, we present the translation process in
order to give a formal semantics of UML/OCL
concepts generated in the first step using Maude and
Maude strategy language. The table 2 summarize
correspondences between the concepts abstracted
from UML/OCL and Maude (strategy) language.

Thanks to the strong correspondence between
UML class diagram concepts and the one in Maude
language, the generation of Maude specification
from UML class diagram is easily made. Every
UML class and its attributes are formalized by a
class with a set of attributes in object-oriented
module of Maude. In addition, inheritance is directly
supported by a subclass declaration.

To define UML state machine diagram, we
propose the functional module Machine-Diagram.
This module mentions all states and actions
constituting the diagram that are defined in separated
STATE and ACTION modules. Furthermore it
includes the definition of two operations,
TargetState that determines the state destination
according to a state source and a condition, and the
AccomplishedAction operation to determine the
executed action according to a state and an event.
The latter is formalized by a Maude operation msg.

Our way of representing OCL constraints is by
means of (conditional or unconditional) rewrite rule
CRL labelled with service name which express: input
and output objects (i.e. instances of class),
eventually a preconditions states the condition that
must be true before executing the RL and the post-
condition indicates which attributes change in
certain objects after RL execution.

Since the goal of the activity diagram is to define
the right sequencing of services execution i.e.,
control flows, we propose using several Maude
strategy combinators for specifying them. Table 2
presents also the description of some elements of the

UML activity diagram concepts and the
corresponding formal semantics. Each task (service)
is already represented as rewriting rule. In this way,
sequence strategy shows the order in which RLs
have to be executed. OR-Fork and OR-Join will be
mapped using the conditional Maude strategy
orelse. A specific condition (guard) of the
conditional rewriting rules (CRL) determines which
path (rewriting rule) will be taken (executed). OR-
Fork (ORJoin) can be represented by a strategy
which expresses the concatenation between the
rewriting rule associated to the incoming segment
(outgoing segment) and one of the conditional
rewriting rules associated to the outgoing segments
(incoming segments). We can translate AND-Fork
and AND-Join in Maude strategy language using
union combinator (|). AND-Fork is translated into a

Table 2: Mapping from UML/OCL concepts to
Maude/Maude strategies specifications.

BALSA
Concept

Class Diagram
concepts

Maude Specifications

B
us

in
es

s
A

rt
if

ac
t

Class class C

Attributes
class C| a1 : S1, …,an :
Sn

Inheritance
Relation

subclass C’ < C

BALSA
Concept

State Machine
Diagram
concepts

Maude Specifications

B
us

in
es

s
A

rt
if

ac
t

L
if

ec
yc

le

State (fmod STATE is ... endfm)

T
ra

ns
it

io
n Event msg Evt :... -> Msg

Action (fmod ACTION is ... endfm)

BALSA
Concept

OCL Concepts Maude Specifications

S
er

vi
ce

Set of Input
Parameters

crl [service-name] :
< O1 : C1 / ListeAt1 > ...
< Om : Cm / ListeAtm >
=>
< O1 : C1 / ListeAt’1 > ...
< Om : Cm / ListeAt’m >
if <Condition> .

Set of Output
Parameters
Precondition
Post-
Condition

BALSA
Concept

Activity
Diagram
Concept

Maude Strategies Specifications

A
ss

oc
ia

tio
n

Task crl [service-name]

Control
Nodes

sd sequence: = RL1 ; RL2 ; RL3
sd ORFork:= RL1;(CRL2 orelse RLN)
sd ORJoin:=(CRL1 orelse RLN);
RLN+1
sd ANDFork := RL1 ; (RL2|...|RLN)
sd ANDJoin :=(RL1|RLN); RLN+1
....

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

372

strategy which expresses the execution of the
rewriting rule associated to incoming segment
followed by the concurrent execution (in Parallel) of
rewriting rules associated to the outgoing segments.

4.3 Validation by Simulation

Since Maude and its Strategy language are supported
by powerful rewrite engine (Clavel et al., 2011), the
formal specification produced in the previous step
benefits the access to the arsenal of generic tools for
rewriting logic engine, such as simulation, LTL
model checking, inductive theorem proving, etc.

The rewriting logic offers a great flexibility in
terms of simulation of a specification, in particular,
while choosing the initial configuration. Using all
the system’s description, we can validate a part of
the system without involving the rest. Maude
provides two commands for doing simulation:
rewrite and search. The first command
explores a possible execution path from an initial
state to another one. However, the second one
allows us to explore reachable state space in
different ways.

4.4 Conformance Testing Process

Starting from a validated Maude-Strategy formal
description of the Business process, the proposed
method allows, in the first step, analyzing this
description and extracting from it the possible
testing sequences representing the different possible
scenarios (i.e., the different strategies). These latter
are analyzed in order to extract the possible test
cases. Each test case contains input data and
expected results. For testing the conformity between
the implementation of the Business process and its
formal specification, we proceed to: (1) execute the
program under testing using the input data, (2)
compare the obtained results to the expected ones
using a test oracle. This latter represents a
mechanism that is used during testing to determine
whether software behaves correctly or not.
(3) Finally, a testing report is generated for helping
users to correct the potential errors (see figure 1).

5 CONCLUSIONS

In this paper, we have proposed a novel approach for
formalizing, validating and testing the data-centric
business process described in UML with the Maude-
Strategy language. This work in progress represents, in
fact, the first step towards developing an entire

methodology supported by sound tools to various
stages of the business processes lifecycle.

As future directions, we are working on the
development of an environment supporting the
proposed approach by using MDE (Model Driven
Engineering) techniques for implementing the
formalization process.

REFERENCES

Bhattacharya, K., Gerede, C., Hull, R., Liu, R., & Su, J.
(2007). Towards formal analysis of artifact-centric
business process models. In BPM (pp. 288-304).
Springer Berlin Heidelberg.

Bhattacharya, K., Hull, R., & Su, J. (2009). A data-centric
design methodology for business processes. Handbook
of Research on Business Process Modeling, 503-531.
IGI Global.

Clavel, M., Durán, F., Eker, S., Lincoln, P., Martı-Oliet,
N., Meseguer, J., & Talcott, C. (2011). Maude manual
(version 2.6). University of Illinois, 1(3), 4-6. USA.

Deutsch, A., Hull, R., Patrizi, F., & Vianu, V. (2009).
Automatic verification of data-centric business
processes. In Proceedings of the 12th ICDT (pp. 252-
267). ACM.

Estañol, M., Queralt, A., Sancho, M. R., & Teniente, E.
(2013). Artifact-Centric Business Process Models in
UML. In BPM Workshops (pp. 292-303). Springer
Berlin Heidelberg.

Gerede, C. E., Bhattacharya, K., & Su, J. (2007). Static
analysis of business artifact-centric operational
models. In SOCA (pp. 133-140). IEEE.

Hammer, M. (1993). Champy J. Re-engineering the
corporation: a manifesto for business revolution. 1st
edn. Harper Business, New York.

Hariri, B. B., Calvanese, D., De Giacomo, G., De
Masellis, R., & Felli, P. (2011). Foundations of
relational artifacts verification. In BPM (pp. 379-395).
Springer Berlin Heidelberg.

Hull, R. (2008). Artifact-centric business process models:
Brief survey of research results and challenges. In
OTM (pp. 1152-1163). Springer Berlin Heidelberg.

Hull, R., Damaggio, E., Fournier, F., Gupta, M., Heath III,
F. T., Hobson, S & Vaculin, R. (2011). Introducing the
guard-stage-milestone approach for specifying
business entity lifecycles. In WS-FM (pp. 1-24).
Springer Berlin Heidelberg.

Hull, R., Su, J., co-chairs, (2009). Workshop on Data-
Centric Workflows. Report of workshop Sponsored by
NSF. Arlington Virginia, USA.

Lohmann, N., & Wolf, K. (2014). From Artifacts to
Activities. In Web Services Foundations (pp. 109-
135). Springer New York.

Martí-Oliet, N., Meseguer, J., & Verdejo, A. (2009). A
rewriting semantics for Maude strategies. Electronic
Notes in Theoretical Computer Science, 238(3), 227-
247. Elsevier.

Meseguer, J. (1992). Conditional rewriting logic as a

Formalizing�Artifact-Centric�Business�Processes�-�Towards�a�Conformance�Testing�Approach

373

unified model of concurrency. Theoretical computer
science, 96(1), 73-155. Elsevier.

Nigam, A., & Caswell, N. S. (2003). Business artifacts:
An approach to operational specification. IBM
Systems Journal, 42(3), 428-445. NY, USA IBM.

Solomakhin, D., Montali, M., Tessaris, S., & De
Masellis,R. (2013). Verification of Artifact-Centric
Systems: Decidability and Modeling Issues.

Weske, M. (2012). Business process management:
concepts, languages, architectures. Springer.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

374

