
Implementation of Asynchronous Mobile Web Services
Implementation and First Usage

Marc Jansen1,4, Javier Miranda2 and Juan Manuel Murillo3
1Computer Science Institute, University of Applied Sciences Ruhr West, Tannenstr. 43, Bottrop, Germany

2GLOIN S.L. Cáceres, Spain
3Software Engineering Department, University of Extremadura, Badajoz, Spain

4Department of Media Technology, Linnaeus University, Växjö, Sweden

Keywords: Mobile Devices, Web Services, Asynchronous Services.

Abstract: Mobile devices are nowadays used almost ubiquitously by a large number of users. 2013 was the first year
in which the number of sold mobile devices (tablet computers and mobile phones) outperformed the number
of PCs’ sold. And this trend seems to be continuing in the coming years. Additionally, the scenarios in
which these kinds of devices are used, grow almost day by day. Another trend in modern landscapes is the
idea of Cloud Computing, that basically allows for a very flexible provision of computational services to
customers. Yet, these two trends are not well connected. Of course there exists already quite a large amount
of mobile applications (apps) that utilize Cloud Computing based services. The other way round, that
mobile devices provide one of the building blocks for the provision of Cloud Computing based services is
not well established yet. Therefore, this paper concentrates on an extension of an implementation that allows
to provide standardized Web Services, as one of the building blocks for Cloud Computing, on mobile
devices. The extension hereby consists of a new approach that now also allows to provide asynchronous
Web Services on mobile devices, in contrast to synchronous ones. Additionally, this paper also illustrates
how the described implementation was already used in an app provided by a business partner.

1 INTRODUCTION

Nowadays, the success of the Cloud Computing
business model cannot be ignored. This is mainly
due to the proliferation of small services deployed in
the cloud that are consumed massively. Proof of that
is the impressive economic growth experimented by
companies like Facebook (Facebook, 2013)
Instagram (Meijer, 2013), or Dropbox (Dropbox,
2013). Many studies show that, increasingly, this
consumption is generated from mobile devices. As
an example, Gartner predicts that mobile application
development projects targeting smartphones and
tablets will outnumber native PC projects by a ratio
of 4:1 by 2015 (Gartner, 2012). Undoubtedly this
fact is favoured by the effort expended by
manufacturers to provide mobile devices with
capabilities that were hardly imaginable a few years
ago.

However, the growing capabilities of mobile
devices and the interest they arouse in the industry
and consumers contrast with the secondary role to

which they are relegated in cloud applications.
Cloud services are conventionally based on pure
client-server architectures where mobile devices are
always assumed as clients. Thus, although current
mobile devices have enough power and capabilities
to support architectures in which they could also
behave as service providers (SaaS), not many efforts
have been done in designing such infrastructures.

Thinking about mobile devices as service
providers opens new horizons for the industry of
small cloud services (Raatikainen, et al., 2012 and
Guillén, et al., 2014). Nevertheless, the roadmap for
getting mobile devices providing services is not
without difficulties related to important aspects such
as security, privacy or mechanisms to deploy
services in them. In particular, this paper focuses on
the implementation needed to deploy Web Services
on mobile devices.

In an effort to get mobile devices capable of
providing SaaS some works (McFadden, et al., 2003,
Srirama, et al., 2006 and AlShahwan, et al., 2010)
have already proposed platforms to deploy Web

645Jansen M., Miranda J. and Murillo J..
Implementation of Asynchronous Mobile Web Services - Implementation and First Usage .
DOI: 10.5220/0004948906450651
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 645-651
ISBN: 978-989-758-019-2
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Services in them. Although such proposals have
made a valuable contribution, they still do not cover
specific issues such as the continuous connections
and disconnections of mobile devices with the
subsequent renewals of IPs. Moreover, while the
above proposals cover the essential aspects of the
Web Services they still left uncovered other aspects
that have proved very useful such as the support for
both synchronous and asynchronous invocations.

In previous works (Jansen, 2013a, Jansen, 2013b,
Guillén, et al., 2014 and Miranda, et al., 2013) the
authors presented an implementation that supports
the deployment of Web Services in mobile devices.
The use of proxies enabled support for connection
and reconnection of devices with IP renewals. Now,
this paper focuses on the necessity of both
synchronous and asynchronous invocations and how
they can be enabled in mobile devices. This equals
mobile devices with the potential offered by
conventional servers for deployment and invocation
of Web Services calls. Thus, mobile devices are
provided with capabilities not exploited so far
opening the door to a new generation of cloud
applications where mobile devices gain relevance.
As an example it is shown how the proposed
implementation has been used to build a M2M
messaging application.

The outline of the paper is as follows. Section 2
presents the context of the work. In section 3 the
necessity and benefits of both synchronous and
asynchronous Web Services invocations in mobile
devices is discussed. Section 4 proposes an
implementation of both invocation methods. Section
5 presents an experience of using the proposal for
the implementation of a M2M messaging app.
Finally, section 6 summarizes the conclusions and
future works.

2 STATE OF THE ART

The idea of providing Web Services on mobile
devices was probably presented first by IBM
(McFaddin, et al., 2003). This work presents a
solution for a specific scenario where Web Services
are hosted on mobile devices. More general
approaches for providing Web Services on mobile
devices are presented in (Srirama, et al., 2006) and
(AlShahwan, et al., 2010). In (Li and Chou, 2011),
another approach, focusing on the optimization of
the HTTP protocol for mobile Web Services
provisioning, is presented. Importantly, none of the
mentioned approaches manages to overcome certain
limitations of mobile devices, as demonstrated in the

next section.
Yet, these approaches do not overcome certain

limitations of mobile devices, e.g., permanently
changing networks, IP addresses from networks with
network address translation (NAT) or the fact that
mobile devices are usually not designed to be always
online (might be switched off, might have not
network connection, …).

An additional approach that covers these
problems, is presented in (Jansen, 2013a). This
approach utilizes a central proxy infrastructure, that
allows on the one hand to cover the mentioned
problems and on the other hand establishes a stable
infrastructure for mobile device to provide
standardized Web Services. As we will see in the
following sections, this central proxy infrastructure
could easily be extended in order to provide also
asynchronous Web Services on mobile devices.

Additionally, the work presented in (Jansen,
2013b) argues for a new perspective to Web
Services especially if those services are deployed to
mobile devices.

An alternative proposal for deploying services in
Mobile devices has been presented in (Guillén, et al.,
2014 and Miranda, et al., 2013). This work focuses
not only on technical issues but also on the kind of
services that could be served from mobile devices
and the new generation of applications they would
enable.

All the above works let the authors see the
potential of having Web Service in mobile devices
and the necessity of having them fully featured,
including asynchronous calls.

After contextualizing the presented work in the
context of the current research, the next section will
start describing the basic difference between
synchronous and asynchronous service requests.

3 ASYNCHRONOUS VERSUS
SYNCHRONOUS WEB
SERVICES

In both, programming and the theory of distributed
systems, a differentiation between synchronous and
asynchronous tasks is well defined. This section
provides a short overview about this differentiation
in the first subsection.

Furthermore, based on the description of the
differentiation synchronous and asynchronous calls,
the necessity of asynchronous calls with respect to
Web Services provided on mobile devices is argued.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

646

3.1 Asynchronous versus Synchronous
Services

In distributed systems, the differentiation between an
asynchronous and a synchronous call to a certain
service is well defined. In case of a synchronous
service call, the service consumer waits for the
answer of the service provider, so the service result,
before the service consumer continues its tasks.
Figure 1 shows the flow of calls for a synchronous
service request between a process p1 (server
provider) and a process p2 (service consumer).

Figure 1: A synchronous service request between a service
provider (p1) and a service consumer (p2).

Therefore, the more time the calculation of the
service result takes for the provider of the service,
the more time the service consumer waits until it
continues with its current tasks.

In contrast, by performing an asynchronous
service request, the service consumer is not waiting
until the service provider answers the request, but
just sends the request for the execution of the service
to the service provider and immediately continues
working on remaining tasks. In a later step, when the
service provider has finally calculated the outcome
of the service request, the service provider sends the
result back to the service consumer. The information
flow for an asynchronous service requests between a
service provider (p1) and a service consumer (p2) is
shown in Figure 2.

Figure 2: An asynchronous service request between a
service provider (p1) and a service consumer (p2).

For retrieving the result of an asynchronous
service request, the service consumer usually defines
a function that retrieves the result of the requested
service. This function then controls also the further
actions necessary for handling the result of the
service request. The function responsible for

handling the result of an asynchronous service
request is usually called a callback function.

In programming languages, the difference
between an asynchronous and a synchronous call to
a method or a function is also well known. If a
program performs a usual (synchronous) call to a
method, the program continues working in this
method and the rest of the program is only executed
after the program finished the method call and
provided the return value. Of course, programs can
outsource computational expensive method calls in
sub processes/threads, so that the program continues
with the rest of its tasks while the method is
executed in parallel.

On the other hand, many programming
languages (or frameworks based on usually
synchronous programming languages) allow
asynchronous requests to methods/functions. One of
the probably most prominent examples for this
approach is JavaScript. Especially for the
development of Web 2.0 applications, the idea of
AJAX (Asynchronous JavaScript and XML)
(Powell, 2008) came up. Here, method calls to
JavaScript methods/functions are performed in an
asynchronous manner that allows the browser to
continue with its current task. By using this
approach, the AJAX application running in a
browser, behaves pretty much the same way as a
usual desktop application with respect to
performance and user feedback. For similar reasons,
also the currently most prominent server side
implementation for JavaScript, NodeJS (Tilkov and
Vinoski, 2010), also integrates an asynchronous
approach for method calls. This allows a non-
blocking and single threaded approach for the server
side implementation of services, that is known for
providing increased performance (Tilkov and
Vinoski, 2010) in comparison to multi threaded
approaches, e.g., this is the major reason that
proposed solutions for the C10K problem (Kegel,
2013) almost completely rely on asynchronous
approaches.

3.2 The Necessity of Asynchronous
Mobile Web Services

Synchronous mobile Web Services represent a valid
approach when the required time by a mobile device
to process each request is low enough to be solved
and responded back to the client before it gets a
timeout exception message. In this sense, there are
several use cases that could be implemented using
this type of mobile Web Service, like those that
involve simple information retrieval or processing,

Implementation�of�Asynchronous�Mobile�Web�Services�-�Implementation�and�First�Usage�

647

that is, when such information is available
immediately (usually, it has been previously
calculated and stored in the device, like an image, a
contact name, or a text message).

Unfortunately, mobile devices are exposed to
continuous context changes that may affect the time
lapse required for solving specific types of request,
especially those that depend on information
provided by external resources or sensors. This
implies that the response time for such requests is
unpredictable at design time, and a proper behaviour
at run-time cannot be ensured using the synchronous
approach.

In order to illustrate the necessity of
asynchronous mobile Web Services, we have
considered, at least, the following potential use cases
of mobile Web Services we could deploy in the
current state-of-the-art of mobile applications:
 Services that offer information fetched from an

external device/sensor. Gathering information
from sensors (like GPS or Bluetooth) is usually
implemented by mobile operative systems using
asynchronous methods with their callbacks.

 Services that depend on device’s user interaction.
Mobile devices could serve human-based
services that allow asking users about anything,
including OCR or captcha-like challenges. They
can be answered at any time, so the callback
response with the user’s choice would be sent
asynchronously.

 Services offering information that needs to be
evaluated gathered or processed during a long
period of time. We can include in this category
use cases related with measurement and tracking,
like “determining the distance the user will travel
in the next five minutes” using the accelerometer
sensor information for tracking it, or “taking the
temperature average for the next 2 hours”
tracking it from a temperature sensor.

 Services that depends on a particular context to
be processed. This category could include
services offering information resulted from some
interaction with an external device or resource,
like: getting information from the car handsfree
system or a domotic interface; heavy processing
task that requires the device to be plugged-in to a
power supply; or a service that require higher
connectivity bandwidth to be properly executed.
These use cases that involve mobile Web

Services and require an asynchronous behaviour
suggest that synchronous mobile Web Services are
not enough for supporting more complex services,
and it motivates the proposal of this approach, which
implementation is described on the next section.

4 IMPLEMENTATION

Following the requirements formulated in the last
section, the approach described in (Jansen, 2013a)
was extended by the possibility to also provide
asynchronous calls to Web Services deployed to
mobile devices. This section describes the
implementation of these asynchronous mobile Web
Services.

Here, the basic idea for the implementation of
these asynchronous mobile Web Services was to be
as close as possible at the solution for synchronous
Web Services, which basically relies on two major
parts:
1) JSR 181 compatible annotations that allow to

marker a class as an implementation of mobile
Web Services and methods as mobile Web
Methods.

2) A proxy infrastructure that dynamically
generates implementations of a façade (Gamma,
et al., 1995) for the mobile Web Services in
order to overcome certain limitations of mobile
devices, with respect to the provision of services.
Additionally, from a technical point of view,

another requirement for the implementation was to
re-use already existing possibilities and not to invent
new techniques whenever possible. Therefore, the
architecture for synchronous mobile Web Services,
as shown in Figure 3, was analysed.

Figure 3: Architecture for providing synchronous mobile
Web Services.

In the centre of Figure 3, the mobile Web
Service proxy could be seen, which basically
provides the façade for the Web Services actually
running on the mobile devices in the left part of
Figure 3. Therefore, the requests to the performed by
the Web Service clients are not directly addressed to
the mobile devices, but to the proxy infrastructure.

After the detailed analysis of this architecture,
the following strategy was developed for the
implementation of asynchronous mobile Web
Services. First of all, a new annotation was
integrated in the existing framework
(@AsynchronousMobileWebMethod) for the

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

648

implementation of a method that should be executed
on a mobile device as an asynchronous mobile Web
Method.

Additionally, the proxy was modified so that it is
able to handle also asynchronous requests, next to
the synchronous ones. Here, the idea was to provide
a callback for every request to an asynchronous
mobile Web Service, as shown in Figure 4.

Figure 4: An asynchronous mobile Web Service request.

This callback itself was implemented as a
reference to a Web Service that was responsible for
handling the result of the asynchronous request to
the mobile Web Service. Therefore, the reference to
the callback is usually a URL to a WSDL (Web
Service Description Language) of the service that
handles the result of the asynchronous request.

By this, the method/function handling the result
could either be implemented on a mobile device
(using the implementation for mobile Web Services
described in (Jansen, 2013a)) or it could be
implemented as a usual Web Service running on a
usual computer/server.

Interestingly, from a developers point of view,
the implementation of an asynchronous mobile Web
Method does not differ from the implementation of a
synchronous mobile Web Method, especially no
reference to a callback needs to be provided. All the
necessary extensions for the handling of
asynchronous requests could automatically be
applied to the façade created by the central proxy.

The next section provides a description about a
mobile application that already utilizes the described
approach for asynchronous mobile Web Services
deployed to mobile devices. By the successful
integration of this implementation, the mobile
application was able to achieve the requirements
discussed earlier in this paper.

5 INTEGRATION OF
ASYNCHRONOUS MOBILE
WEB SERVICES INTO AN
EXISTING APPLICATION

The proposed implementation of asynchronous
mobile Web Services has been tested in beeFun, a
particular messaging application.

This mobile app treats to reinvent the traditional
messaging concept into a new, different and funny
experience. In order to make it attractive for users,
beeFun combines a simpler interface for sending
different preconfigured (or not) messages very
quickly with several gaming experiences like
weekly-renewed scores and badges obtainment.
Different templates of message are available to be
sent, including simple text, text with images,
location-based messages and surveys. Messages can
be sent to a given group of known users, or a
specifying set of criteria that define such receivers,
like their current location, age, or gender, among
others. Unlike other similar apps, this information is
stored exclusively on each device, so those criteria
are evaluated in every device when this kind of
message is sent. This design, in addition to bringing
a different perspective on mobile devices as service
providers similar to the Software-as-a-Service model
(but in a mobile context), allows sending geo-
located messages without forcing users to be tracked
neither updating their information to a centralized
server continuously, solving certain privacy issues in
a very elegant way.

Consequently, this architecture requires a fast
and flexible way to connect the server-side (which
orchestrates every message’s request and response)
with mobile devices (which evaluate the
conditionals and accept or decline every message
depending on their current status). Technically, this
was implemented through an in-house solution that
combines the use of Push Notification Services for
“waking up” mobile devices when new messages
arrive, and a RESTful-based server API
infrastructure for handling both requests and
responses to and from mobile devices. Figure 5
shows the main flow of interactions between server
and devices when a location-based message is sent.

Due to the asynchronous nature of the location-
based messaging of beeFun, it represents a useful
testbed for integrating the asynchronous mobile Web
Services framework. In beeFun, devices’ location is
fetched from the Location Service provided by the
mobile operating system, and it is done
asynchronously for avoiding deadlocks until a valid

Implementation�of�Asynchronous�Mobile�Web�Services�-�Implementation�and�First�Usage�

649

position is obtained from sensors (GPS, WiFi, etc.).
Actually, not only location but also any information
gathered by beeFun, including history of locations,
answers to surveys and so, conform the information
core component of the app, and can be considered as
a mobile Web Service itself with several Web
Methods for getting information about the device or
its owner.

Following that consideration, the integration of
the framework has changed the previous design of
the messaging component behaviour from the
diagram described in Figure 5 to the new flow
illustrated in Figure 6.

Figure 5: Sequence diagram of the location-based
messaging implementation without the asynchronous
mobile Web Service integration.

Figure 6: Location-based messaging flow using the
asynchronous mobile Web Service approach.

Both figures represent the same request for
sending a location-based message that is evaluated
and accepted by the device. However, the integration
of the asynchronous mobile Web Services
framework greatly simplifies the complexity of the

outgoing protocol between the beeFun server and
mobile devices in comparison with the previous non-
standardized approach.

Regarding the code, the implementation of the
mobile-side is also clearer thanks to the separation
of concerns derived from the adoption of the
proposed class hierarchy and its annotations, both
required for implementing mobile Web Services and
Web Methods properly.

Additionally, the use of the asynchronous mobile
Web Services platform can easily be extended to
other parts of beeFun services with minimal effort
due to the standardization of the business rules
between server and mobile.

6 DISCUSSION AND OUTLOOK

This paper has presented a proposal to enable Web
Services deployment in mobile devices allowing
both synchronous and asynchronous calls. It has also
described the experience of using the
implementation to build beeFun, a M2M messaging
application. beeFun is currently being commercially
exploited by the startup GLOIN1.

Having the possibility of deploying web services
to mobile devices raises the concept of Mobile
Clouds to a higher level. It not only opens the door
to a new generation of cloud applications in which
mobile devices acquire the capabilities of providing
SaaS. In addition, it also enables new business flows
benefiting the device owners.

Currently the authors are releasing new
applications based on the principles presented in the
article2. The new application areas are allowing them
to detect new features to be incorporated into the
technological platform.

Additionally, the described implementation also
allows to implement new scenarios, e.g., in the area
of mobile health applications, in which aspects like
security and privacy, but also de-central storage of
sensual personal data, could be handled much easier
in comparison if other technologies are used.
Therefore, the approach described in this paper
provides rich potential for further development of
new Cloud Computing based applications.

1 http://www.gloin.es/en/
2 http://www.nimbees.com/

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

650

REFERENCES

F. AlShahwan, K. Moessner, “Providing SOAP Web
Services and REST Web Services from Mobile
Hosts”, In: Fifth International Conference on Internet
and Web Applications and Services (ICIW 2010), pp.
174-179.

Dropbox. Dropbox FAQ, 2013.
https://www.dropbox.com/help/7/en.

Facebook, Do you know What's Up?. https://
www.facebook.com/notes/up-creative-inc/do-you-
know-whats-up-check-out-these-2013-social-media-
statistics/470970089631080.

E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design
Pattern – Elements of Reusable Object-Oriented
Software, Addison-Wesley. 1995.

Gartner. Market Trends: Application Development
Software, Worldwide, 2012-2016. Technical report,
Gartner, 2012. http://www.gartner.com/
resId=2098416.

J. Guillén, J. Miranda, J. Berrocal, J. García-Alonso, J. M.
Murillo, C. Canal, “People as a Service: a mobile-
centric model for providing collective sociological
profiles”. IEEE Software SWSI: Next Generation
Mobile Computing (2014) [ACCEPTED, PENDING
PUBLICATION]

M. Jansen. Analysis and Improvement of Energy
Consumption for Providing Mobile Web Services. In.
International Journal of Soft Computing and Software
Engineering, DOI: 10.7321/jscse. 2013a.

M. Jansen. About the Necessity to Change the Perspective
for Mobile Web Services. In: Proceedings of the 15th
IEEE International Symposium on Web Systems
Evolution, 2013b.

D. Kegel. The c10k problem, http://www.kegel.com/
c10k.html, last visited: 18.12.2013.

L. Li, W. Chou, “COFOCUS – Compact and Expanded
Restful Services for Mobile Environments”, In:
Proceedings of the 7th International Conference on
Web Information Systems and Technologies, pp. 51-
60, Noordwijkerhout, The Netherlands. 2011.

G. Meijer. Instagram: A Case Study for the Clouds, 2013.
http://www.cloudproviderusa.com/instagram-a-case-
study-clouds/.

S. McFaddin, C. Narayanaswami, M. Raghunath, “Web
Services on Mobile Devices – Implementation and
Experience”, In: Proceedings of the 5th IEEE
Workshop on Mobile Computing Systems &
Applications (WMCSA’03), pp. 100-109, Monterey,
CA.

Miranda, J., Guillén, J., Berrocal, J., Garcia-Alonso, J.,
Murillo, J., & Canal, C. (2013). Architecting
Infrastructures for Cloud-Enabled Mobile Devices. In
C. Canal & M. Villari (Eds.), Advances in Service-
Oriented and Cloud Computing SE - 23 (Vol. 393, pp.
277–287). Springer Berlin Heidelberg.
doi:10.1007/978-3-642-45364-9_23.

T. A. Powell. AJAX – The Complete Reference, McGraw-
Hill Osborne Media, 2008.

M. Raatikainen, T. Mikkonen, V. Myllarniemi, N.
Makitalo, T. Mannisto, and J. Savolainen. Mobile
content as a service a blueprint for a vendor-neutral
cloud of mobile devices. IEEE Software, 29(4):28{32,
2012.

S. Srirama, M. Jarke, W. Prinz, “Mobile Web Service
Provisioning”, In: Proceedings of the Advanced
International Conference on Telecommunications and
International Conference on Internet and Web
Applications and Services (AICT/ICIW 2006), p. 120,
Guadeloupe, French Caribbean.

S. Tilkov, S. Vinoski. Node.js: Using JavaScript to Build
High-Performance Network Programs, IEEE Internet
Computing, vol. 14, no. 6, pp. 80-83,
November/December, 2010.

Implementation�of�Asynchronous�Mobile�Web�Services�-�Implementation�and�First�Usage�

651

