
Distributed XML Processing over Multicore Servers

Yoshiyuki Uratani1, Hiroshi Koide2 and Dirceu Cavendish3

1Global Scientific Information and Computing Center, Tokyo Institute of Technology,
O-okayama 2-12-1, Meguroku, Tokyo, 152-8550, Japan

2Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology,
Kawazu 680-4, Iizuka, Fukuoka, 820-8502, Japan

3Network Design Research Center, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka, 820-8502, Japan

Keywords: Distributed XML Processing, Task Scheduling, Pipelining and Parallel Processing, Multicore CPU.

Abstract: Nowadays, multicore CPU become popular technology to enhance services quality in Web services. This
paper characterizes parallel distributed XML processing which can off-load the amount of processing at their
servers to networking nodes with varying number of CPU cores. Our implemented distributed XML process-
ing system sends XML documents from a sender node to a server node through relay nodes, which process the
documents before arriving at the server. When the relay nodes are connected in tandem, the XML documents
are processed in a pipelining manner. When the relay nodes are connected in parallel, the XML documents
are processed in a parallel fashion. For well-formedness and grammar validation tasks, the parallel processing
reveals inherent advantages compared with pipeline processing regardless of document type, number of CPU
cores and processing environment. Moreover, the number of CPU cores impacts efficiency of distributed XML
processing via buffer access contention.

1 INTRODUCTION

Web services become necessary infrastructure for our
society. Various services are being provided and they
need much resources, such as CPU power and mem-
ory spaces, to enhance their services quality. Nowa-
days, multicore CPU is popular approach to improve
processing capacity. The processing for Web services
are generally provided at only server nodes in the
current Web services. In this situation, we propose
offloading approach, which assign a part of server’s
load to intermediate nodes in network, to reduce the
load and to improve services throughput. This ap-
proach will lead efficient resource usage with effec-
tive scheduling and higher quality of services. On the
other hand, XML data is one of the basic commu-
nication format in the Web services and the servers
often processes the XML data in various situation
(e.g. collaborative services). PASS-Node (Cavendish
and Candan, 2008) had already proposed distributed
XML processing with using intermediate nodes and
had studied from an algorithmic point of view for
well-formedness, grammar validation, and filtering.
We have also focuses on distributed XML process-
ing with offloading approach and have studied their
processing characteristics (Uratani et al., 2012).

This paper augments practical distributed XML
processing characterization scope by varying the
number of CPU cores in processing nodes; using syn-
thetic and realistic XML documents; on pipelining
model for XML data stream processing systems, on
parallel model for parallel processing system. Re-
garding processing efficiency, we investigate XML
processing performance relation to XML document
characteristics,as well as the impact of number of
CPU cores to well-formedness and grammar valida-
tion tasks. Our results can be summarized as follows.
Parallel processing performs better than pipeline pro-
cessing regardless the number of CPU cores, docu-
ment types and processing environment; Processing
with more CPU cores leads to faster processing; but it
also includes drawbacks, such as inefficient resource
consumption, due to buffer contention.

The paper is organized as follows. In section 2, we
describe generic models of XML processing nodes.
In section 3, we describe experimental environments
and characterize XML processing performance of the
pipeline and parallel computation models on multi-
core machines. In section 4, we address related work.
In section 5, we summarize our findings and address
research directions.

200 Uratani Y., Koide H. and Cavendish D..
Distributed XML Processing over Multicore Servers.
DOI: 10.5220/0004947802000207
In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 200-207
ISBN: 978-989-758-023-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 XML PROCESSING ELEMENTS

Distributed XML processing requires some basic
functions to be supported:Document Partition: The
XML document is divided into fragments, to be pro-
cessed at processing nodes.Document Annota-
tion: Each document fragment is annotated with
current processing status upon leaving a processing
node.Document Merging: Document fragments are
merged so as to preserve the original document struc-
ture. XML processing nodes support some of these
tasks, according to their role in the distributed XML
system.

2.1 XML Processing Nodes

We abstract the distributed XML processing elements
into four types of nodes: StartNode, RelayNode,
EndNode, and MergeNode. The distributed XML
processing can then be constructed by connecting
these nodes in specific topologies, such as pipelining
and parallel topologies. Distributed processing ap-
plications may be constructed with both parallel and
pipeline manner. So the study of pipelined approach
is to opportunistically process XML documents on ar-
bitrary network topologies, in the middle of the net-
work.

StartNode(SN) is a source node that executes any
pre-processing needed in preparation for piece-
wise processing of the XML document. This
node also starts XML document transfer to relay
nodes and adds some annotation which are used
for distributed XML processing. The StartNode
has multiple threads for reading part of the docu-
ment and sending fragments simultaneously.

RelayNode(RN) executes XML processing on parts
of an XML document. It is placed as an in-
termediate node in paths between the StartN-
ode and the EndNode. The RelayNode has
three types of threads: ReceiveThread, TagCheck-
Thread and SendThread. The ReceiveThread re-
ceives data containing lines of an XML document,
together with checking and processing informa-
tion, and stores the data into a shared buffer. The
TagCheckThread attempts to process the data, if
the data is assigned to be processed at the node.
SendThread sequentially sends data to a next
node.

EndNode(EN) is a destination node, where XML
documents must reach, and have their XML pro-
cessing finished. This node receives data con-
taining the XML document, checking informa-
tion and processing information, from a previous

node. If the tag checking has not been finished
yet, the EndNode processes all unchecked tags, in
order to complete XML processing of the entire
document. Components of the EndNode are sim-
ilar to the RelayNode, except that the EndNode
has DeleteThread instead of SendThread. The
DeleteThread cleans the document from process-
ing and checking information.

MergeNode(MN) receives data from multiple pre-
vious nodes, serializes it, and sends it to a next
node, without performing any XML processing.
MergeNode has multiple threads for receiving
data from previous node, so as not to block pre-
vious nodes from sending data.

XML document processing involves stack data
structures for tag processing. When a node reads a
start tag, it pushes the tag name into a stack. When a
node reads an end tag, it pops a top element from the
stack, and compares the end tag name with the popped
tag name. If both tag names are the same, the tags
match. The XML document is well-formed when all
tags match. In addition, in validation checking, each
node executing grammar validation reads DTD files,
and generates grammar rules for validation checking.
Each node processes validation and well-formedness
at the same time, comparing the popped/pushed tags
against grammar rules. Details of these node dis-
tributed processing is described in (Cavendish and
Candan, 2008; Uratani et al., 2012).

3 DISTRIBUTED XML
CHARACTERIZATION

3.1 Experimental Environment

We use aVM Env, which consists of a VMware ESX 4
on a Sun Fire X4640 Server, for providing distributed
XML processing system. We use VMware ESX 4,
a virtual machine manager, to implement a total of
seven counts of virtual machines as distributed XML
processing nodes. This environment consists of two
types of virtual machine. We allocate two CPU cores
to one of them (Node06), and four CPU cores to all

Table 1: X4640 Server Specification.

CPU Six-Core AMD Opteron Processor
8435 (2.6GHz)× 8

Memory
256G bytes (DDR2/667
ECC registered DIMM)

VMM VMware ESX 4
Guest OS Fedora15x86 64

JVM JavaTM1.5.022

Distributed�XML�Processing�over�Multicore�Servers

201

other nodes. The server specification is described in
Table 1.

3.2 Node Allocation Patterns

We prepare several topologies and task allocation
patterns to characterize distributed XML processing,
within the parallel and pipelining models. We vary the
number of RelayNodes, within topologies, as well as
the number of CPU cores in processing nodes, to eval-
uate their impact on processing efficiency. To charac-
terize the performance, we use a total of four topology
types: two stage pipeline system (Figure 1), two path
parallel system (Figure 2), four stage pipeline system,
and four path parallel system. In the Figure 1 and
2, tasks are shown as light shaded boxes, underneath
nodes allocated to process them. CPU core count is
shown above the task boxes.

StartNode
node01

EndNode
node07

RelayNode02
node02

RelayNode03
node03

XML Document

first 2 lines

fragment01

fragment02

fragment01fragment02

4core 1 or 4core 1 or 4core 1 or 4core

Figure 1: Two Stage Pipeline System.

StartNode
node01

EndNode
node07

RelayNode02
node02

RelayNode03
node03

MergeNode
node06

fragment01

fragment02

4core 1 or 4core 2core

1 or 4core

1 or 4core

XML Document

first 2 lines

fragment01

fragment02

Figure 2: Two Path Parallel System.

For instance in two stage pipeline case (Figure 1),
we divide the XML documents into three parts: first
two lines (it contain a meta tag and a root tag), frag-
ment01 and fragment02. These fragments are divided
into segments of roughly the same size. Data flows
from StartNode to EndNode via two RelayNodes. Re-
layNode02 is allocated for processing fragment02,
RelayNode03 is allocated for processing fragment01,
and the EndNode is allocated for processing the first
two lines, as well as processing all left out unchecked
data.

In Figure 2, we depict two path parallel system.
The XML document is also divided into three parts.
They flow from StartNode to EndNode via RelayN-
ode01 and MergeNode. The StartNode reads concur-
rently these fragments from the XML document and
sends them to the RelayNodes. Fragment02 and re-
lated data flow from the StartNode to the EndNode
via RelayNode02 and the MergeNode. In addition,
we can use a maximum of 4 CPU cores in node02,
node03 and node07, which are allocated for the Re-
layNodes and EndNode. We apply two types of CPU

usage patterns in this topology; i) Allocation of 1 CPU
core only to RelayNodes and EndNode; ii) Alloca-
tion of all 4 CPU cores to RelayNodes and EndNode.
These document partition and allocation patterns are
defined beforehand as static task scheduling. We also
experiment four RelayNode topology for both pro-
cessing types with the five parted XML documents.
In the processing types, we also vary number of CPU
cores of the RelayNodes and the EndNode.

Notice that, even though the parallel model
has one extra node, the MergeNode, as compared
with corresponding pipeline model. However, the
MergeNode does not perform any XML processing,
so the number of nodes executing XML processing is
still the same in both models.

3.3 Tasks and XML Document Types

The distributed XML processing system can exe-
cute two types of processing: well-formedness check-
ing, and grammar validation checking of XML docu-
ments. Efficiency of these XML processing tasks may
be related to: processing model, pipelining and paral-
lel; topology, number of processing nodes and their
connectivity; XML document characteristics. We use
different structures of XML documents to investi-
gate which distributed processing model yields the
most efficient distributed XML processing. For that
purpose, we create seven types of synthetic XML
documents by changing the XML document depth
from shallow to deep while keeping its size almost
the same. We have also used three types of re-
alistic XML documents, dockernel, docstock and
doc scala. The dockernel encodes directory and file
hierarchy structure of linux kernel 2.6.39.3 in XML
format. The docstock is XML formatted data from
MySQL data base, containing a total of 10000 entries
of dummy stock price data. The docscala is based
on “The Scala Language Specification Version 2.8”
(http://www.scala-lang.org/), which consists of 191
pages, totaling 1.3M bytes. The original document in
pdf format was converted to Libre Office odt format,
and from that to XML format. Their characteristics
are shown in Table 2, For VMEnv, we combine four
node allocation patterns, two processing patterns and
ten XML document types to produce a total 80 types
of experiments.

3.4 Performance Indicators

We use two types performance indicators: system per-
formance indicators and node performance indicators.
System performance indicators characterize the pro-
cessing of a given XML document. Node perfor-

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

202

Table 2: XML Document Characteristics.

doc01 doc02 doc03 doc04 doc05 doc06 doc07 kernel stock scala
Width 10000 5000 2500 100 4 2 1 - - -
Depth 1 2 4 100 2500 5000 10000 - - -

Tag set count
(Empty tags) 10000 (0)

225
(36708)

66717
(146)

26738
(1206)

Line count 10002 15002 17502 19902 19998 20000 20001 41219 78010 72014
File size [Kbytes] 342 347 342 343 342 3891 2389 2959

mance indicators characterize XML processing at a
given processing node. The following performance
indicators are used to characterize distributed XML
processing:

Job Execution Time is a system performance indi-
cator that captures the time taken by an instance
of XML document to get processed by the dis-
tributed XML system in its entirety. As several
nodes are involved in the processing, the job ex-
ecution time results to be the period of time be-
tween the last node (typically EndNode) finishes
its processing, and the first node (typically the
StartNode) starts its processing. The job execu-
tion time is measured for each XML document
type and processing model.

Node Thread Working Time is a node performance
indicator that captures the amount of time each
thread of a node performs work. It does not in-
clude thread waiting time when blocked, such as
data receiving wait time. It is defined as the total
file reading time, data receiving time, data sending
time and node buffer access time a node incurs.
For instance, in the MergeNode, the node thread
working time is the sum of receiving time and
sending time of each Receive/SendThread. As-
sume the MergeNode is connected to two previous
nodes, with two Receive/SendThreads. We also
derive aSystem Thread Working Time as a sys-
tem performance indicator, as the average of node
thread working time indicators across all nodes of
the system.

Node Active Time is a node performance indica-
tor that captures the amount of time each node
runs. The node active time is defined from the
first ReceiveThread starts receiving first data un-
til the last SendThread finishes sending last data
in the RelayNode or finishes document process-
ing in the EndNode. Hence, the node active time
may contain waiting time (e.g, wait time for data
receiving, thread blocking time). We also define
System Active Time as a system performance in-
dicator, by averaging the node active time of all
nodes across the system.

Node Processing Time is a node performance in-
dicator that captures the time taken by a node to

execute XML processing only, excluding commu-
nication and processing overheads. We also de-
fine System Processing Time as a system per-
formance indicator, by averaging node processing
time across all nodes of the system.

Parallelism Efficiency Ratio is a system perfor-
mance indicator defined as “system thread work-
ing time/ system active time”.

Node Buffer Access Time is a node performance
indicator that captures the amount of time a
node spends accessing internal shared buffers.
As previously mentioned in section 2, threads
in each node access the shared buffer while
receiving/processing/sending data. The node
buffer access time includes not only the time for
add/get/remove operation, but also waiting time
during blocking. We also defineSystem Buffer
Access Time as a system performance indicator,
by totaling the node buffer access time of all nodes
across the system.

3.5 Experimental Results

For each experiment type (scheduling allocation and
distributed processing model), we collect perfor-
mance indicators data over seven types of XML
document instances. On all graphs, X axis de-
scribes scheduling, processing models and process-
ing environment, for well-formedness and gram-
mar validation types of XML document process-
ing, encoded as follows:PIP wel:Pipeline and Well-
formedness checking,PAR wel:Parallel and Well-
formedness checking,PIP val:Pipeline and Vali-
dation checking,PAR val:Parallel and Validation
checking. Y axis denotes specific performance in-
dicator, averaged over 22 XML document instances.
These figures are only part of the experimental results
- details of other results are omitted for space’s sake.

Regarding job execution time (Figures 3 – 6), par-
allel processing is faster than pipeline processing for
all documents. Job execution time gets lengthened
in pipeline processing due to the fact that the nodes
relay extra data that is not processed locally. In addi-
tion, we can see that the job execution time speeds
up faster with increasing number of relay nodes in

Distributed�XML�Processing�over�Multicore�Servers

203

0

500

1000

1500

2000

2500

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (2RelayNode: VM_Env)

J
o
b

E
x
e
c
u
t
i
o
n

T
i
m

e

[
m

s
e
c
]

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 3: Job Execution Time (Syn. Doc. Proc. by 2 RN).

0

500

1000

1500

2000

2500

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1coreprocessing

Env./Scheduling and Processing Type (4RelayNode: VM_Env)

J
o
b

E
x
e
c
u
t
i
o
n

T
i
m

e

[
m

s
e
c
]

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 4: Job Execution Time (Syn. Doc Proc. by 4 RN).

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (2RelayNode: VM_Env)

J
o
b

E
x
e
c
u
t
i
o
n

T
i
m

e

[
m

s
e
c
] kernel stock scala

Figure 5: Job Execution Time (Real. Doc. Proc. by 2 RN).

parallel processing than in pipeline processing. The
extra data transfer time also appears in pipeline pro-
cessing. Moreover, increased number of relay nodes
reduces further job execution time of realistic docu-
ments (bigger documents), as compared with that of
synthetic documents (smaller documents) processed
with pipeline model. So, it is more advantageous
to process bigger XML document using the pipeline
model with more nodes. Regarding the number of
CPU cores, 4 core processing is better than 1 core
processing for both small (synthetic) and large (real-
istic) document processing. In Table 2, stockdoc is
the smallest document in the three types of realistic
document, and it has more XML tags than other doc-
uments. kerneldoc has more tags than scaladoc but
most of them are empty tags. The empty tag process-
ing needs less time than normal tag sets because the
nodes can determine results of processing to empty
tags earlier. Job execution time is sensitive to docu-
ment types (number of tags and types of tags), node
topology and processing type. Such characteristics
also appears in other system indicators.

Regarding system active time (Figure 7 and 8),
parallel processing is better than pipeline processing
in all experiments. Regarding number of CPU cores,
system active time is better for 4 core processing than
for 1 core processing in both synthetic documents and

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (4RelayNode: VM_Env)

J
o
b

E
x
e
c
u
t
i
o
n

T
i
m

e

[
m

s
e
c
]

kernel stock scala

Figure 6: Job Execution Time (Real. Doc. Proc. by 4 RN).

0

1000

2000

3000

4000

5000

6000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (2RelayNode: VM_Env)

S
y
s
t
e
m

A

c
t
i
v
e

T
i
m

e

[
m

s
e
c
]

kernel stock scala

Figure 7: System Active Time (Real. Doc. Proc. by 2RN).

0

1000

2000

3000

4000

5000

6000

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (4RelayNode: VM_Env)

S
y
s
t
e
m

A

c
t
i
v
e

T
i
m

e

[
m

s
e
c
]

kernel stock scala

Figure 8: System Active Time (Real. Doc. Proc. by 4RN).

realistic documents, regardless of document partition,
processing allocation, node topology and buffer con-
tention. The system active time also depends on the
amount of processing to be executed.

Processing time is similar in both parallel pro-
cessing and pipeline processing (Figures 9 and 10).
Validation checking needs more time than well-
formedness checking. The extra activity time in the
pipeline processing is due to extra sending/receiving
thread times. Regarding number of CPU cores, 1 core
processing is better than 4 core processing in well-
formedness checking (small processing). In contrast,
4 core processing is better than 1 core processing in
validation checking (large processing) for synthetic
documents (small document). But for some realis-
tic documents (bigger document), 1 core processing
has better validation checking processing time. If
the number of tags that each node should process is
roughly the same, 4 core processing leads to more
buffer contention than 1 core processing. Generally,
the system processing time reduces as the number
of RelayNodes increases. However, sometimes (e.g.
synthetic doc06) few RelayNodes are more efficient,
due to specific document partition and processing al-
location. Average processing time is greatly affected
by whether we can allocate XML data efficiently. In
addition, system processing time is also sensitive to

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

204

0

200

400

600

800

1000

1200

1400

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (2RelayNode: VM_Env)

S
y
s
t
e
m

P

r
o
c
e
s
s
i
n
g

T
i
m

e

[
m

s
e
c
]

kernel stock scala

Figure 9: Sys. Processing Time (Real. Doc. Proc. by 2RN).

0

100

200

300

400

500

600

700

800

900

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (4RelayNode: VM_Env)

S
y
s
t
e
m

P

r
o
c
e
s
s
i
n
g

T
i
m

e

[
m

s
e
c
]

kernel stock scala

Figure 10: Sys. Processing Time (Real. Doc. Proc. by
4RN).

0

0.2

0.4

0.6

0.8

1

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (2RelayNode: VM_Env)

P
a
r
a
l
l
e
l
i
s
m

E
f
f
i
c
i
e
n
c
y

R

a
t
i
o

kernel stock scala

Figure 11: Parallel. Efficien. Ratio (Real. Doc. Proc. by
2RN).

XML document structure, number of tags and depth,
which affects the amount of processing at each node.

Regarding parallelism efficiency ratio (Figures 11
and 12), 4 core processing is more efficient than 1
core processing excluding few cases of 2 RelayNode
validation checking of realistic documents. In these
cases, 1 core processing is a little more efficient.

Regarding system buffer access time (Figure 13
and 14), pipeline processing incurs larger buffer ac-
cess time than parallel processing. In addition, most
of 4 RelayNode processing incurs larger buffer ac-
cess time than 2 RelayNode processing, because the
amount of data passing through a node and assigned
for process to the node is larger in the former case.
In general, 1 core processing shows lower buffer con-
tention than 4 core processing, as System buffer ac-
cess time increases with more cores. Comparing the
system buffer access time with other indicators, some
indicators (e.g. system job execution time) are bet-
ter for more CPU core processing but they also in-
clude inefficient performance because of useless wait-
ing time caused by buffer contention.

Figures 15 and 16 further show node active
time when processing doc01, for each node in the
system.Generally, parallel processing is better than
pipeline processing regarding node activity. This

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (4RelayNode: VM_Env)

P
a
r
a
l
l
e
l
i
s
m

E
f
f
i
c
i
e
n
c
y

R

a
t
i
o

kernel stock scala

Figure 12: Parallel. Efficien. Ratio (Real. Doc. Proc. by
4RN).

0

200

400

600

800

1000

1200

1400

PIP_wel PAR_wel PIP_val PAR_val PIP_wel PAR_wel PIP_val PAR_val

4core processing 1core processing

Env./Scheduling and Processing Type (2RelayNode: VM_Env)

S
y
s
t
e
m

B

u
f
f
e
r

A

c
c
e
s
s

T
i
m

e

[
m

s
e
c
]

doc01 doc02 doc03 doc04 doc05 doc06 doc07

Figure 13: Sys. Buf. Access Time (Syn. Doc. Proc. by
2RN).

!
"

$

%
%!
%"
%#
%$
!

&'&()*+ &,-()*+ &'&(./+ &,-(./+ &'&()*+ &,-()*+ &'&(./+ &,-(./+

"012*34210*55678 %012*4210*55678
97.:;<0=*>?+6783/7>3&210*556783@A4*3B"-*+/AC1>*D33EF(97.G

<
A5
H*
I
3J
?
KK
*
23
,
0
0
*
55

@
6I
*
3L
I
5*
0
M

>10 % >10 ! >10 N >10 " >10 O >10 # >10 P

Figure 14: Sys. Buf. Access Time (Syn. Doc. Proc. by
4RN).

is because extra data transfer at each RelayNode
is reduced in parallel processing, as compared with
pipeline processing. Regarding the number of CPU
cores in these figures, 4 core processing is better for
StartNode, RelayNode and EndNode processing syn-
thetic document. For MergeNode, 1 core performs
better when processing synthetic documents. Across
all node type, realistic document processing is supe-
rior when 4 cores are used.

Figures 17 and 18 further show node thread work-
ing time for processing kerneldoc. Generally, node
thread working time is better for parallel processing
using more RelayNodes. Regarding varying number
of CPU cores, 4 core is better for StartNode when
processing synthetic documents. However, 1 core
RelayNode, EndNode and MergeNode present better
node thread working time than their 4 core counter-
parts. Roughly, 1 core synthetic document processing
is better in the following cases: less processing (e.g.
well-formedness checking) and good document parti-
tion on RelayNodes; bad document partition, which
leads to more processing for EndNode, for EndNode;
Merge node, which leads to low buffer contention.

For convenience, we organize our performance
characterization results about number of CPU cores

Distributed�XML�Processing�over�Multicore�Servers

205

Table 3: Distributed XML Processing Characterization Summary.

Synthetic docs (smaller docs) Realistic docs (larger docs)
Job execution time

4 core is better
1 core is better in large proc.

System active time 4 core is better
System proc. time 1 core is better in WEL Sometimes, 1 core is better in large proc.

Parallelism efficiency ratio 4 core is more efficient 4 core is more efficient in most cases
Sys. buffer access time 1 core is better

Node active time 4 core is better in SN, RN and EN 4 core is better

Node thread working time
4 core is better in SN;
Sometimes, 1 core is better in
RN, EN and MN

4 core is better in SN;
1 core is better in EN;
Sometimes, 1 core is better in RN and MN

0

100

200

300

400

500

600

700

PIP_wel PAR_wel PIP_val PAR_val

Scheduling and Processing Type(doc01: VM_Env: 4core)

N
o
d
e

A

c
t
i
v
e

T
i
m

e

[
m

s
e
c
]

SN RN02 RN03 MN EN

Figure 15: Node Ac. Time (doc01; 2RN; 4core).

0

200

400

600

800

1000

1200

PIP_wel PAR_wel PIP_val PAR_val

Scheduling and Processing Type (doc01: VM_Env: 1core)

N
o
d
e

A

c
t
i
v
e

T
i
m

e

[
m

s
e
c
]

SN RN02 RN03 MN EN

Figure 16: Node Ac. Time (doc01; 2RN; 1core).

into Table 3 (WEL means well-formedness checking).
A detailed analysis is also carried on at (Uratani et al.,
2012), our previous work.

4 RELATED WORK

In this paper, we focus on offloading approach which
assign a part of server’s load to intermediate nodes in
network for Web service. We here show some related
works similar with our approach which have pro-
cessing function at intermediate nodes. Active Net-
work (Tennenhouse and Wetherall, 2007) is also focus
processing at intermediate switches. The processing
manner is described to two types: type-1) be capsuled
into a packet, type-2) be assigned to the switches be-
forehand. The type-1 manner executes only simple
processing but can process faster because of hard-
ware execution. The type-2 manner, which like our
system design, can describe even complicate process-
ing. VNode(Kanada et al., 2012) also provides a pro-
cessing environment at intermediate switches. In this
research, the processing function is also provided at
customized switches and its processing environment
is provided as virtualized environment likewise using

0

500

1000

1500

2000

2500

S
N

R
N

0
2

R
N

0
3

E
N

S
N

R
N

0
2

R
N

0
3

M
N

E
N

S
N

R
N

0
2

R
N

0
3

E
N

S
N

R
N

0
2

R
N

0
3

M
N

E
N

PIP_wel PAR_wel PIP_val PAR_val

Scheduling and Processing Type and Nodes (kernel_doc: VM_Env: 4core)

N
o
d
e

T
h
r
e
a
d

W

o
r
k
i
n
g

T
i
m

e

[
m

s
e
c
]

total reading time total sending time receiving time

processing time sending time total receiving time

Figure 17: Node Th. Work. Time(kerneldoc; 2RN; 4core).

0

500

1000

1500

2000

2500

S
N

R
N

0
2

R
N

0
3

E
N

S
N

R
N

0
2

R
N

0
3

M
N

E
N

S
N

R
N

0
2

R
N

0
3

E
N

S
N

R
N

0
2

R
N

0
3

M
N

E
N

PIP_wel PAR_wel PIP_val PAR_val

Scheduling and Processing Type and Nodes (kernel_doc: VM_Env: 1core)

N
o
d
e

T
h
r
e
a
d

W

o
r
k
i
n
g

T
i
m

e

[
m

s
e
c
]

total reading time total sending time receiving time

processing time sending time total receiving time

Figure 18: Node Th. Work. Time(kerneldoc; 2RN; 1core).

a virtual machine. These researches provide not only
transport function but also processing function in the
network. We address these intermediate processing
model as a platform to achieve our distributed pro-
cessing system.

Next we show current researches of processing in
networks. In transcoding (Kim et al., 2012),a con-
tent server deliver data (e.g. video data) to clients
via a transcoding server. The transcording server
fixes the original data to another data which reflects
user’s demands. For instance, the data may be trans-
formed from high resolution to low resolution at the
transcoding server to adapt a mobile devices. A cache
server(Nishimura et al., 2012; Kalarani and Uma,
2013) is a key technology of content delivery net-
work. The cache servers are allocated to wide dis-
tributed places and they stock contents as cache from
other content servers beforehand or with users re-
quest. Then the users’ content request will lead to
the nearest cache servers then the users receive con-
tents with lower network latency. (Fan and Chen,
2012; Solis and Obraczka, 2006) focus sensor net-
work. The researches propose to consolidate the large
amount of sensing data at some intermediate nodes
before the large data reach data collection servers.

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

206

Such approach can reduce energy consumption and
network load for mobile sensor devices. (Shimamura
et al., 2010) compress packets near a sender then ex-
tract the packets near a receiver during buffer queue-
ing time to achieve low load network. In these re-
searches and technology, we can assume the network
provides special function such as video transforming
function, data caching function and so on for a certain
services.

5 CONCLUSIONS

In this paper, we have studied the impact of number
of CPU cores in distributed XML processing using
two models of distributed XML document processing
in virtual environments for two types of XML doc-
ument: parallel and pipeline models, on virtual ma-
chines with multicore CPUs, for synthetic and realis-
tic XML documents. Regarding number of CPU cores
for distributed XML processing, few CPU cores lead
to less buffer contention. In contrast, more CPU cores
leads to higher performance of some indicators, but
with the drawback of incurring in wasteful buffer ac-
cess waiting time. In addition, appropriate number of
CPU cores depends on document characteristics. We
can enhance the processing efficiency by improving
buffer usage mechanism. As we have shown, pipeline
processing is inefficient than parallel processing re-
gardless document types and processing environment.
The pipeline processing should treat parts of the doc-
ument that are not to be processed at them. Such a
specific node needs to be received and relayed to other
nodes, consuming node resources and increasing pro-
cessing overhead.

So far, we have focused on distributed well-
formedness and validation of XML documents. These
functions are a must for XML applications. The
PASS-Node system guarantees the soundness of the
XML document and it should lead to less battery con-
sumption of mobile devices because of offloading.
Moreover, other XML processing, such as filtering
and XML transformations, can be studied. Internet
routers in the future can do XML processing the same
way routers today do deep packet inspection (Liu and
Wu, 2013), as well as fast (hardware based packet)
routing/forwarding.

We intend to study processing of streaming data
other than XML documents at relay nodes (Shima-
mura et al., 2010). In such scenario, many web
servers, mobile devices, network appliances, are con-
nected with each other via an intelligent network,
which executes streaming data processing on behalf
of connected devices. The type of node process-

ing is different than XML processing, given the less
structured nature of streaming data, as compared with
XML data.

ACKNOWLEDGEMENTS

Part of this study was supported by a Grant-in-Aid for
Scientific Research (KAKENHI:24500043).

REFERENCES

Cavendish, D. and Candan, K. S. (2008). Distributed XML
Processing: Theory and Applications.Journal of Par-
allel and Distributed Computing, 68(8):1054–1069.

Fan, Y.-C. and Chen, A. (2012). Energy Efficient Schemes
for Accuracy-Guaranteed Sensor Data Aggregation
Using Scalable Counting. IEEE Transactions on
Knowledge and Data Engineering, 24(8):1463–1477.

Kalarani, S. and Uma, G. (2013). Improving the Efficiency
of Retrieved Result through Transparent Proxy Cache
Server. InProc. of fourth International Conference on
Computing, Communications and Networking Tech-
nologies (ICCCNT) 2013, pages 1–8.

Kanada, Y., Shiraishi, K., and Nakao, A. (2012). Network-
virtualization Nodes that Support Mutually Indepen-
dent Development and Evolution of Node Compo-
nents. InProc. of IEEE International Conference on
Communication Systems (ICCS) 2012, pages 363–367.

Kim, S. H., Kim, K., Lee, C., and Ro, W. (2012). Offload-
ing of Media Transcoding for High-quality Multime-
dia Services.Consumer Electronics, IEEE Transac-
tions on, 58(2):691–699.

Liu, C. and Wu, J. (2013). Fast Deep Packet Inspection
with a Dual Finite Automata.IEEE Transactions on
Computers, 62(2):310–321.

Nishimura, S., Shimamura, M., Koga, H., and Ikenaga, T.
(2012). Transparent Caching Scheme on Advanced
Relay Nodes for Streaming Services. InProc. of
International Conference on Information Networking
(ICOIN), 2012, pages 404–409.

Shimamura, M., Ikenaga, T., and Tsuru, M. (2010). Ad-
vanced Relay Nodes for Adaptive Network Services
- Concept and Prototype Experiment. InProc. of In-
ternational Conference on Broadband, Wireless Com-
puting, Communication and Applications (BWCCA)
2010, pages 701–707, Los Alamitos, CA, USA.

Solis, I. and Obraczka, K. (2006). In-network Aggregation
Trade-offs for Data Collection in Wireless Sensor Net-
works. Int. J. Sen. Netw., 1(3/4):200–212.

Tennenhouse, D. L. and Wetherall, D. J. (2007). Towards
an Active Network Architecture.SIGCOMM Comput.
Commun. Rev., 37(5):81–94.

Uratani, Y., Koide, H., Cavendish, D., and Oie, Y. (2012).
Distributed XML Processing over Various Topolo-
gies: Characterizing XML Document Processing Effi-
ciency. InWeb Information Systems and Technologies,
volume 101 ofLecture Notes in Business Information
Processing, pages 57–71. Springer Berlin Heidelberg.

Distributed�XML�Processing�over�Multicore�Servers

207

