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Abstract: For complex data sources of oil and gas engineering, this paper summarizes characteristics and semantic 
relationships of oil data, and presents a semantic-based data service for oil and gas engineering (SDSOge). 
The domain semantic data model is constructed using ontology technology, and semantic-based data 
integration is achieved by ontology extraction, ontology mapping, query translation, and data cleaning. With 
the semantic-based data query and sharing service, users can directly access distributed and heterogeneous 
data sources through the global semantic data model. SDSOge has been used by upper applications, and the 
results show that SDSOge is efficient in providing a comprehensive and real-time data service, saving 
energy, and improving production. 

1 INTRODUCTION 

With continuous expansion of the scale of petroleum 
exploration industry, the domain of oil and gas 
engineering has accumulated massive data 
resources, like production data, geological 
structures, equipment data, well structure data, etc. 
These data are large in scales, numerous in kinds, 
complex in relationships and various in 
characteristics: 

1) Distribution: In oil fields, different types of 
data are stored in different specialized databases, 
such as production database, geological database, 
and equipment database. But applications of oil and 
gas engineering require various data from different 
databases. 

2) Heterogeneity: Each specialized database has 
its own data organizing and naming convention, 
which results in system, syntax, structure, and 
semantic heterogeneity. (1) System heterogeneity: 
Different data have different operating 
environments, such as hardware configurations and 
operating systems. (2) Syntax heterogeneity: 
Different data are stored in different forms in the 
computers. Some are in relational databases, while 
some are in text files. (3) Structure heterogeneity: 
Similar data are represented in different data 
schemas. (4) Semantic heterogeneity: Similar data 

have different semantic understandings, or different 
data have the same meaning, which has traditionally 
been divided into homonyms and synonyms. 

3) Complex Semantic Relationships: There are 
complex relationships between different data.  

4) Real-time Performance: The data of oil and 
gas engineering is dynamic and instantly updated 
with high real-time demand.  

The characteristics of data of oil and gas 
engineering bring unprecedented challenges for 
conventional data management. On the one hand, 
with the differences in data schemas of different oil 
fields and the shortage of data management and 
naming rules, it is necessary to shield heterogeneity 
of underlying data to establish a global semantic 
data model for the domain of oil and gas 
engineering, which can maintain the unification of 
rules and standards, and data management platform. 
On the other hand, applications of oil and gas 
engineering are typically data-intensive. Data are the 
source of these applications and various data from 
different specialized databases are needed, but 
databases of oil fields are highly autonomous, which 
makes data interacting and sharing more difficulty. 
Thus semantic-based data integration is urgently in 
need, which can provide a unified and semantic-
based interface to access the underlying data sources 
directly and implement data sharing. 
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This paper presents a semantic-based data service 
for oil and gas engineering named SDSOge, which 
provides a rich semantic view of the underlying data 
and enables an advanced querying functionality. 
Users can enjoy a plug-and-play (Mezini and 
Lieberherr 1998) model and have direct access to the 
distributed and heterogeneous data resources 
anywhere. In addition, the data service offers a 
semantic reasoning functionality, which can reason 
implicit knowledge behind the complicated semantic 
relationships. 

SDSOge firstly extracts local ontologies from 
schemas of data sources using ontology technology, 
and then establishes a completed global ontology 
which can support each local data source. 
Furthermore, an interface is set up to access 
underlying data sources, which can eliminate 
differences in data sources and provide a uniform 
and transparent semantic-based data query service. 
Finally, the cleaned standard data are returned to the 
upper applications. 

This paper is organized as follows. Section 2 
introduces related work while section 3 describes the 
architecture of SDSOge and its implementation in 
details. The usage of SDSOge system and its 
production application pointing out the advantages 
comparing to previously employed techniques are 
illustrated in section 4. Finally, the conclusion and 
directions for future work are given in section 5. 

2 RELATED WORK 

As the complexity of data brings more and more 
challenges, a new approach of data service is 
becoming increasingly necessary. 

Carey et al. (2012) survey three kinds of popular 
data services, service-enabling data stores, integrated 
data services and cloud data service, respectively. 
But none of the three considers semantic association. 

Doan et al. (2004) introduce the special issue on 
semantic integration. They point out that 60-80% of 
the resources in a data sharing project are spent on 
reconciling semantic heterogeneity. Halevy et al. 
(2005) describe successes, challenges and 
controversies of enterprise information integration. 
Kondylakis et al. (2009) review existing approaches 
for ontology/schema evolution and give the 
requirements for an ideal data integration system. 

Bellatreche et al. (2006) propose the contribution 
of ontology-based data modeling to automatic 
integration of electronic catalogues within 
engineering databases, but this method assumes the 
data source itself does not have enough semantic

 information. 
Ghawi and Cullot (2007) propose a semantic 

interoperability from relational database to ontology, 
but it only considers the case of one data source. 

In order to make a more intuitive view of 
mapping, many mapping tools like COG, DartGrid, 
VisAVis, and MAPONTO, are developed. These 
tools need users to build mappings in an interactive 
way. 

Data from different domains have different 
characteristics. These data are the basis of scientific 
research in the fields. Semantic–based data 
integration and data services for domain-oriented 
ontology are hotspots of current research. 
Establishment of semantic data models, and 
integration and application of semantic data in 
scientific fields are important aspects worthy of 
discussion and research. 

3 SDSOGE ARCHITECTURE AND 
IMPLEMENTATION 

3.1 System Architecture 

SDSOge provides a global semantic data model and 
APIs for users and upper applications to send 
queries and receive desired data. Service consumers 
need not to know the source and original schema of 
data. Figure 1 shows the architecture of SDSOge. 
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Figure 1: SDSOge Architecture. 

3.2 Global Ontology Construction 

There are four steps to establish the global ontology.
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 First of all, filter data of oil and gas engineering 
field and get entities that system needs and 
relationships between the entities. Next, extract 
schema information of databases to establish local 
ontoloties using ontology technology. Then, the 
global ontology can be built through standardizing 
names of properties with the synonym table, and 
further refining, improving and merging of local 
ontologies. Finally, adding semantic constraint rules 
and reasoning mechanisms to form a complete and 
semantically rich global ontology. The global 
ontology construction process is shown in Figure 2. 
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Figure 2: The global ontology construction process. 

3.2.1 Data Filtering 

In the field of petroleum exploration and 
development, data involve more than 20 professional 
aspects, and data of oil and gas engineering domain 
are just a part of them. So we should firstly define 
the basic scope of required data to form entities, 
attributes and relationships between entities referring 
to the data dictionary. 

Take block data entity and sucker rod data entity 
as examples, the corresponding entity models are as 
follows. 
Block data entity: 
E(BlockInfo)={block_name, oil_density, permeability,  

reservoir_depth, ……} 
Sucker rod data entity: 
E(SuckerRodInfo)={sucker_rod_id, diameter, length,……} 

3.2.2 From Relational Database to Local 
Ontology 

Based on the features of tables and constraints 
between tables in the specialized databases, rules 
from relational database to local ontology are 
defined as follows. 

Rule1: Convert each table T into a class or a 
subclass CT (OWL: Class or OWL: Subclass). 

Rule2: Convert CTj into a subclass of CTi, if the 
foreign key of table Ti corresponds to the primary 
key of table Tj (OWL: Subclass). 

Rule3: Convert the foreign key of table T into 
object property OPT (OWL: ObjectProperty). 

Rule4: Convert the primary key of table T into 
the datatype property with functional property DPT 
(OWL: DatatypeProperty). 

Rule5: Convert other columns of table T into

 data properties DPT (OWL: DatatypeProperty). 

 

Figure 3: Tables in production database (partial). 

Figure 3 shows the schema of a few tables in 
production database. According to the mapping rules 
above, the local ontology can be generated 
automatically. The relationships between classes are 
foreign key constraints in the database, as shown in 
Figure 4. 

 

Figure 4: Local ontology of production database (partial 
classes). 

3.2.3 From Local Ontologies to Global 
Ontology 

The process of local ontologies to global ontology is 
divided into three steps, renaming of properties, 
merging of classes, and combination of local 
ontologies. 

Renaming of properties, comparing names of 
ontology properties with the corresponding terms in 
the synonym table, aims at ensuring consistency of 
domain terminologies and reusing the semantic data 
model in the field. The synonym table, which is 
constructed by domain experts and DBAs referring 
to exploration-development database handbooks, can 
solve problems of semantic heterogeneity. The 
names of terms with synonymous semantic relations 
in the handbooks are stored in a same collection in 
the synonym table. The collection name is unified 
into the corresponding name of the attribute in the 
entity, which is defined in 3.2.1. 
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If the name of ontology property is in the synonym 
table, rename the ontology property to the 
corresponding collection name in the synonym table. 
If it is not in the synonym table, user is required to 
complete the property renaming task through the 
GUI, and then add the property into the synonym 
table. If one property name of local ontology 
corresponds to multiple collection names in the 
synonym table, which is semantic heterogeneity of 
the same vocabulary expressing different meanings 
in different data sources, the GUI is also needed. 

We propose a merging algorithm in the stage of 
classes merging. Comparing local ontology 
properties with the entity attributes constructed in 
the step of data filtering, the scope of ontology 
datatype properties of a class must be consistent 
with the corresponding attributes range of the entity, 
and the class name must be same with the 
corresponding entity name. If properties of two or 
more ontology classes correspond to one entity, 
merge the two or more classes into one class named 
the corresponding entity name. 

The classes merging algorithm is detailed as 
follows. 

Step1: Create an ontology class Ci, whose name 
is the name of entity E(i). 

Step2: DPT∈CT, if DPT ∈E(i) ∧ DPT ∉Ci，
add DPT into class Ci, and delete DPT from class CT. 
If DPT∈E(i) ∧ DPT ∈Ci, delete DPT from class CT, 
and do not add DPT into class Ci. 

Step3: If DPT∉CT, delete class CT, the CT’ 
constraint relationships convert into Ci’. 

Step4: Traverse other classes CT of local 
ontology, loop through Step 2 and 3. 

Step5: Select other entities E(i), and loop through 
Step 1-4 until all the entities have been traversed. 

Figure 5 shows the normalized local ontology of 
production database after properties renaming and 
classes merging. Take class BlockInfo in Figure 5 as 
an example to illustrate the classes merging steps. 
Create a new class named BlockInfo firstly. In 
Figure 4, the names of datatype properties of class 
block_reservoir are in the entity BlockInfo, which is 
defined in the step of data filtering, so add the 
datatype properties into the new class BlockInfo, 
and delete the datatype properties from class 
block_reservoir. If all the datatype properties in 
class block_reservoir are deleted, delete class 
block_reservoir, and the constraint relationships of 
class block_reservoir are turned into class 
BlockInfo’. Similarly, traverse other classes. Here, 
we also add the datatype properties of 
block_physical into the new class BlockInfo. 

WellInfo

well_nameBasicInfo

well_class

output

lifting_method

BlockInfo

ProdInfo

well_type

oil_density

fluid_level

block_name

permeability

sucker_rod_id

 

Figure 5: Normalized local ontology of production 
database (partial classes). 

Next is combining local ontologies generated 
from different specialized databases into a global 
ontology. Starting to traverse the root classes of two 
local ontologies, if the two classes have the same 
datatype property, bridge the two classes by a 
foreign key constraint relationship. The class with 
functional property is converted into the subclass of 
the other class without functional property. Two 
local ontologies can be linked in this way. And then 
other local ontologies can be combined. 
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Figure 6: Global Ontology (partial classes). 

Figure 6 shows a global ontology, which is a 
result of the combination of production database 
ontology and equipment database ontology. 
Sucker_rod_id is not only the primary key of table 
sucker_rod in equipment database, but also a 
property of table prod_info in production database, 
so bridge the two classes via sucker_rod_id by a 
foreign key constraint relationship. 

Local ontologies can be converted into a global 
ontology after properties renaming, classes merging, 
and local ontologies combining. 

3.2.4 Adding Semantic Constraint Rules 

Semantic constraint rules are added to strengthen the
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 hierarchical relationships between concepts. 
Reasoning engine can use the constraint rules to 
reclassify and reorganize concepts of the global 
ontology, achieve a certain reasoning function, and 
obtain the implicit knowledge. 

3.3 Semantic Query 

According to the global semantic view, users can 
submit SPARQL statements to query the global 
ontology. SPARQL statements are converted into 
SQL to access the underlying data sources. Finally, 
the query results are presented to users in a uniform 
format after cleaning. 

The semantic query implementation steps are as 
follows. 

Step1: Get the query request, and generate the 
global query statement QG, which is described by 
SPARQL. 

Step2: Reasoning engine converts names of 
classes/properties of QG in global ontology into the 
names in relative local ontologies based on the 
information of synonym table. 

Step3: Divide the global query QG into sub 
queries {QL1, QL2, ……, QLn} for local ontologies. 

Step4: Rewrite sub queries {QL1, QL2, …… , 
QLn} as local sub queries {QD1, QD2, ……, QDn} for 
each data source. Local sub queries are described by 
SQL. 

Step5: Execute local sub queries and return the 
results {RD1, RD2, ……, RDn} in unified formats. 

Step6: Combine the results {RD1, RD2, ……, 
RDn}, and return the final query response after data 
cleaning and converting. 

4 APPLICATION OF SDSOGE 

Due to the demand of oil and gas engineering 
domain, we develop the SDSOge system, which is 
implemented based on JAVA technology. SDSOge 
parses the global ontology and related local 
ontologies using Jena and makes the reasoning 
function into effect. Meanwhile, SDSOge 
implements the extraction of schemas of data 
sources and the data searching process using JDBC 
data access interfaces. SDSOge makes the use of 
data more profound and efficient. 

Oil and gas engineering optimization design and 
assisted management system (OGEA) is a typical 
example of industrial application of SDSOge. 
OGEA is widely used in oil and gas engineering 
field. It could implement the production design and 
decision-making process with the support of 

specialized databases, thus increase the production 
and recovery ratio. 

 

Figure 7: Interface of productivity prediction module. 

 

Figure 8: Corresponding data sources of productivity 
prediction module. 

Figure 7 shows the interface of productivity 
prediction module of OGEA. The corresponding 
data sources of the module are shown in Figure 8. In 
Figure 7, the relevant parameters, such as depth of 
fluid level and current production, are collected from 
production database, while sucker rod data are 
collected from equipment database; which 
implements the integration of distributed data. The 
structure of sucker rod in Figure 7 is stored 
differently in databases from that in Figure 8. 
SDSOge shields the structural heterogeneity and 
presents sucker rod data to the upper level in the 
same format. The lower part of Figure 7 is the result 
of productivity prediction using the data in the upper 
portion. The application shown in Figure 7 is for 
multiple fields, but names of the same type of 
needed information are not identical in the databases 
of different oil fields. SDSOge can shield this 
semantic heterogeneity and map into the 
corresponding individuals by reasoning engine. 

The OGEA system equipped with SDSOge has 
been put into production in oil fields of Daqing, 
Jilin, Huabei, and Dagang. Currently, SDSOge, 
which has measured effect evaluation for 28985 
wells, could provide an entire and real-time data 
service of production monitoring and perform well 
in real applications. 

After application of OGEA system with SDSOge 
in five oil production plants in Huabei Oil Field, the 
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average efficiency has increased by 3.6%, while the 
average pump inspection period has increased by 83 
days, and total oil production has increased by 9054 
tons. The cost of manpower and material resources 
has been saved, and the efficiency of management 
has been improved. Moreover, the average system 
efficiency has improved 3.75% and the average 
pump inspection period has increased by 75 days 
after the SDSOge applied in six oil production plants 
of Dagang Oil Field, which makes a lot of sense in 
extending pump inspection period, saving energy 
and raising production. 

Based on the distributed and heterogeneous 
databases of oil fields, SDSOge shields the 
heterogeneity of underlying databases, builds the 
global semantic data model, provides the semantic 
searching function based on domain terminologies, 
and makes the searching results available for upper 
applications. SDSOge enables the value of data 
improved. 

5 CONCLUSIONS AND FUTURE 
WORK 

The current researches and applications mainly 
focus on solving semantic heterogeneity between 
data sources using ontology, data integration based 
on semantic methods, and data services for upper 
applications. 

The semantic-based data service mentioned in 
this paper connects distributed, heterogeneous and 
complicated data seamlessly, which makes upper 
applications moving smoothly on SDSOge platform. 
SDSOge, which makes data shared and reused, 
builds a semantic-abundant global ontology in the 
domain of oil and gas engineering, implements data 
query transformations based on semantic methods, 
and provides a data service for upper applications. 
SDSOge could shield the heterogeneity of 
underlying data sources and allow users to access 
the standard data everywhere directly, thus provide 
effective data supports for production. SDSOge 
combines industrial production and scientific 
research tightly and is a great example that science 
promotes the progress of industry. 

In the future, we would add more reasoning 
mechanisms to provide better semantic-based data 
services, and introduce SDSOge into more oil fields. 
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