
ETL Patterns on YAWL
Towards to the Specification of Platform-independent Data Warehousing

Populating Processes

Bruno Oliveira and Orlando Belo
ALGORITMI R&D Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal

Keywords: Data Warehousing, ETL Modelling, ETL Validation and Testing, ETL Patterns, and YAWL.

Abstract: The implementation of data warehouse populating processes (ETL) is considered a complex task, not only
in terms of the amount of data processed but also in the complexity of the tasks involved. The
implementation and maintenance of such processes faces various design drawbacks, such as the change of
business requirements, which consequently leads to adapting existing data structures and reusing existing
parts of ETL system. We consider that a more abstract view of the ETL processes and its data structures is
need as well as a more effective mapping to real execution primitives, providing its validation before
conducting an ETL solution to its final implementation. With this work we propose the use of standard
solutions, which already has proven very useful in software developing, for the implementation of standard
ETL processes. In this paper we approach ETL modelling in a new perspective, using YAWL, a Workflow
language, as the mean to get ETL models platform-independent.

1 INTRODUCTION

In software development reusing common software
patterns to build complete software solutions is
addressed by a lot of applications, programming
languages and frameworks. Since early, software
developers felt the need to decompose its programs
in simpler ones in order to identify repetitive
patterns that could be reused. All these contribute to
the reduction of redundancies and foster software
reuse, having a positive impact in the development
time and costs of traditional software. Software
patterns represent a set of more simple tasks that
represent a specific set of rules that are applied in
common scenarios, regardless the context that are
applied. Software patterns proved to be very useful
to enhance reusability, improve general quality of
systems, reduce the negative impact of incomplete
or incorrect software design, and minimize the
impact of requirements changing. Consequently, all
this contributes to reduce significantly development
costs.

ETL (Extract, Transform and Load) processes
are considered one of most difficult and time
consuming tasks to be implemented in Data
Warehousing Systems (DWS) (Kimball & Caserta
2004), being responsible for data extraction from

disparate business data sources in order to transform,
conform and clean data for the integration in a
homogeneous data repository. The data that was
integrated will be posteriorly the target for advanced
data analysis tools sustaining business managers’
decision-making processes. Specific decision needs
are intrinsically related to specific business
processes and business rules. The complexity of an
ETL process is typically affected by the complexity
of business processes that increases every time new
business areas are integrated in a DWS. The change
of business requirements difficult a lot ETL
processes design and, obviously, its future
maintenance. This will require adapting some parts
of the process already implemented increasing
system’s costs. Even when we use standard solutions
for DWS implementation, the specificity of business
decision-making processes will lead systematically
to some ETL adaptation. Moreover, it’s almost
impossible to find inside an organization transaction
systems with the same or similar schemas. Once
again, this will also lead to the development of
specific ETL processes to align operational data
sources with the target DWS schema (Weske et al.
2004). Furthermore, ETL modelling and
implementation is often supported by proprietary
tools, which dispose their own methodologies and

299Oliveira B. and Belo O..
ETL Patterns on YAWL - Towards to the Specification of Platform-independent Data Warehousing Populating Processes.
DOI: 10.5220/0004947302990307
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 299-307
ISBN: 978-989-758-027-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

notations for ETL tasks and coordination
mechanisms. All this increase the complexity of
ETL implementation and maintenance, because it
represents significant efforts for the ETL
development, which need to understand all
specificities provided by them before using them.
Proprietary notations also limit communication with
non-technical users. They use to be very detailed
about the issues related to runtime environments.
Moreover, if we need to change eventually an ETL
tool, we need to spend a lot of time to rebuild data
structures and tasks frequently from scratch (or
almost).

In recent years, several works have presented
solid and useful contributions to improve ETL
processes implementation in DWS, proposing not
only new notations, specially built for ETL domain,
but also adapting existing general use notations,
used in software development for ETL systems
specification and development. Today, it’s clear that
ETL systems specification and development are
intrinsically related to business processes and rules.
Their complexity is often affected by business
process, especially when new business areas are
incorporated in a DWS. Changing business
requirements difficult ETL design and maintenance,
requiring the adaptation of some parts of the process.
So far, we have been working on the identification
of standard patterns that represent and characterize
very common ETL tasks used for real world
application scenarios - e.g. surrogate key pipeline
(SKP), slowly changing dimensions (SCD) with
history maintenance (SCH-HM), change data
capture (CDC), data quality validation (DQV), or
intensive data loading (IDL). We already developed
and implemented some conceptual representation for
such patterns, making a clear separation between
coordination processes (coordination layer) and
transformations applied to data (data transformation
layer). Each pattern represents a proven reusable
practice that can be applied in many different
scenarios. Based on a set of configurable input
parameters, these patterns represent specific tasks
that produce an output based on their internal
configuration. Other patterns involved in in the ETL
system don’t know how other patterns work
(isolation), they just know how to communicate with
them. They are autonomous. Changes on their
behaviour are internal. Do not affect the consistency
of the other patterns and preserve the structure of the
entire ETL system.

To demonstrate the viability of this pattern-
oriented approach on ETL systems development, we
selected a dingle standard ETL process (IDL), using

the YAWL workflow language (W M P van der
Aalst & Hofstede 2003) to specify it. YAWL
provides a formal but very intuitive way to represent
workflows, being quite adequate to specify and
validate ETL systems, at a very early stage of
development, disposing powerful constructs that
enable execution primitives in the definition of a
workflow. So, after a brief exposure about some
related work (section 2), we present a case study
using YAWL (section 3), where we included some
standard patterns that can be used for a complete
ETL process specification. Next (section 4), we
discuss a very specific pattern, IDL, as well as its
respective logical mapping with YAWL and
execution architecture. In section 5 we discuss the
produced YAWL models, presenting the most
relevant aspects of the approach we presented.
Finally, we finish the paper presenting conclusions
and a few guidelines for future work (section 6).

2 RELATED WORK

An ETL process is a critical component of any
DWS. It requires the use of standard methodologies
and models to improve project development process
and maintenance. Kimball and Caserta (2004)
addressed this issue providing a clear and simply
methodology for guiding and supporting the entire
ETL development lifecycle. After producing an
initial plan, the selection of an ETL tool to support
the implementation of the systems appears quite
naturally. These tools helps a lot the work of
developers, providing graphical notations and
methodologies that allow for more accessible
communication and representation of processes.
Usually, these tools produce system models very
detailed, considering many implementation issues -
what is very useful indeed. However, often these
models follow proprietary notations, and so restrict
their migration to other platforms, as well as impose
new learning processes to the ETL team. Taking this
into consideration, many authors on the field have
proposed some new ETL model specifications to
minimize the impact of such “lacks”. For instance,
Vassiliadis et al. (2003) provided a specific notation
for a complete ETL specification approaching the
entire ETL development cycle, starting with the
definition of more general models using specific
conceptual constructs (Simitsis and Vassiliadis,
2003), mappings for logical workflow primitives
(Simitsis and Vassiliadis, 2008) and finally the
correspondent physical representation, supported by
a tool (“Arktos”) (Vassiliadis et al., 2000). On the

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

300

order hand, Trujillo and Luján-Mora (2003) and
Lujan-Mora et al. (2004) proposed an UML (Unified
Model Language) extension for ETL modelling,
showing the use of UML packages that allow the
definition of ETL scenarios. More recently El-
Sappagh et al. (2011) proposed an entity-mapping
diagram (EMD) framework, consisting in a new
notation and a new set of constructs for ETL
conceptual modelling. In the field of general use
workflow languages, Akkaoui and Zimanyi (2009)
showed how to use the Business Process Modelling
Notation (BPMN) notation to develop an ETL
conceptual model and implement it using Business
Process Execution Language (BPEL). They avoided
the major drawback that usually exists between
modelling conceptual specifications and their
implementation. Latter, Akkaoui et al. (2011) also
explored the integration of existing organizational
processes with ETL processes and the definition of a
meta model that formalize the workflow
coordination and data transformation components.
We recognize that conceptual specifications and its
validation are essential, if we want to produce an
effective executable instance of a model, providing
its conceptualization to nontechnical users and its
validation by technical users.

Previously, we had already explored the use of
ETL patterns for ETL conceptual modelling
(Oliveira and Belo, 2012) (Oliveira and Belo, 2013a)
(Oliveira and Belo 2013b) (Oliveira and Belo,
2013c), using BPMN. We also explored how to map
such abstract models to a more detailed (and
executable) model using both BPMN 2.0
orchestration elements and BPEL. Latter, in other
research thread, we also explored ETL pattern
representation using the REO coordination language
(Oliveira and Belo, 2013d), a more formal workflow
language that provides an unambiguous speciation
of the patterns. Although, the contributions and
works that had been presented do not constitute yet a
complete proposal, in order to cover all stages of
ETL development.

3 ETL MODELLING USING
YAWL

Nowadays, programming languages (particularly
object oriented languages) and frameworks provide
pre-existing components allowing for developers to
build complex systems using existing patterns
representing a set of tasks already included in
proven solutions for many common design problems

(Buschmann et al., 2007). Patterns must be context
independent with the ability to approach and
combine heterogeneous architectures and
communicate with other patterns easily, facilitating
and improve the quality of software development.
Software patterns can also represent several
abstraction levels, which make them very useful
artefacts for the development of complex software
systems.

Figure 1: An Abstract ETL Representation.

We designed this work as a system especially
conceived to model DWS populating processes. We
consider that there is no need to “reinvent the
wheel”, every time we initiate the development of an
ETL system. So, our goal was to explore the
existence of a design tool that provide us a set of
high level patterns being capable to receive standard
ETL tasks like the ones mentioned before. These
tasks will free us to specify other fine grain tasks
that are typically error prone and have similar
characteristics, even when they are inserted in
different business environment. The use of patterns
simplifies communication. More specific tasks are
hidden, allowing producing ETL conceptual models
simpler and understandable - we should say “if we
need to use a car in a trip, we just pick a car, we
don’t need to develop it to use it”. Now, we are
simply working in a higher level of specification,
using DWS terminology (for tasks, data and control
flows, and high-level specification models - DWS
patterns), and well-known languages and models
such BPMN or YAWL.

The use of workflow languages for the
specification of ETL systems was subject of research
in last few years. As we referred before, Akkaoui
and Zimanyi (2009) shown that the use of Service
Oriented Architecture (SOA) with BPMN and BPEL
can be successfully applied to more specific
workflow processes, like ETL. In fact, workflow
languages are quite interesting, because they provide
in most cases understandable notations, which
contributes to improve communication at ETL
conceptualization stage, separation of concerns
between operations orchestration and data involved,
and the necessary meaning to instantiate more

ETL�Patterns�on�YAWL�-�Towards�to�the�Specification�of�Platform-independent�Data�Warehousing�Populating�Processes

301

Figure 2: A more detailed view of the ETL process represented previously in figure 1.

conceptual models to execution primitives. YAWL
provides all the referred characteristics, using
formalisms inherited by Petri Nets concepts and
workflow patterns. YAWL also extended additional
features, such multiple instance support and
cancellation patterns, contributing to a more detailed
modelling of complex workflows. These formalisms
make the language more concrete, which reduce
ambiguities, making it much more “implementable”.
Besides, YAWL supports also exception handle,
dynamic workflows, declarative workflows and a
powerful and simple notation to represent all of its
constructs.

To demonstrate the use of YAWL on an ETL
specification, let us consider a process for an
ordinary populating process of a traditional and
simple sales multidimensional schema (figure 1). In
this specification, we used a set of ETL patterns that
simplify the entire representation of the ETL
process. Each pattern used (CDC, SCD-HM, SCD
Type 1, SKP, DQP and IDL) represents itself a set
of pre-defined tasks that are included in separated
nets or processes. Using a atomic task configuring
all the initial parameters, the process starts by
loading metadata that will support the execution
infrastructure, e.g. connection strings to access
sources’ transaction logs files, target connection
strings for holding data in the Data Staging Area
(DSA), mapping tables, quarantine tables, and data
quality procedures for IDL. Next, using an AND-
Split task, two CDC processes are executed
simultaneously to extract modified/new data. These
two tasks are classified as Multiple Instance
Composite Tasks, which are specified in a separate
net allowing for the execution of multiple instances
of a CDC composite task in a concurrent manner.
Each source generates a specific process instance in
order to improve process performance. For source 1
and source 2 we specified two different types of
SCD procedures: SCD type 1 and SCD with history

maintenance, respectively. Both patterns need to be
classified as composite tasks since they include
another YAWL net that owns elements for
representing pattern behaviour. For joining the two
flows an AND-Join was specified for the SKP
pattern. After both flows are finished, the SKP
process initiates for populating the fact table with
dimensional surrogate keys generated by previous
operations (we assumed that SCD patterns also
includes a surrogate key generator pattern). The SKP
pattern is defined as a multiple instance composite
task, since for optimal performance records can be
spitted by several concurrent tasks in order to
populate the fact table. The DQP pattern represents a
set of specific clean and conforming data tasks that
can be applied concurrently dividing the original
data set by all the instances generated. After records
located in DSA are prepared to be loaded into the
DWS through a set of IDL pattern instances that
establishes the correspondences between temporary
storage structures and data warehouse’s structures.
Some patterns of figure 1 integrate other utility
patterns in their own structure - figure 2 shows that
presenting an extended version of the ETL process
of figure 1. In figure 2, we represented the support
patterns used previously in each pattern
specification. For the two first CDC patterns, it was
included the task ‘Update Quarantine Table’ and
‘Update ETL Journal’. The two flows coming from
each task are launched using an OR-Split joined by
an OR-Join type, because the process will activate
most of these flows but not necessarily both will be
activated.

If a CDC pattern finds bad records on source
extraction, they will be handled by an exception task
that put non-conforming records into a temporary
data structure to be analysed latter. In both cases, the
atomic task ‘Update ETL Journal’ will be
responsible to record events into the ETL log
journal. Next, it was defined two Generate DSK

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

302

(Dimensional Surrogate Key) patterns and two
Update ETL Journal tasks, having also an exception
case if necessary. The possibility to decompose
patterns in sub patterns is quite useful. It provides a
more clear vision of all tasks included. Original
patterns still have their original configuration.
However its inclusion in the final process will be
composed by a set of support patterns or tasks,
which will be integrated in the final process. For
example, if a record is invalid on a SKP pattern, it’s
because something wrong happened in the last tasks.
So, in spite of putting that record in a quarantine
table we can cancel all (or part of the) processes in
execution. This type of specification produces
detailed models (figure 2), in which specific tasks
are managed according ETL processes requirements.
YAWL has mechanisms to manage that in a process
flow.

The C-YAWL models provide a way to specify
configurable tasks to establish variants in some parts
of a process, adapting it for different scenarios.
Thus, it’s possible to identify specific parts of a
process that are shared by all variants and parts for
other particular variants. Configurable tasks as its
input and output flows can be blocked or hided from
the remaining tasks. If a flow is blocked, is no
longer possible to execute the task via that port. If
this happens, a new individualized YAWL model is
automatically generated without the blocked tasks,
being the behaviour of a hide tasks removed. This is
particularly useful for ETL processes, because
patterns can have configurable parts, giving more
flexibility in its specification, not only to meet
specific requirements but also to add or remove
tasks from an ETL pattern. Additionally, YAWL
provides cancellation services, which are useful for
the identification of a set of tasks, conditions and
flow relations (join tasks) before the completion of
the tasks. For example, let us consider an excerpt of
a SCD-HM pattern (figure 3). In this example, target
records are processed in groups, which means that
the process is not dealing with row-by-row
operations, but with sets. Four sets of records are
spitted by each flow according to the specified
operation: ‘Insert’, ‘Update’, or ‘Delete’, and in case
of a ‘non-operation’, they are labelled as
‘Unknown’. When an ‘Unknown’ operation is
finished, the task will cancel automatically the other
marked operations. A pattern-oriented approach for
ETL modelling is particularly useful in real world
applications. Using patterns we only need to
represent their behaviour. Encapsulating a
considerable set of elementary operations in a single
pattern we simplify ETL design and modelling. With

the use of well-proven patterns, we can also reduce
implementation errors. Moreover, mappings for the
representation of each pattern in execution
primitives are also clear and unambiguous,
contributing for a successful prior validation of an
ETL model.

Figure 3: Simple example from a SCD with history
maintenance pattern.

4 AN INTENSIVE DATA
LOADING PATTERN

An IDL task is very common in ETL. It serves to
load data into the data warehouse. For our scenario
(figure 1 and figure 2) all data is cleaned and
transformed inside the DSA. At the end of this
process, the IDL pattern process just materializes
conformed rows into the target data structure. When
records arrive to this stage, they are already full
prepared to be loaded into the data warehouse. Then,
the IDL pattern will start to populate table
dimensions and then the fact tables. The IDL pattern
(figure 4) represents data at the finer grain level that
the grain used in previous examples (Figure 1 and
Figure 2). In Figure 4 we are demonstrating the
pattern in terms of "record-by-record" processing,
which will be executed ideally with multiple
instances, one for each dimension. The process starts
by reading the metadata of a specific dimension,
including the connection string for the source and
target dimension, and an entry log with all operation
made for the dimension’s data. For the first
repetitive block, all dimensions’ entry logs for a
particular instance are read one by one and for each
one is applied a conditional expression in order to
identify if this particular log entry refers to an
insertion or a deletion on a specific dimension table.
For the delete operation, the target record is just
eliminated, and for the insertion operation the
specific record must be loaded and inserted in target

ETL�Patterns�on�YAWL�-�Towards�to�the�Specification�of�Platform-independent�Data�Warehousing�Populating�Processes

303

Figure 4: An IDL pattern for delivering dimension tables.

DW repository. After processing all records for a
dimension, it’s time to reflect changes made in
records and inserted previously.

For best performance, we did not consider the
update operation. If a record needs to be updated,
then first is deleted and next inserted again in the
dimension table. If we pretend to maintain historic
data for each change made, an historic table must be
maintained and updated to track all occurrences
made in the correspondent dimension table. For each
repetitive block, this pattern maintains locally an
ETL log file. Thus, the ETL system can recover
from the last consistent state in case of a system
fault. After populate all dimension tables, the IDL
pattern populates fact tables. In the DSA, fact
records are already with the same structure that is
used in the DWS, and the SKP pattern already have
all transactional keys processed with the
correspondence surrogate key. Figure 5 presents an
excerpt of the IDL pattern, focusing on the
delivering of the target fact table.

Figure 5: An IDL pattern excerpt for delivering fact tables.

In this pattern records are separated in two groups:
new fact records and “updated” fact records (in case
of a cumulative fact table). Typically for dimension
tables, the amount of data to be delivered hardly
represents a bottleneck. However, for fact records,
the considerable amount of data to deliver can be a
problem. As Kimball and Caserta (2004) referred,
many times it’s better to delete records that need to
be updated, and then load the new version of those
records. Thus, for the updated records, the IDL
pattern first removes the old record and then inserts
the new fact version. For fault recovery reasons, the
IDL pattern also maintains locally an ETL journal.

YAWL provides a service-oriented architecture for
the execution of the specified processes, disposing a
great flexibility to the YAWL specification and
providing the separation of concerns between
workflows coordination and data transformations.
Tasks can easily be assigned to human participants,
Web Services, Java source code, or external
applications. Additionally, it provides a powerful
data perspective supported by powerful standards:
XML for data representation, and XPath (XML Path
Language) and XQuery (An XML Query Language)
for data extraction and manipulation. Data inside
YAWL support both net level data and task level
data. The net level data is stored using net variables
to be accessed and modified by net tasks. Task
variables are only accessed or modified by its own
or by an instance of it. Additionally, YAWL
provides a strong pallet data types for process
variables, allowing for the definition of complex
data types using XML. This lets to define strong
data types in order to support metadata for the
definition of ETL patterns. In fact, the nature of each
task fits our purposes for ETL pattern metadata
usage. YAWL tasks support input variables where
data are written for task processing, and output
variables where data are read as a result of task
output. For validation purposes, we propose the use
of SOA as a bridge between data storage and process
orchestration layers. Each atomic task is associated
with a web service method that is responsible to
invoke the most suitable data layer procedure (for
example a stored procedure) in order to perform a
specific activity. The way that transformations are
applied is completely independent from the process
layer. A YAWL process is capable to capture the
necessary metadata for process execution, providing
tasks orchestration and representing and controlling
metadata involved between the tasks involved. The
use of XML turns the process much more flexible,
and more expressive when applied to the execution
primitives.

YAWL also provides a selection service that is
part of the Worklet Service, which can replace a

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

304

work item in YAWL ETL process specification at
runtime. That is, specific YAWL process acting as
sub-net can be invoked based on specific rules at
runtime based on a catalogue, handling a specific
task. These features make a YAWL process non-
static, being possible to specify a set of rules
representing some criteria to determine the most
appropriated worklet to be invoked. This is
particularly useful for ETL processes domain,
because it allows specifying individual behaviours
based on a set of pre-defined events. This feature
can be used for the specification of DQP patterns,
since for this pattern we need to apply a set of
specific cleaning/conforming procedures based on a
set of pre-defined scenarios. The flexibility provided
by a feature like this will allow for the extensibility
of the DQP pattern in order to include more
cleaning/conforming procedures, without
reconstructing the initial process specification.

5 RESULTS ANALYSIS AND
EVALUATION

In the domain of workflow languages several
authors have been proposing different languages to
represent conceptual representations for ETL
processes and its correspondent mappings for
execution primitives. Akkaoui et al. (2011) already
provided a BPMN-based meta-model, where they
explored the bridges for a model-to-code translation,
providing its execution to specific tools. However
there is still a lack of a complete approach that
covers the initial process specification that easily
maps an initial model to an execution process. In
fact, in several occasions, BPMN proves to be very
useful at the conceptual level (Akkaoui & Zimanyi
2009; Akkaoui et al. 2012; Oliveira & Belo 2012;
Oliveira & Belo 2013a), but building BPMN
conceptual models may lead in process specification
to ambiguity situations (a same process can be
represented in several different and valid ways).
Akkaoui and Zimanyi (2009) and Oliveira and Belo
(2013a) explored also the use of BPMN for
conceptual ETL representation providing a way to
execute the models specified using BPEL constructs.
We also already explored the use of BPMN 2.0,
including orchestration elements providing the
execution of BPMN models, with some limitations.
In both approaches is still clear that there is a
distinction between the definition of the conceptual
model and its corresponding implementation, just
because both models have different detail levels and

different purposes. Even using only BPMN 2.0, still
exist a significant bridge between both models. It is
necessary to specify meanings and metadata for
model execution. Using YAWL we have a concrete
and logical approach comparing to the BPMN
approach. At the same time, it provides a simpler
model already built with all execution support
structures for its execution. Decker et al. (2008)
already mentioned the conversion of YAWL models
in BPMN models. However, its mapping isn’t
straightforward.

At logical level, YAWL provides a valuable
reuse-based approach quite suitable for the
definition and implementation of ETL processes.
YAWL is a technology-oriented language providing
useful features that enforce ETL processes quality,
for reuse and process implementation: cancellation
sets, C-YAWL models, selection and exception
services, and a powerful mean to data representation
and manipulation. With YAWL it’s possible to
specify a graphical representation of an ETL process
without using a coupled language, and to construct
very flexible ETL patterns, providing a powerful
communication interface and a way to adapt their
behaviour at runtime. Thus, we can easily change
the order of tasks’ behaviour (and input data),
adding more rule-based events to meet new
requirements and the continuous evolution of a
pattern. Using YAWL we can have the best of two
worlds: a concise and concrete modelling language
and the bridges and features to provide process
execution ant its continuous improvement to meet
more functional requirements. However, the
simplicity of the YAWL’s constructs can limit the
communication and expressiveness at the conceptual
level. The use of abstract and descriptive models is
very useful at the early stages of an ETL process
design. At that point, models shouldn’t include any
kind of implementation specification, nor any
criteria associated with its execution (Oliveira and
Belo 2012). Thus, BPMN can be used in order to
provide a more abstract view over an executable
YAWL model. Nevertheless, the necessary
meanings and rule construction need to be well
defined for a successful translation between the two
models. ETL processes requirements change
frequently. They are one of the main problems of the
implementation and maintenance of an ETL process.
We believe that the flexibility provided by YAWL
models could help to minimize this gap.

ETL�Patterns�on�YAWL�-�Towards�to�the�Specification�of�Platform-independent�Data�Warehousing�Populating�Processes

305

6 CONCLUSIONS AND FUTURE
WORK

In this paper we propose the use of a pattern-
oriented approach for ETL modelling and
implementation. Each ETL pattern represents an
ETL task (or set of tasks) that is regularly used in a
real world DWS – SKP, SCD, CDC, DQV, or IDL.
We can look to these patterns as "black boxes" that
given a proper input metadata produce a specific
output, accordingly its internal specification. This
approach provides an easy method to specify
complex ETL processes as also some proven
software engineer practices for ETL systems
implementation. With our approach it’s possible to
reduce some planning problems, especially the ones
related to business requirements changing and
implementation errors. We can change the execution
order of a pattern and its input data without
compromising other tasks or compromise the final
process implementation.

Through the use of YAWL, we demonstrated
how to design a complete ETL system using a set of
ETL patterns. The YAWL specification provides a
simple and very powerful notation that coupled with
powerful execution primitives and data support
structures turns YAWL very suitable for the
validation of ETL processes before proceeding to its
final implementation. Using this ETL modelling
approach, designers and developers only need to
know how to interact with patterns regardless of its
internal specification.

As future work we intend to provide an extended
family of YAWL patterns allowing for building a
complete ETL system from scratch. Additionally,
we expect to provide specific XML schemas for the
definition of patterns’ metadata and explore the use
of selection and exception handling services.

REFERENCES

Van der Aalst, W M P & Hofstede, A. H. M. Ter, 2003.
YAWL: Yet Another Workflow Language.
Information Systems, 30, pp.245–275.

Akkaoui, Z. El et al., 2011. A model-driven framework for
ETL process development. In DOLAP ’11
Proceedings of the ACM 14th international workshop
on Data Warehousing and OLAP. pp. 45–52.

Akkaoui, Z. El et al., 2012. BPMN-Based Conceptual
Modeling of ETL Processes. Data Warehousing and
Knowledge Discovery Lecture Notes in Computer
Science, 7448, pp.1–14.

Akkaoui, Z. El & Zimanyi, E., 2009. Defining ETL
worfklows using BPMN and BPEL. In DOLAP ’09
Proceedings of the ACM twelfth international
workshop on Data warehousing and OLAP. pp. 41–
48.

Buschmann, F., Henney, K. & Schmidt, D. C., 2007.
Pattern-Oriented Software Architecture, On Patterns
and Pattern Languages, Wiley. Available at:
http://books.google.pt/books?id=wzplRf3uh-EC.

Decker, G. et al., 2008. Transforming BPMN Diagrams
into YAWL Nets. Business Process Management
Lecture Notes in Computer Science, 5240, pp.386–
389.

El-Sappagh, S. H. A., Hendawi, A. M. A. & Bastawissy,
A. H. El, 2011. A proposed model for data warehouse
ETL processes. Journal of King Saud University –
Computer and Information Sciences, 23(91-104).

Kimball, R. & Caserta, J., 2004. The Data Warehouse
ETL Toolkit: Practical Techniques for Extracting,
Cleaning, Conforming, and Delivering Data,

Lujan-Mora, S., Vassiliadis, P. & Trujillo, J., 2004. Data
Mapping Diagrams for Data Warehouse Design with
UML. In In Proc. 23rd International Conference on
Conceptual Modeling (ER 2004. Springer, pp. 191–
204.

Oliveira, B. & Belo, O., 2013a. Approaching ETL
Conceptual Modelling and Validation Using BPMN
and BPEL. In 2nd International Conference on Data
Management Technologies and Applications (DATA).

Oliveira, B. & Belo, O., 2012. BPMN Patterns for ETL
Conceptual Modelling and Validation. The 20th
International Symposium on Methodologies for
Intelligent Systems: Lecture Notes in Artificial
Intelligence.

Oliveira, B. & Belo, O., 2013b. ETL Standard Processes
Modelling: A Novel BPMN Approach. In 15th
International Conference on Enterprise Information
Systems (ICEIS).

Oliveira, B. & Belo, O., 2013c. Pattern-based ETL
conceptual modelling. In 3rd International Conference
on Model & Data Engineering (MEDI 2013).

Oliveira, B. & Belo, O., 2013d. Using Reo on ETL
Conceptual Modelling - A First Approach. In ACM
Sixteenth International Workshop On Data
Warehousing and OLAP (DOLAP 2013).

Simitsis, A. & Vassiliadis, P., 2008. A method for the
mapping of conceptual designs to logical blueprints
for ETL processes. Decis. Support Syst., 45(1), pp.22–
40. Available at: http://dx.doi.org/10.1016/
j.dss.2006.12.002.

Simitsis, A. & Vassiliadis, P., 2003. A Methodology for
the Conceptual Modeling of ETL Processes. In The
15th Conference on Advanced Information Systems
Engineering (CAiSE ’03). pp. pp. 305–316.

Trujillo & Luján-Mora, S., 2003. A UML Based Approach
for Modeling ETL Processes in Data Warehouses.
Conceptual Modeling - ER 2003 - Lecture Notes in
Computer Science, 2813, pp.307–320.

Vassiliadis, P. et al., 2003. A framework for the design of
ETL scenarios. In Proceedings of the 15th

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

306

international conference on Advanced information
systems engineering. Berlin, Heidelberg: Springer-
Verlag, pp. 520–535. Available at:
http://dl.acm.org/citation.cfm?id=1758398.1758445.

Vassiliadis, P. et al., 2000. Arktos: A Tool for Data
Cleaning and Transformation in Data Warehouse
Environments. IEEE Data Eng. Bull, 23, p.2000.

Weske, M., Aalst, W. M. P. van der & Verbeek, H.M.W.,
2004. Advances in business process management.
Data & Knowledge Engineering 50, 50(1–8).

ETL�Patterns�on�YAWL�-�Towards�to�the�Specification�of�Platform-independent�Data�Warehousing�Populating�Processes

307

