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Abstract: Database sharding is a technique to handle large data volumes efficiently by spreading data over a large 
number of machines. Sharding techniques are not only integral parts of NoSQL products, but also relevant 
for relational database servers if applications prefer standard relational database technology and also have to 
scale out with massive data. Sharding of relational databases is especially useful in a public cloud because 
of the pay-per-use model, which already includes licenses, and the fast provisioning of virtually unlimited 
servers. In this paper, we investigate relational database sharding thereby focussing in detail on one of the 
important aspects of cloud computing: the economical aspects. We discuss the difficulties of cost savings 
for database sharding and present some surprising findings on how to reduce costs. 

1 INTRODUCTION 

Recently, a new storage technology named NoSQL 
has come up (NoSQL, 2013). The NoSQL idea takes 
benefit, among others, from placing data on several 
nodes, being able to store massive data just by 
adding nodes and thereby parallelizing operations. 
However, there are applications in industrial 
environments that want or have to retain standard 
relational database systems (RDBSs) because of its 
ad-hoc query capability and the query power of SQL 
– both mostly missing in NoSQL – besides being a 
well-established and mature technology.  

In contrast to the scale out of NoSQL products, 
RDBSs are designed to scale up by using bigger 
machines, several disks and advanced concepts such 
as table partitioning, frequently sticking to a single 
RDBS server for query processing. However, there 
is always a bleeding edge of what is possible so that 
one cannot “go big” forever (Kharchenko, 2012).  

Database sharding for larger data volumes is one 
solution to scale out. The tables are sharded, i.e., are 
split by row and spread across multiple database 
servers, the shard members or partitions, according 
to a distribution key. The distribution key specifies a 
range value for each shard member. The main 
advantage of database sharding is the ability to grow 
in a linear fashion as more servers are included to 
the system. Another positive effect is that each 
database shard can be placed on separate hardware 

thus enabling a distribution of the database over a 
large number of machines, resulting in less 
competition on resources such as CPU, memory, and 
disk I/O. This means that the database performance 
can be spread out over multiple machines taking 
benefit from high parallelism. Since the number of 
rows in each table in each database is also reduced, 
performance is improved by having smaller search 
spaces and reduced index sizes. In addition, if the 
partitioning scheme is based on some appropriate 
real-world segmentation of the data, then it may be 
possible to infer and to query only the relevant 
shard. Moreover, there will be an increase of 
availability since data is distributed over shards: If 
one shard fails, other shards are still available and 
accessible. And finally, (Kharchenko, 2012) shows 
that sharding can save costs compared to scaling up. 

RDBSs, and particularly RDBS sharding, make 
also sense for cloud applications. In fact, RDBS 
products are available in public cloud PaaS 
offerings: Microsoft Azure SQL Database (SQL 
Server in the Microsoft Cloud), Amazon RDS 
(supporting MySQL, Oracle, Microsoft SQL Server, 
or PostgreSQL systems), or offerings from IBM, 
Oracle, and others. These products are similar to on-
premises servers, however, managed by the cloud 
provider. This reduces administrative work for users. 
RDBSs as well as other resources can be pro-
visioned in short time, and resources are principally 
virtually unlimited (Armbrust, 2010). Due to a pay-
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as-you-go principle, users have to pay only for those 
resources they are actively using, on a timely basis. 
Hence, it is easy to rent several RDBS instances in 
order to scale out and to overcome size limitations. 
There is also no need to take care of licenses since 
they are already part of the PaaS offerings and 
captured by the cost model. However, some 
limitations such as a 150GB limit for Azure SQL 
databases and a couple of functional restrictions with 
regard to on-premises products have to be taken into 
account.  

The idea of database sharding is principally well 
investigated, for instance, elaborating on sharding 
strategies (Obasanjo, 2009) or discussing challenges 
such as load balancing (Louis-Rodríguez, 2013) and 
scaling (Kharchenko, 2012). A lot of work tries to 
compare distributed relational databases with 
NoSQL (Cattell, 2011). Anyway, comparisons 
between RDBSs and NoSQL sometimes appear as 
ideological discussions rather than technical 
argumentations, as pointed out by (Kavis, 2010) 
(Moran, 2010). Sharding is also partially supported 
by cloud providers. In the Azure federation 
approach, for instance, special operations are 
available to split and merge shards in a dynamic 
manner with no downtime; client applications can 
continue accessing data during repartitioning 
operations with no interruption in service. 

In this paper, we tackle an important industrial 
aspect: the operational costs of database sharding in 
the cloud. In general, existing work on economical 
aspects of cloud computing is very few (cf. Section 
2). Most publications and white papers rather relate 
to a Total Cost of Ownership (TCO) comparison 
between on premise and cloud deployments. But 
there is only little work such as (Hohenstein, 2012) 
on reducing costs in the cloud – if the decision for 
the cloud has been taken. Hence, we focus on cost 
aspects of database sharding in the cloud in detail.  

The remainder of this paper is structured as 
follows. Section 2 provides an overview of related 
work and detects the lack of research. Afterwards, 
cost considerations for a simple, but common 
pricing model are made in Section 3. In particular, 
we discuss the difficulties of how to reduce storage 
costs by sizing and splitting partitions appropriately. 
Section 4 tackles another aspect of sharding that 
must not be neglected – performance issues. Indeed, 
cost and performance must be balanced. Further 
architectural challenges of database sharding are 
presented in Section 5 work before Section 6 
concludes and discusses some future work. 

2 RELATED WORK 

Although (Armbrust, 2010) identifies short-term 
billing as one of the novel features of cloud 
computing and (Khajeh-Hosseini, 2010) considers 
costs as one important research challenge for cloud 
computing, only a few researchers have investigated 
the economic issues around cloud computing from a 
consumer and provider perspective. Even the best 
practices of cloud vendors, for instance, (Microsoft, 
2013) and (Kharchenko, 2012), do not particularly 
indicate how to reduce costs.  

Most work focuses on cost comparisons between 
cloud and on-premises and lease-or-buy decisions. 
(Walker, 2009) compares the costs of a CPU hour 
when it is purchased as part of a server cluster, with 
when it is leased for two scenarios. It turned out that 
buying is cheaper than leasing when CPU utilization 
is very high (over 90%) and electricity is cheap. To 
widen the space, further costs such as housing the 
infrastructure, installation and maintenance, staff, 
storage and networking must be taken into account.  

(Klems, 2009) provides a framework that can be 
used to compare the costs of using a cloud with an 
in-house IT infrastructure. Klems also discusses 
some economic and technical issues that need to be 
considered when deciding whether deploying 
systems in a cloud makes economic sense. 

(Assuncao, 2009) concentrates on a scenario of 
using a cloud to extend the capacity of locally 
maintained computers when their in-house resources 
are over-utilized. They simulated the costs of using 
various strategies when borrowing resources from a 
cloud provider, and evaluated the benefits by using 
the Average Weighted Response Time (AWRT) 
metrics (Grimme, 2008).  

(Kondo, 2009) examines the performance trade-
offs and monetary cost benefits of Amazon AWS for 
volunteered computing applications of different size 
and storage. 

(Palankar, 2008) uses the Amazon data storage 
service S3 for scientific intensive applications. The 
conclusion is that monetary costs are high because 
the service covers scalability, durability, and 
performance – services to be paid but often not 
required by data-intensive applications. In addition, 
(Garfinkel, 2007) conducts a general cost-benefit 
analysis of clouds without any specific application. 

(Deelman, 2008) highlights the potentials of 
using cloud computing as a cost-effective deploy-
ment option for data-intensive scientific applica-
tions. They simulate an astronomic application and 
run it on Amazon AWS to investigate the 
performance-cost tradeoffs of different internal 
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execution plans by measuring execution times, 
amounts of data transferred to and from AWS, and 
the amount of storage used. They found the cost of 
running instances to be the dominant figure in the 
total cost of running their application. Another study 
on Montage (Berriman, 2010) concludes that the 
high costs of data storage, data transfer and I/O in 
case of an I/O bound application like Montage 
makes AWS much less attractive than a local 
service. 

(Kossmann, 2010) performs the TPC-W 
benchmark for a Web application with a backend 
database and compares the costs for operating the 
web application on major cloud providers, using 
existing relational cloud databases or building a 
database on top of table or blob storages.  

(Hohenstein, 2012) showcases with concrete 
examples how architectures impact the operational 
costs, once the decision to work in the cloud has 
been taken. Various architectures using different 
components such as queues and table storage are 
compared for two scenarios implemented with the 
Windows Azure platform. The results show that the 
costs can vary dramatically depending on the 
architecture and the applied components.  

Concerning sharding, (Biyikoglu, 2011) tackles 
the question “how do you cost optimize 
federations?” for Azure SQL federations. The paper 
recommends consolidating storage to fewer 
members for cost conscious systems, thus saving on 
cost but risk higher latency for queries. For mission 
critical workloads, more money should be invested 
in order to spread too many smaller members for 
better parallelism and performance. Since every 
application’s workload characteristics are different, 
there is no declared balance-point. Thus, Biyikoglu 
recommends testing the workload and measure the 
query performance and cost under various setups.  

To our knowledge, trying to reduce costs within 
a certain cloud is not well investigated. We tackle 
this deficit by optimizing database sharding cost. 

3 COST CONSIDERATIONS 

This paper is mainly concerned with an economical 
perspective of database sharding in the cloud since 
costs are relevant for industrial applications.  In fact, 
pay-as-you-go is one important characteristic of 
cloud computing (Armbrust, 2010). As (Hohenstein, 
2012) pointed out, there is a strong need for cost 
saving strategies in a public cloud. One important 
question we are investigating in this context is: how 
to size shards for achieving optimal costs? 

3.1 A Sample Pricing Model  

The pricing models of public cloud providers are 
mainly based upon certain factors such as storage, 
data transfer in and out etc. Most have in common 
that the more resources one occupies or consumes, 
the less expensive each resource becomes. 

In the following, we use the pricing model of a 
popular public cloud provider. We keep the name 
anonymous because we do not want to promote one 
specific provider. Anyway, our main statements can 
be transferred to other providers analogously even if 
the price models and the relevant factors differ. Our 
main intention is to illustrate the challenges with 
pricing models in the public cloud. 

In the pricing model, each database in use has to 
be paid depending on the storage consumption, i.e., 
the size of the database: 
 0 to 100 MB: $4.995     (fix price) 
 100 MB to 1 GB: $9.99 (fix price) 
 1 GB to 10 GB: $9.99 for the first GB,  

$3.996 for each additional GB 
 10 GB to 50 GB: $45.96 for the first 10 GB, 

$1.996 for each additional GB 
 50 GB to 150 GB: $125.88 for the first 50 GB, 

$0.999 for each additional GB 

Hence, a 20GB is charged with $65.92; $45.96 for 
the first 10GB and 10*$1.996 for the next 10GB. 
Similarly, an 80GB database costs $155.85 ($125.88 
for the first 50GB and 30*0.999 for the next 30GB), 
while 150GB sum up to $225.78. These prices are 
on a monthly basis. The maximal amount of data is 
measured every day, and each day is charged 
according to the monthly fee. Hence, Using 10GB 
for the first ten days and 60 GB for the next 5 days is 
charged with $37.96 ($45.96*10/30 + $135.87*5/30) 
for 15 days. Also note that pricing occurs in incre-
ments of 1GB. Hence, 1.1GB is charged as 2GB. 

3.2 Simple Considerations 

In case of database sharding, each database shard is 
charged that way. Unfortunately, reducing costs for 
sharding is not that simple as it seems to be. 

We start with some simple considerations for the 
above pricing model. Let us first compare ten 10GB 
databases (a) with one 100GB database (b). Both are 
able to store 100GB, but the prices differ a lot: 
a) 10 * 10GB à $45.96 each =  $459.60  
b) 1 * 100GB    =  $175.83  

That is, one large partition is 3.8 times cheaper in a 
month than 10 smaller ones making up a difference 
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of $284. The monthly difference is even larger in the 
following case of storing 1,200GB: 
a) 120 * 10GB = 120 * $45.96 = $5,515.20  
b) 8 * 150GB   = 8 * $225.78   = $1,806.24 

Here, the factor is about 3 or absolutely $3,700 a 
month! These examples show clearly that it is more 
economic to use a few databases of larger sizes than 
more small-size databases.  

Unfortunately, smaller databases provide a better 
query performance the effect of which is even 
stronger in the cloud since databases reside on 
different servers having their own resources. Both 
setups have access to the same storage capacity, 
however clearly 120x10GB databases have access to 
15 times more cores, memory and IOPS capacity as 
well as temporary space and log files. Thus, the 
costs must be balanced with performance 
requirements to be achieved.  

Let us assume that performance measurements 
detect that 100GB is a reasonable partition size 
regarding given performance requirements.  

The previous analysis referred to a rather static 
view. For dynamic data, the question arises how to 
split a partition if the 100GB limit is exceeded. The 
most intuitive split will certainly be balanced with 
50/50%. But is this really the best choice? 
a) 50 + 50 GB: 2 * $125.88          = $251.76 
b) 80 + 20 GB: $155.85 + $65.92 = $221.77  

The split into 80 and 20 GB (b) is $30 cheaper, with 
the effect that the first partition will again flow over 
after 20 additional GB: this is not really a cost 
problem but the performance might be affected by 
too many splits and unbalanced partitions. 

If we now add further 30GB to both partitions in 
this scenario, we obtain the following costs: In case 
of (a), 15 GB are put into both partitions equally: 
a) 65GB + 65GB: 2 * $140.865  =  $281.73 

In case of (b), we add 24GB to the first and 6GB to 
the second partition, assuming an equal distribution 
of the new 30GB according to the previous split 
ratio 80/20%. This means another split becomes 
necessary for the 80+24=104GB database resulting 
in 83,2GB and 20,8GB partitions. Now, (b) turns out 
to be $24 more expensive: 

b) $159.846 (83.2GB  + $67.916 (20.8GB)  
+ $77.896 (26GB)  =  $305.658 

3.3 Long-term Comparison 

Obviously, it is necessary to calculate the cumulated 
costs over a longer period of time. As a more 
elaborated example, we start with 100GB (exactly 

the partition limit), and assume a daily increase of 1 
GB, equally distributed over the partition key. 

Table 1 summarizes the database sizes and the 
costs for the first 50 days for a 50/50% split ratio.  

Table 1: Costs for 50/50% ratio. 

day databases costs for day x cumulated costs 

1 2 * 50.5 $253.758 / 30 $8.45

2 2 * 51 $253.758 / 30 $16.91

…   

10 2 * 55 $261.750 / 30 $85.91

…   

20 2 * 60 $271.740 / 30 $175.16

…   

25 2 * 62.5 $277.7340 / 30 $221.05

26 2 * 63 $277.7340 / 30 $230.31

…   

30 2 * 65 $281.730 / 30 $267.74

…   

40 2 * 70 $291.720 / 30 $363.65

…   

50 2 * 75 $301.710 / 30 $462.89

Please note that the costs for the “price for day 
x” column should be divided by 30 (“/ 30”) in order 
to obtain the daily costs. The cumulated costs sum 
up the daily costs until day x. Keep also in mind that 
database sizes are rounded up to full GBs, i.e., 
50.5GB are taken as 51GB and charged with 
$253.758 per month. 

Table 2: Costs for 80/20% ratio. 

day databases costs for day x cumulated costs 

1 80.8 + 20.2 $224.765 / 30 $7.49

2 81.6 + 20.4 $225.764 / 30 $15.01

…   

10 88 + 22 $233.754 / 30 $76.51

…   

20 96 + 24 $245.738 / 30 $157.03

…   

25 100 + 25 $251.73 / 30 $198.78

26 80.64 + 20.16 
 (split!) + 25.2 

$302.661 / 30 $208.87

…   

30 83.20 + 20.80 + 26 $305.658 / 30 $249.46

…   

40 89.60 + 22.40 + 28 $319.636 / 30 $354.21

…   

50 96.00 + 24.00 + 30 $331.618 / 30 $463.42

 

Table 2 summarizes the database sizes and the 
costs for the first 50 days for an 80/20% ratio, being 
applied recursively: Each partition is again split with 
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this ratio. The total costs are lower for the 80/20% 
ratio during the first days: There is a benefit of $0.96 
for the first day, $18.13 for the first 20 days, and 
$18.28 for the first 30 days. But we notice a change 
at day 50: the 50/50% ratio becomes cheaper.  

 

 

Figure 1: Long-term comparison of cumulated costs. 

 

Figure 2: Long-term comparison of daily prices. 

Figure 1 compares the total costs for the first 150 
days. It shows that 50/50% becomes cheaper and 
stays cheaper after 50 days; the difference is even 
increasing day by day. 

As Figure 2 shows, the reason is that the price 
for each day increase a lot from day 25 to 26 (cf. 
also Table 1 and 2). After 26 days, the daily price of 
the 50/50% ratio becomes cheaper for each 
successive day; after day 56, the gap gets even larger 
due to an additional increase at that day. 

If we dive into the details, we notice that the 
number of smaller partitions has increased at those 
days. In fact, a split occurs at day 26 for the 80/20% 
ratio: A partition with 100.8GB is split into 80.64GB 
and 20.16GB. This means three partitions of 
80.64GB, 20.16GB, and 25.2GB occur at day 26, 
with a daily price of $302.661 / 30 in contrast to 
$251.73 / 30 the day before (cf. Table 2). This is an 
increase of $1.69. We now pay $10.08 for that day 
compared to $9.25 for the 50/50% ratio. Indeed, the 
small partitions are dominating the costs, and at day 

50 the total costs for 50/50% start to become 
cheaper. Later on, further splits occur and affect the 
comparison more negatively.  

 

 

Figure 3: Long-term comparison of cumulated costs (with 
merge strategy). 

 

Figure 4: Long-term comparison of daily prices (with 
merge strategy). 

3.4 Improvement 

Anyway, there are alternatives to improve costs. The 
basic idea to reduce costs is to get rid of smaller 
partitions by means of merging them. In the previous 
scenario, we can merge the two smaller partitions of 
20.16GB and 25.2GB at day 26 right after the split: 
 partitions with 20.16GB and 25.2GB: $145.812 
 one merged partition with 45.36GB: $117.816 

Thus, merging partitions reduces the costs at day 26 
by $27.996/30 = 93ct. Using this merge strategy for 
the evaluation, we can improve the daily price 
dramatically (cf. Figure 3). The costs for 80/20% 
remain below 50/50% with a few exceptions. This 
leads to the cost comparison in Figure 4. Using the 
80/20% ratio becomes always cheaper and the 
savings to 50/50% increases day by day. Now, we 
benefit from the 80%/20% ratio even in the long run. 

We conclude this section with demonstrating 
what monetary benefit can be achieved by choosing 
the best ratio compared to a 50/50% split: 
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 $13.98 savings for   100 days 
 $1239.48 savings for   500 days 
 $5090.39 savings for 1000 days 

One important issue remains open: What is the 
optimal split ratio? We implemented an algorithm to 
find out optimal ratios for scenarios given by initial 
size, daily increase, and number of days. It turned 
out that a ratio between 0.8 and 0.9 will be most 
cost-efficient for 100GB shards and 1GB increm-
ents. The optimal ratio varies from day to day, but it 
mostly stays in this interval. Even if the split ratio 
does not strike the optimum, costs can be reduced 
compared to a 50/50% split.  

Other partition sizes and/or increments certainly 
lead to other results. But most of our tested scenarios 
do not let the 50/50% ratio be the best solution.  

In principal, it is necessary to make an analytical 
investigation for finding a formula and making a lim 
1→∞ calculation; this is subject to future research. 

4 PERFORMANCE  

Saving costs is certainly one important driver in 
industrial use cases. Anyway, the cost reduction 
must also be seen in the context of performance. 
Performance requirements will affect the size of 
partitions. Thus, this section presents some basic 
performance results. We essentially compare using 
ten (smaller) 1GB databases with using one (larger) 
10GB database. 

4.1 Test Setup for Ten 1GB Databases 

We use the following table structure for each of the 
shard members: ShardedTable(k int, id int, 
t10 int, t100 int, tf500 float, v100 
varchar(100), v200 varchar(200), v300 
varchar(300), doc xml).  

Each of the 10 shard members contains 
1,000,000 records, summing up to 10GB including 
indexes for all 10 shards. Column k is the primary 
key, which is globally unique over all partitions. 
Each partition has different ranges of keys, i.e., the 
first partition k=0..999,999, the second one with 
k=1,000,000..1,999,999, and so on. In contrast, id is 
a successive number that is only locally unique 
within each shard. Column doc contains an XML 
document representing the complete record as XML. 

We implemented a REST service that executes 
arbitrary queries with parameterized values. The 
REST service runs in a VM of its own in a public 
cloud, in the same data centre as the database shards. 

The service URL has the following structure: 
http://<MyServer>/QueryService/query 
?txt=<query>&param=@k&value=80000 

We can perform a parameterized <query> such 
as SELECT * FROM ShardedTable WHERE k=@k 
from any Web browser; value for parameter @k is 
here 80000. There is an optional request parameter 
db that allows for specifying a single database (as in 
case of the 10 GB database). Without, a thread pool 
is spanned for executing the same query on all 
shards in parallel. We certainly measure only the 
execution time within the REST server, i.e., without 
the latency to the query service. The execution times 
are returned as part of the REST response. 

4.2 Test Setup for One 10GB Database 

To keep the same data volume as in 4.1, the 10GB 
database is set up with 10,000,000 records enume-
rated from 0 to 9,999,999. The table structure is the 
same as before, however, k is the primary key for all 
the records while each id value refers to 10 records. 

4.3 Test Scenarios 

We investigated and compared the performance of 
three scenarios: 
a) Access to all ten 1GB shards in parallel 
b) Access to one 10GB database 
c) Access to one single 1GB shard 

The last scenario is relevant if the shard to be 
queried is known; then no parallel query has to be 
executed.  

The measurements are taken ten times each at 
different times of a day. This explains the broader 
variance in the results.  

We first present the very first execution times of 
requests, i.e., no caching will take place. Table 3 
summarizes the results for searching a primary key 
value (column k). In any case, the result will be a 
single record, i.e., the record will be found in one of 
the shards. As expected, searching a single shard (if 
the partition is known) is performing best. But it is 
surprising that an (index-based) search in 10GB is 
faster than parallelizing ten requests to 1GB shards 
and combining the results.  

Table 4 presents the execution times for 
accessing records with a given id value. The id 
column is not indexed! In case of sharding, each of 
the ten shards returns a single record; the 10GB 
database returns 10 records analogously. Now, 
sharding produces 4 times better results than a 10GB 
database. Again, searching one record in a single 
1GB database is outstanding, but irrelevant since 
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each shard contributes to the overall result. 

Table 3: Global key search. 

Scenario Average elapsed time [ms] Standard 
deviation 

10 * 1GB 622.9915 241.6767746

1 * 10GB 437.4642 786.1302572

1 *   1GB 166.0001 255.7591507

Table 4: Full table scan. 

Scenario Average elapsed time [ms] Standard 
deviation 

10 * 1GB  5950.63548 2402.86658

1 * 10GB 22161.99186 6534.50578

1 *  1GB  1050.68536 708.21466

 

Table 5 presents the results for searching an 
indexed value (column t10) in all partitions. Each 
sharded query returns 10 records, i.e., 100 in total; 
the 10GB database returns 100 records as well. It is 
again surprising, that the 10GB database beats the 
sharded query. Even the difference to a single 1GB 
query is small. 

Table 5: Index-based search. 

Scenario Average elapsed time [ms] Standard 
deviation 

10 * 1GB 558.54096 684.1157257

1 * 10GB 189.43505 82.4324732

1 *  1GB 107.41177 64.3837701

 

To complete the analysis, we measured the 
average execution times for each query, being 
executed 5 times successively and excluding the 
very first execution. Table 6 summarizes the results 
for those “hot” queries, essentially confirming the 
previous results.   

Table 6: Successive accesses (in ms). 

Scenario Global Key 
Search 

Full Table 
Scan 

Index-based 
Search

10 * 1GB 50.2883937 1859.204 68.542061

1 * 10GB 16.6000000 5691.369 30.169731

1 *  1GB 12.2059406 671.324 8.788243

 

Thus, sharded queries might be expensive due to 
the overhead of multithreading and consolidating 
results. This means that partitions might be chosen 
larger than expected in order to save costs. However, 
we do not want to conclude here that using parallel 
queries are less performing in general. Of course, 
there are further aspects such as the size of the VM 
to run the sharding layer, the thread pool, the PaaS 

offering, means for co-location etc. Rather we want 
to encourage developers to perform performance 
tests by their own. As we stated in (Hohenstein, 
1997), it is absolutely recommended to perform 
application-specific benchmarks for meaningful 
results taking into account the applications’ 
characteristics. Here, we simply wanted to get a first 
impression about the performance behaviour.  

5 FURTHER CHALLENGES 

From an architectural point o view, it is a good idea 
to introduce a sharding layer the purpose of which is 
to distribute queries over member shards and to 
consolidate responses. There are a couple of further 
issues we want to mention briefly. 

The sharding layer has to take care of connection 
handling. In fact, each database has a connection 
string of its own, which usually means that each 
shard obtains a pool of its own. Thus, the sharded 
connections are often not pooled in a shared pool. 

There is a need for a shared meta database 
directory that contains all configuration information, 
in particular, about the physical shards, their 
connection string etc. 

The distribution scheme is important. If it is not 
well-designed for the major use cases, then global 
transactions and distributed joins across shards 
cannot be avoided and the sharding layer has to take 
care. Similarly, cross-shard sorting and aggregation 
is another challenge for results from different shards. 

Another important issue is certainly schema 
evolution, i.e., changes to the table structures. Any 
schema upgrade must be rolled out to all members. 

Rebalancing of shards (removing and adding 
shards) is a performance issue. Usually, databases 
have to be created or deleted and data has to be 
moved between databases.  

Finally, we want to mention certain technical 
issues such as policies for key generation, shard 
selection, construction of queries and operations. 

6 CONCLUSIONS 

Sharding of RDBSs is relevant if applications have 
to stick to relational database technology, but 
scalability or Big Data issues arise at the same time. 
Sharding enables one to add additional database 
servers to handle growing data volumes and to 
increase scalability. This is particularly of interest 
for cloud computing environments because of the 
pay-as-you-go principle and the ease to provision 
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new database servers in short time.  
In this paper, we investigated database sharding 

of relational database systems (RDBS) in the cloud 
from the perspective of cost and performance. We 
obtained some surprising results.  

At first, splitting shards into two equally sized 
shards is not always advantageous from a cost 
perspective. Other split factors such as 80/20%, 
combined with a merge operation, yield better 
results in our scenarios. Anyway, we demonstrated 
that achieving optimal costs is difficult in general.  

Furthermore, performance measurements show 
that parallelizing queries to several shards is not 
always better than querying a single database of the 
same total size. 

In the future, we intend to further elaborate on 
strategies to split optimally according to incoming 
load. In particular, cost/performance considerations 
require further investigations. And finally, we want 
to apply our ideas to multi-tenancy. 
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