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Abstract: A course for prospective secondary mathematics teachers was developed at the University of Delaware, 
based on professional recommendations to integrate science, technology, engineering, and mathematics in 
the preparation of teachers of mathematics. Students used GeoGebra, Cabri3D, and Mathematica to model 
phenomena in the physical, natural and social sciences. They used motion sensors and graphing calculators 
to study motion. They wrote Python programs to simulate random phenomena. They built a robot and 
controlled it with a computer program, and made explicit the mathematical and scientific concepts involved 
in the functioning of the robot. Several forms of formative and summative assessment were conducted 
during the course. Teachers learned alternative ways of looking at mathematical concepts, and established 
connections in mathematics and with other areas. 

1 INTRODUCTION 

Technological environments offer opportunities to 
students of different skills and levels of 
understanding to engage with mathematical tasks 
and activities (Hollebrands, 2007). However, the 
integration of technology in mathematics teaching 
has been slower than anticipated due to multiple 
difficulties teachers face (Hohenwarter, 
Hohenwarter, & Lavicza, 2008). Having the 
technology available in schools is not enough to 
guarantee that teachers will know how to use it to 
teach mathematics. Future and in-service teachers 
need to have opportunities to develop the expertise 
and know-how to be able to incorporate the use of 
technology in their own teaching (Lawless & 
Pellegrino, 2007).  

The new course Learning mathematics with 
technology offered at the University of Delaware is 
geared for first-year prospective secondary 
mathematics teachers. The purpose of the course is 
to provide future mathematics teachers, early in their 
teacher preparation program, with the knowledge 
and experience of technology-based activities that 
foster mathematical communication, connections, 
reasoning, and reflection that help students develop 
better understanding in mathematics. The course 
integrates modern interactive technologies to 

emphasize the learning of concepts, problem 
solving, exploration in mathematics, mathematical 
modeling, and connections to physics and other 
sciences. The course is based on current research 
and theories about how students best learn 
mathematics (Boaler, 2008), incorporates 
professional recommendations on the preparation of 
teachers of mathematics and the type of mathematics 
they need to experience and learn themselves 
(Conference Board of the Mathematical Sciences, 
2012; National Council of Teachers of Mathematics, 
2000; Common Core State Standards, 2010, 
National Research Council, 2002, 2011) and 
incorporates best teaching practices. The use of 
writing to learn mathematics is an important 
component of the course. 

2 CONTENT KNOWLEDGE FOR 
MATHEMATICS TEACHERS 

This course emphasizes pedagogical content 
knowledge (Shulman, 1986, 1987) for mathematics 
teachers. The students learn new technology, 
connections of mathematics with science, and a 
richer set of connections among high school 
mathematical concepts. The course implements 
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strategies and methodologies to learn and teach 
mathematics with technology that could be used by 
future teachers in their own classrooms. Students 
actively participate in mathematical modeling of 
physical, biological, and social phenomena (Gordon 
& Gordon, 2010) using a variety of technology 
tools, such as TI CBR 2 motion sensors and 
GeoGebra (International GeoGebra Institute, 2013). 
They also use hands-on materials and the computer 
to further develop their own understanding of 
mathematics concepts, such as conics. Throughout 
the course, students use Python (Enthought, 2013) 
and other programming platforms to write their own 
short computer programs that involve the use of 
loops (FOR or WHILE) and the use of logical 
structures such as IF…ELSE. 

How to work in cooperative groups was 
explicitly discussed several times during the 
semester. One students wrote in his end of class 
reflection: “At the beginning of class, when we 
talked about the concept of working together in a 
group, it helped me better understand how to truly 
work together and feed off of each other’s ideas. 
Communication as they said, is the most important 
thing about it and that helped me truly understand 
the concept.” 

2.1 Motion Sensors, Velocity, and 
Acceleration 

Students conducted several experiments with 
moving objects. They captured data for position vs. 
time with motion detectors and analyzed the 
corresponding graphs. The very first day they used 
constant-velocity vehicles (Printz, 2006). They 
followed with the 7 m jump of a small stuffed toy 
donkey hanging from a parachute. Students collected 
distance vs. time data and described how the 
different phases of the fall were reflected on the 
graph (before the parachute was completely 
deployed and after), and how the corresponding 
parts of the graph represented constant positive 
acceleration or constant velocity (initial accelerated 
motion followed by falling at the terminal velocity). 
One student wrote about the parachute activity on 
her end of class reflection: “The effect air resistance 
has on acceleration and velocity of a falling object 
was a concept today’s lesson clarified for me.” 

Students also captured distance vs. time data for 
a bouncing basketball and analyzed the 
corresponding graph (Cory, 2010), to determine 
when the velocity was positive or negative, when 
was the velocity increasing or decreasing, when was 
it zero, etc. Especially challenging for them was to 

interpret what was happening to the velocity when 
the ball hit the ground. 

2.2 Vanishing Points in a Rowing 
Competition 

Students watched a video of a rowing competition 
(Allain, 2013) and then used GeoGebra and their 
knowledge of perspective and vanishing points 
(Figure 1 and Figure 2) to devise a way to determine 
who was winning the competition. Then they wrote 
a letter to a fictional television producer explaining 
the advantages of their method to make it easier for 
television viewers to see wheter a scull was moving 
faster than another. 

 

Figure 1: Vanishing point at t = 34. 

 

Figure 2: Vanishing point at t = 38. 

2.3 Fitting Curves to Sets of Points  

Students learned ways in which GeoGebra provides 
an alternative point of entry to the topic of fitting 
linear and quadratic curves to two or three points. 
First they played a game in pairs. One player would 
position two or three points on the screen, and the 
other player would use sliders corresponding to the 
coefficients of linear or quadratic functions and 
adjust the value of the slider to hit as many points as 
possible. Students expressed that using sliders 
allowed them to understand better the role of each of 
the coefficients, and the advantages and 
disadvantages of using different representations for 
quadratic functions, such as using the coordinates (h, 
k) of the vertex in the equation y = a(x - h)2 + k or 
using the general equation y = ax2 + bx + c. In 
another activity students used sliders to 
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experimentally fit a parabola to a set of data 
representing annual growth of redwood trees vs. 
rainfall. 

Later, students used sliders also to fit other types 
of curves such as exponential functions. Sliders were 
used in addition to analytical ways to determine the 
parameters of the exponential function. One activity 
was to fit an exponential model to the growth of the 
population in the United States during its first 
century. 

 

Figure 3: The Bubble Board. 

 

Figure 4: Fitting a logistic curve to the bubble data. 

In another activity students generated 56 soap 
bubbles simultaneously with a bubble board (see 
Figure 3) (Hammons, Flores, Pelesko, Biehl, 2012) 
and recorded how many bubbles remained after 
intervals of one minute. Then they were given the 
data of the averages of nine such experiments and 
were asked to use GeoGebra to fit different 
mathematical models to the data (linear, quadratic, 

polynomial, exponential, and logistic) and discuss 
the advantages and disadvantages of each of the 
models. Students found that a logistic model 

y
63.1

1 0.11e0.37x
 (1)

fit the data pretty well in the case of the bubbles 
(Figure 4). 

2.4 Conics 

In the United States often students’ first encounter 
parabolas and other conics through equations such as 
y = x2. Although textbooks mention that such curves 
can be obtained by slicing a cone, students usually 
do not have the opportunity to connect the different 
characterizations of conics. For example, for the 
ellipse, the curve can be described by the equation; 
using the locus definition (the sum of the distances 
to two fixed points is constant); by slicing a cone 
with a plane such that the angle of cut is bigger than 
the angle at the vertex of the cone; or in terms of the 
ratio of the distance from a point to a line and to a 
fixed point (focus-directrix). In this course students 
had the opportunity to establish connections among 
the different ways of characterizing conics using 
hands-on models, GeoGebra, and Cabri3D. One 
student expressed in her exit ticket: “Cabri3D helped 
me understand conic sections better. For the 
parabola, it helped me see that the distance to the 
directrix and focus is equal.” 

2.5 Python Programs to Simulate 
Random Phenomena 

The instructor conducted several short sessions 
where a situation was presented, and then the class 
as a whole, using plain English, described the steps 
that needed to be included in a computer program to 
simulate the situation.  For example, one die is 
tossed 1000 times. The program should keep track of 
how many Heads and Tails have occurred. After 
each toss the program determines who is in the lead 
and keeps track how many times each player has 
been in the lead. At the end the total number of 
outcome for heads and tails are displayed, and also 
how many times each player was in the lead, and 
how many times they were tied. The instructor then 
shared a program that would simulate the tossing of 
the die and keeping track of the outcomes in the 
desired way.  

Students also did some thought experiments 
about situations involving random events and then 
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compared their results with those generated by a 
computer. For instance, students were asked to 
conduct a thought experiment of tossing a fair coin 
100 times and fill a 10 by 10 table with the 
outcomes. Students thought simulations resulted in 
very fragmented tables, where tails and heads 
alternate frequently. Students were then given tables 
generated with Mathematica (Figure 5) to compare 
the distributions of the number of squares in the 
largest “island of randomness” (Flores, 2006) in 
their thought experiments and those generated by the 
computer. 

 

Figure 5: Islands of randomness. 

As one of their projects, students were asked to work 
individually or in pairs to write their own program to 
simulate a situation involving randomness. Two 
students wrote a program to simulate random 
sampling with replacement of marbles of three 
different colors (Figure 6). 

 

Figure 6: Random sampling with replacement. 

2.6 A Robot and a Feedback Loop  

The final project for the course is building a robot 

controlled by a program that includes a feedback 
loop. The instructor demonstrated in class a bumper 
car. The bumper car moves forward until it bumps 
into a wall. It moves back for one second, and turns 
for 1.5 seconds, and then repeats the cycle. Thus, 
inside the loop we want the bumper to do either of 
two things. Change direction and rotate if it bumps 
against an object, else keep moving forward if not.  

Programs in Lego Mindstorms are constructed by 
dragging icons, rather than typing code. For 
example, the switch icon will open the IF… 
THEN… ELSE part of the program. If the touch 
sensor is pressed, the motor will execute the two 
command on the upper part (move in reverse, and 
turn). Else, the motor will continue moving forward 
(Figure 7).  

 

Figure 7: A program with a feedback loop. 

One team of students chose to build a Robogator 
(Figure 8). Students described the structure of the 
program to control the Robogator in plain English: 
IF an object is detected within 60 cm of the 
ultrasonic sensor 

THEN the legs will move the robot forward 
infinitely 

ELSE the robot does not move 
IF the object is within 30 cm 

THEN the jaws will open and close infinitely 

 

Figure 8: Robogator. 

Students also made explicit the scientific and 
mathematical concepts involved with the robot 
functioning: Velocity, speed, normal force, 
momentum, friction, centripetal acceleration, torque, 
feedback loops in nature depending on sensors. They 
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unpacked each one of these concepts further, for 
example,  

“Torque: The Robogator is applying torque in 
order to move because its legs apply a force when 
rotating around an axis, which would be the leg joint 
to the motor. All of these legs are using the same 
amount of torque to move at a constant speed.”  

3 COURSE ASSESSMENT  

Several forms of assessment were used throughout 
the course, both formative and summative, ranging 
from short answers in “exit tickets”, informal verbal 
interviews, to a pre- and post-survey about conics, 
and a survey of the class as a whole. Students’ 
learning was assessed through a midterm exam, 
written assignments, and their reports and in-class 
presentations of the final projects on Python 
programs and Lego robots. 

For the most part, students found the use of 
technology for modeling exciting and illuminating. 
After the first session a student wrote on her 
reflection: 

“It was surprising to begin experiments on the 
first day of class; it set a captivating tone for the rest 
of the semester. I was intrigued by the different 
approaches each pair of students took.  I look 
forward to this class in order to improve my analysis 
skills. Hands-on activities are an extremely helpful 
tool in learning, and I am ready to have this class for 
my future teaching career.” 

At the end of the course, students were given a 
card where they wrote on one side what to keep in 
the course, and on the other what needed to be 
changed or deleted. Seven out the ten participants 
explicitly recommended to keep the use of 
GeoGebra. 

Students participated actively in cooperative 
groups as they tackled complex tasks. Many had not 
worked in groups before in mathematics, and found 
the experience of learning from each other valuable. 
One student stated that the group work and 
collaboration with others “was good for learning 
how others think and helped me think about math.” 

Students found the course directly relevant for 
their future as secondary mathematics teachers. In 
addition, three peer tutors, more advanced 
mathematics education students, who participated in 
the course, also found this experience much more 
relevant than the required computer science course 
they took. Two of the peer tutors conducted an 
independent study related to the course. H. Kretz 
gave a survey about conics at the beginning of the 

course and then again after the topic had been 
covered. She found that in the beginning students 
described conics using only formulas and equations, 
with no mention of actually cutting a cone, or other 
geometric properties. For example, one of the 
students said “Each conic section is dependent on 
the equation.” When asked how they would teach 
the topic of conics, most students described also 
approaches based on symbols, and only one student 
mentioned the use of computers as a tool for 
teaching conics. One student wrote “I would draw a 
conic on the white board and I would show a 
parabola on a calculator with y = x2 and the textbook 
to try looking at different equations for conics”. At 
the end of the course, their descriptions of the conics 
were more elaborated and they incorporated 
additional geometric elements and more 
connections. Likewise, at the end, the vast majority 
of the students mentioned the use of computers for 
teaching conics. A. Restrepo focused on students’ 
attitudes and dispositions towards the group work, 
use of computers, and hands-on activities. After the 
midterm she found that 90% of the students thought 
that the hands-on activities helped them understand 
and recall better.  

4 CONCLUSIONS 

Our course was quite successful in introducing 
prospective teachers to alternative ways of looking 
at mathematical concepts, emphasize connections 
within mathematics, and with other areas. Van 
Voorst (1999) found in a course for in-service 
teachers that the use of interactive technology helped 
mathematics teachers see mathematics “less 
passively, as a set of procedures, and more actively 
as reasoning, exploring, solving problems, 
generating new information, and asking new 
questions” (p. 2). We found similar changes with the 
future teachers. Furthermore, our course illustrates a 
point emphasized in professional recommendations 
on the preparation of  prospective teachers, that 
teachers should have the opportunity to experience 
content courses taught in the same way they are 
expected to teach in High School, courses that 
provide multiple points of entry to mathematical 
concepts through the use of computers, hands-on 
materials, and other tools. Students had also the 
opportunity to experience the advantages of working 
in cooperative groups and start developing their 
skills for making the group work more productive. 
The course will  be taught again in the next 
academic cycle. 
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