
Model-based Approach to Automatic Software Deployment in Cloud

Franklin Magalhães Ribeiro Junior and Tarcísio da Rocha
Departamento de Computação, Universidade Federal de Sergipe (UFS), São Cristóvão, SE, Brazil

Keywords: Software Deployment in Cloud, Model-driven Deployment, Human-Computer Interaction, Cloud
Computing.

Abstract: Cloud computing provides resources to reduce software processing costs in IT companies. There are
automatic mechanisms to software deployment in cloud providers, however it demands manual coding. In
this paper we present a model-based approach to automatic software deployment in cloud environment. We
show a brief literature review of existent proposals to automatic software deployment in cloud. We analyzed
the proposals, where five used deployment mechanisms based on script or programming language, two
proposals based on manual mechanisms and two proposals use a model-based approach to software
deployment in cloud, however one is still strongly tied to manual aspects and other complex to modelling.
This paper presents a new detailed architecture, a use case and the conceptual view of our model-based
approach to automatic software deployment in cloud. This approach aims to reduce the human efforts and
time to deploy services in cloud, using UML deployment diagrams as input, in order to deploy it as much as
possible on the highest abstraction layer.

1 INTRODUCTION

A way to attend the demand of large amount of data
is the resources provided by cloud computing. IT
Companies are considering software deployment in
cloud providers, because processing distribution and
larger storage capacity reduces infrastructure costs.

To implement a software system in a cloud
provider requires a reconstruction of existing
requirements, because cloud environments have
their own architectures (Cala and Watson, 2010). An
approach to automatic software deployment makes
easier this process. In addition, it reduces human
efforts (Cala, 2010).

Aiming investigate solutions referred to services
deployment in clouds, we present a brief discussion
of related proposals in (Ardagna et al., 2012), (Cala
and Watson, 2010), (Chieu et al., 2010), (Juve and
Deelman, 2011), (Konstatinou et al., 2009), (Li et
al.,2012), (van der Burg, 2009) and (Zhang et al.,
2013), to characterize and analyze the software
deployment mechanisms in cloud environments,
under vision of human effort employed to achieve
the deployment.

This paper proposes a model-driven approach to
automatic software deployment in cloud, which uses
UML diagrams as input, to minimize the impact of

human efforts and IT costs. In addition, we describe
the architecture and the conceptual view of our
approach.

The rest of paper is structured as follows. Section
2 describes the deployment in cloud. We review the
related works in Section 3. Section 4 compare and
analyze our proposal against the related works. In
Section 5 we present our model-based approach to
automatic software deployment in cloud, followed
by a discussion describing the architecture, a
conceptual view of proposal and the benefits to
reduce human efforts. Finally, we present the
conclusion and future works in Section 6.

2 DEPLOYMENT

Cloud computing is a mix between grid computing,
distributed computing and virtualization concepts
(Kalagiakos and Karampelas, 2011). Among the
existing cloud providers, we can list some, such as
Amazon EC2 (Amazon, 2013) and Azure Cloud
(Microsoft, 2013).

To deploy and run an application in a cloud
provider, services to support the application are
necessary. In this context, services could be seen as
components.

151Magalhães Ribeiro Junior F. and da Rocha T..
Model-based Approach to Automatic Software Deployment in Cloud.
DOI: 10.5220/0004941601510157
In Proceedings of the 4th International Conference on Cloud Computing and Services Science (CLOSER-2014), pages 151-157
ISBN: 978-989-758-019-2
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

The OMG (OMG, 2006) defines the deployment
process of components in five steps:
 Installation: which publishes software packages

in a control repository;
 Configuration: configure the repository to

support applications;
 Planning: provides an implementation plan to

decide the part of the application that will run;
 Preparation: decides where software will run;
 Launch: decides which roles will connect the

component instances in order to run the entire
software.

To deploy software in cloud manually is expensive,
because it is necessary to understand the cloud
architecture, the security mechanisms (Savu, 2011)
and others specific configurations of the cloud (Li et
al., 2012).

Among the features related to software
deployment, the main are:
 Coordinators: manage a software stack (Cala and

Watson, 2010);
 Software stack: contains the services to support

an application;
 Virtual machine (VM): where services run to

support the application (Armstrong et al., 2011)
and

 Client node: encapsulates the VM (Juve and
Deelman, 2011).

3 RELATED WORK

The research in (Li et al., 2012) proposed
encapsulation of services in virtual machines (VMs)
and the deployment of services in a range of cloud
scenarios, such as private cloud, busted cloud,
federated cloud and multi cloud brokering. They
concluded that the time to deploy depends on the
scenario of the cloud.

The investigation in (Juve and Deelman, 2011)
evaluated a system called Wrangler. Wrangler sends
an XML description of a web service
implementation to manage virtual machines
provisions and to interact with several cloud
providers (such as, Amazon EC2, Eucalyptus and
OpenNebula) in order to deploy applications. The
proposal used four concepts: clients, coordinator,
agents and plugins. They realized that Wrangler
makes the deployment process easier.

The research in (Ardagna et al., 2012), the
authors presented a model-driven approach for
design and execution of applications on multiple

clouds called MODAClouds, They proposed
architecture is divided in two views, design and run
time to software deployment.

Aiming homogeneity access across different
physical devices in a hospital that were connected
using different networks topologies and complex
security policies, such as MRI machines, computers,
among others, in (van der Burg, 2009) the authors
proposed an architecture which software
components are automatically deployed in cloud,
using a declarative model creating an extension of
Nix.

The authors in (Cala and Watson, 2010)
presented a platform for automatic software
deployment in Azure Cloud. The work was
motivated by the need for execution of an
application that analyzes the chemical structure of a
drug, the QSAR, used by a multi-agent system,
called Discovery Bus. The authors build the
deployment in two plans, one to install the services
by workers nodes, and other to define spatial and
temporal dependences, including library
dependencies. They concluded that their platform
was successfully applied to OS virtualization levels
and can model well the spatial and temporal
constrains of deployment process.

The research in (Chieu et al., 2010) presented a
virtualization for building and deploying software
stack in virtual machines (VM) using XML. They
proposed a framework called Vega that provides
mechanisms to enable administrators to configure
the dependencies between services to achieve
deployment in cloud. Also it makes possible to
manage hardware and network resource. However,
because a limitation of this approach is that it does
not deal well with complex cloud scenarios.

To decouple VM from software, (Zhang et al.,
2013) developed a framework for deploying
applications in cloud, which aims to reduce the time
and costs related to deployment. The proposal
differs from the others approaches presented so far,
because the software would not be pre-installed on a
VM image.

The authors in (Zhang et al., 2013) presented the
framework and its functionality divided into three
stages: (i) in the software preparation, to the
customer stores the software in a repository; (ii) in
the selection stage, of the customer can select a
software in the repository – the software is installed
in a VM and this VM is sended and installed on the
local machine of the customer, and finally (iii) the
software deployment, instead of storing the
application in a VM image, it runs on a local
machine on the client side without installing it.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

152

In their work, authors in (Konstatinou et al.,
2009) presented an architecture that supports model
driven software deployment. The technique shows
some phases: the virtual solution declarative model
(VSM), the model of virtual solution deployment
(VSDM) and deployment plan virtual solution
(VSDP). However, for each phase, it is necessary
human interaction with the proposed system.

4 DEPLOYMENT MECHANISMS

Aiming to discover and analyze the mechanisms
used by solutions related to automatic software
deployment, we selected some relevant
characteristics proposed by related work.

The existing mechanisms for the deployment of
services are: manual, script-based, language-based
and model-based. In (Talwar et al., 2005) the authors
observed that model-based mechanisms deals well
with time metric and increases the complexity of the
solution (see Figure 1).

Figure 1: Deployment Mechanisms (Talwar et al., 2005).

In the solutions presented by the related work,
we identified the same mechanisms (see Table 1)
found in (Talwar et al., 2005).

We perceived that the mechanism presented in
(Konstatinou et al., 2009) and (Ardagna et al., 2012)
was the approaches that present a model-based
software deployment (see Table 1).

We observed that solutions in (Cala and Watson,
2010), (Li et al., 2012) and (Zhang et al., 2013) used
the language-based mechanism, which in contrast to
the approaches presented in (Chieu et al., 2010);
(Juve and Deelman, 2011) and (van der Burg, 2009)
it leads better with time investments to the
deployment process (see Figure 1). While the code
solution of the approaches presented in (Chieu et al.,
2010); (Juve and Deelman, 2011) and (van der Burg,
2009) are less complex, they require more time to
the deployment process. However, according to
(Fazziki et al., 2012) and (Talwar et al., 2005) these
aspects have a lower degree of advantages, because

they increase the costs with respect to the code and
to human efforts.

Table 1: Deployment Mechanisms used in Proposals.

 Deployment Mechanism

Proposals

M
an

ua
l

S
cr

ip
t-

ba
se

d

L
an

gu
ag

e-
ba

se
d

M
od

el
-b

as
ed

(Ardagna et al., 2012) X
(van der Burg et al., 2009) X X

(Konstantinou et al., 2009) X X X
(Chieu et al., 2010) X

(Cala and Watson, 2010) X
(Juve and Deelman, 2011) X

(Li et al., 2012) X
(Zhang et al., 2013) X

Our Approach X

Furthermore, we perceived that approaches
mentioned in (Konstantinou et al., 2009) and (van
der Burg, 2009) presented semi-automatic
mechanisms to the deployment. In other words, in
these works there is still the need for manual
intervention in the deployment process.

We also perceived that the proposal in (Ardagna
et al., 2012) presented a model-based mechanism to
deployment, however this approach requires some
understanding of the end user about details of the
cloud computing structure.

Our proposal consists on a model-based
approach to automatic software deployment, aiming
to deploy in a higher abstraction layer to reduce the
human investment and time as much as possible.
Moreover, the use of model-based approach is the
best way to increase productivity (Fazziki et al.,
2012).

5 MODEL-BASED PROPOSAL
TO DEPLOYMENT IN CLOUD

This section explains the architecture and the
conceptual view of proposal to automatic software
deployment in cloud, moreover, is also presented the
use case of proposal. On the use case, we can
observe the reduction of human efforts in
deployment, because on solution is only used UML
deployment diagrams as input.

Our proposal for automatic software deployment
does not require additional coding efforts, it only
requires as input two UML deployment diagrams:
the first one is cloud provider independent (to handle
software legacy), that only contains virtual machines

Model-based�Approach�to�Automatic�Software�Deployment�in�Cloud

153

(VMs) and the services dependencies allocated to
VMs, the second one has specific aspects related to
the cloud, but only the access keys and the cloud
provider name. This is possible, because our
approach is supported by the 14BIS (SWX Software,
2013) and Chef (Opscode, 2013), that provides a
platform to deploy third party software, where the
final user of our approach (IT companies that uses
the deployment as a service from 14BIS) only uses
the software repository (as a general model, to
handle the software legacy, being cloud provider
independent), the database url, the name of cloud
provider, the operational system and the access key
as inputs.

5.1 Architecture

The proposed architecture is divided into three views
(see Figure 2):
 The system view: showing the five modules of

the system (Control, Associator, Stacker,
Allocator and Preparator);

 Local view: that corresponds to the user's view,
it means, the human-computer interaction (which
uses as input passwords and UML deployment
diagrams);

 Remote view: which includes the creation of a
Chef server instance (Opscode, 2013) in the
cloud and the final stage of deployment that is
the software installation in the cloud.

The routine of Associator module starts when the
user input two UML deployment diagrams (specific
and general), as well as the hosts and passwords
(cloud access keys). Moreover, the Associator
module interprets UML diagrams to collect
information related to UML components (a more
detailed concept of each module is described in
Section 5.3 and Figure 4).

The Stacker module is responsible for creating
the software stacks, as previously specified in UML
deployment diagram by the user.

The Allocator accesses the cloud and creates a
Chef server (Opscode, 2013) instance in the cloud.

The Preparator module receives an
acknowledgment from the Allocator module that the
server instance was created in the cloud. So
Preparator, prepares a client with a virtual machine
(VM), it installs the operating system on the VM,
allocates the services (the software stack) on VM
and finally deploys the application in the cloud.
Thereafter, the application can be executed by the
provider.

Figure 2: Proposed architecture.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

154

The Control block manages the other four
modules, acting as an intermediary in the
communication between modules and is responsible
for:
 Send Associator services to the Stacker and the

list of dependency relationships between services
(software stack), from Stacker to Preparator
module;

 Enable communication between Allocator and
the cloud;

 Inform to Allocator about creating the server
instance in the cloud;

 Inform Preparator which operating system must
be installed on the VM;

 Inform Preparator which software stack must be
allocated on its VM;

 Manage the transmission in order to inform and
perform tasks between the blocks.

5.2 Reduction of Human Efforts

The main advantage of the proposal is to focus on
reducing the costs of time and human efforts to
deployment. The reduction of this metrics values
(time and human investment) may come from the
deployment mechanism through the use of UML
deployment diagrams as input (without coding). In
addition, it is known that the use of model-driven
development to generate code increases software
quality, reduces costs and possible coding errors
(Fazziki et al., 2012).

The use case (see Figure 3) aims to show the
reduction of human efforts in the deployment
process. In use case, it can be observed that the
workload is summarized in creating UML
deployment diagrams and implementation of
services. The user would have just to use as input
two deployment models, a general (for VMs and
services) and other specific (corresponding to
aspects of chosen cloud).

Figure 3: Use case.

5.3 Conceptual View

To observe the proposal main aspects, we have
developed a conceptual view (see Figure 4), using
the Amazon EC2 (Amazon, 2013) as the cloud
provider, the Chef (Opscode, 2013) as server
management and StarUML tool (Plastic Software,
2013) to create UML diagrams. The conceptual view
is composed of four modules mentioned in the
proposed architecture see Subsection 5.1), where
each of these modules corresponds to a state in a
state machine (see Figure 4).

5.3.1 Associator Module

In the conceptual view, the state that represents the
Associator module is responsible to interpret the
meta-language generated by the UML deployment
diagram (created by user in StarUML tool). After the
analysis of generated meta-language (see Figure 4),
we observed that the Virtual Machine node is
represented as a array element OwnedViews[],
which has a type = UMLNodeView, an identifier
guid and the coordinates as integer values by the
Left, Top, Width and Height attributes (see Figure 4).

We perceived that the dependency relationship
between the artifacts Service [n] and Service [n-1] is
identified by type = UMLDependencyView and that
this relationship has two attributes named by head
and tail, which corresponds to the identifiers of
UML artifacts: Service[n] and Service [n-1], where
Service[n] depends on Service[n-1].Moreover, the
guid assigned to Service [n] corresponds to the ID
attribute head of the dependency relationship (see
Figure 4).

5.3.2 Stacker Module

The Stacker module identifies which components
(UML artifacts) are inside the UML node
envelopment, in other words, which services belong
to the node and stores them in lists of artifacts
(software stacks corresponding to the respective VM
node). For it be possible, it is necessary to compare
the coordinates of each node with each artifact,
however, this technique complexity would be
O(m*n), where m is the number of nodes and n, the
number of artifacts.

To reduce the complexity of the algorithm
O(m*n), we developed an algorithm (see Figure 4)
of complexity O((n + m) + (m *log m) + (n *log n)),
which presents a lower complexity compared to
O(n*m), but only if n>= 4 and m>= 3. However,
this solution uses the algorithm complexity O (m* n)
if m<3 and n<4.

Model-based�Approach�to�Automatic�Software�Deployment�in�Cloud

155

Figure 4: Conceptual view.

5.3.3 Allocator Module

The Allocator module, on this example, using the
Chef (Opscode, 2013) as a tool for creating a server
instance in the Amazon EC2 cloud (Amazon, 2013).
In it is used access keys and passwords, written in
the file called knife.rb, which is required by EC2
provider (see figure 4).

5.3.4 Preparator Module

The Preparator module is responsible for creating
the virtual machine and for the installation of
selected operating system in the VM. After it, this
module creates a client node and allocates the virtual
machine to this client.

The solution uploads all services (elements of
ArtifactList) to the VM with the command "upload
recipe [Artifact[n-1]]…[Artifact [n]]". Finally it
bootstrap services related to VM node (see Figure
4), with command "recipe
[Node[m].ListArtifact.element();]" (see Figure 2).

6 CONCLUSIONS

In this study, we presented an approach to automatic
software deployment in the cloud. Through a
literature review, we identified and analyzed the
properties of existing solutions. In the proposed
approaches, we found four software deployment
mechanisms, such as: manual, script-based,
language-based and model-based.

We perceived that two researches (Konstatinou
et al., 2009) and (Ardagna et al., 2012) presented a
model-based proposal, but first one with strongly
manual aspects and second to expert deployment
users.

In this research we proposed an automatic
model-based approach to software deployment in
cloud to reduce the human efforts and time, using
only UML diagrams as input. Furthermore, we
described the architecture of our proposal, which is
divided into three visions and five modules, as well
as a conceptual view of the proposal was also
described.

CLOSER�2014�-�4th�International�Conference�on�Cloud�Computing�and�Services�Science

156

As future work, we will verify and analyze
human investment and time in the company SWX
Softwares about deployment in cloud (using our
proposal against traditional proposals) to evaluate
our approach.

ACKNOWLEDGEMENTS

Thanks to CAPES for supporting this work and SWX
Softwares for the partnership.

REFERENCES

Amazon, 2013. Elastic Compute Cloud (EC2), Available
in: http://aws.amazon.com/ec2. Access in 10, June,
2013.

Ardagna, D.; Di Nitto, E.; Mohagheghi, P.; Mosser, S.;
Ballagny, C.; D'Andria, F.; Casale, G.; Matthews, P.;
Nechifor, C.-S.; Petcu, D.; Gericke, A.; Sheridan, C.,
"MODAClouds: A model-driven approach for the
design and execution of applications on multiple
Clouds," Modeling in Software Engineering (MISE),
2012 ICSE Workshop on , pp.50,56, 2-3 June 2012.

Armstrong, D.; Djemame, K.; Nair, S.; Tordsson, J.;
Ziegler, W., 2011. "Towards a Contextualization
Solution for Cloud Platform Services," Cloud
Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on,
pp.328,331.

Cala J., 2010. Adaptative Deployment of Component-
based Applications in Distributed Systems. A
dissertation for the degree of Doctor of Philosophy.
University of Science and Technology, Krakrów,
Poland.

Cala J., Watson P., 2010. Automatic Software Deployment
in the Azure Cloud. Distributed Applications and
Interoperable Systems Lecture Notes in Computer
Science Volume 6115, pp 155-168.

Chieu T.; Karve, A.; Mohindra, A.; Segal, A., 2010.
"Simplifying solution deployment on a Cloud through
composite appliances," Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW),
2010 IEEE International Symposium., pp.1,5, 19-23.

Fazziki, A.E.; Lakhrissi, H.; Yetognon, K.; Sadgal, M.,
2012. "A Service Oriented Information System: A
Model Driven Approach," Signal Image Technology
and Internet Based Systems (SITIS), 2012 Eighth
International Conference on., pp.466,473, 25-29.

Juve, G.; Deelman, E., 2011. "Automating Application
Deployment in Infrastructure Clouds," Cloud
Computing Technology and Science (CloudCom),
2011 IEEE Third International Conference on,
pp.658,665.

Kalagiakos, P.; Karampelas, P., 2011. "Cloud Computing
learning," Application of Information and

Communication Technologies (AICT), 2011 5th
International Conference on , vol., no., pp.1,4, 12-14.

Konstantinou A. V., Eilam T., Kalantar M., Totok A. A.,
Arnold W., Snible E., 2009. An architecture for virtual
solution composition and deployment in infrastructure
clouds, Proceedings of the 3rd international workshop
on Virtualization technologies in distributed
computing.

Li W., Svard P., Tordsson J., and Elmroth E., 2012. A
General Approach to Service Deployment in Cloud
Environments. 2012 Second International Conference
on Cloud and Green Computing, UmeaUniversity,
Sweden.

Microsoft Corporation. 2013. Azure Cloud, Available in:
http://www.windowsazure.com/en-us/. Accessed: 10,
June, 2013.

Object Management Group, 2006. Inc.: Deployment and
Configuration of Component-based Distributed
Applications Specification, Version 4.0.

Opscode, 2013. Chef. Available in:
http://www.opscode.com/chef/. Access in 09, May,
2013.

Plastic Software, 2013. StarUML. The Open Source
UML/MDA Platform, Available in:
http://staruml.sourceforge.net/en/ Access in: 08,
August, 2013.

Savu, L., 2011. "Cloud Computing: Deployment Models,
Delivery Models, Risks and Research Challenges,"
Computer and Management (CAMAN), 2011
International Conference on , vol., no., pp.1,4, 19-21.

SWX Softwares. “14BIS - Software como Produto na
Nuvem” Avaliable in: http://swx.com.br/ and
http://ciomarket.com.br/ . Access in: May, 2013.

Talwar V., Milojicic D., Wu Q., Pu C., Yan W., and Jung
G., 2005. Approaches for Service Deployment. IEEE
Internet Computing, 9(2):70–80.

van der Burg, S.; de Jonge, M.; Dolstra, E.; Visser, E.,
2009. "Software deployment in a dynamic cloud:
From device to service orientation in a hospital
environment," Software Engineering Challenges of
Cloud Computing, 2009. ICSE Workshop on, vol.,
no., pp.61,66, 23-23.

Zhang Y., Li Y., Zheng W., 2013. Automatic software
deployment using user-level virtualization for cloud-
computing, Future Generation Computer Systems,
Volume 29, Issue 1, Pages 323-329.

Model-based�Approach�to�Automatic�Software�Deployment�in�Cloud

157

