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1 INTRODUCTION

In semiconductor industry the demand on functional
and reliable devices, commonly known as chips,
grows as they are more and more frequently used in
safety relevant applications such as airbags, aircraft
control and high-speed trains. The most delicate pe-
riod for devices is their early lifetime, where fail-
ures represent a high risk as visualized by the bathtub
curve in Figure 1.

Figure 1: The bathtub curve describes the life stages of
semiconductor devices.

The main reason for device failures during the
early life stage comes from the manufacturing pro-
cess. Most of these production failures can be de-
tected with functionality tests, where mainly electri-
cal connectivity is checked. Beside this, further tests
regarding reliability of the devices, are performed. A
generally accepted procedure for investigating relia-
bility issues is the Burn-In (BI) test, where the de-
vices are tested under accelerated stress conditions to
simulate the early lifetime. Due to undesirable side
effects of the BI, like high costs and the need for extra
trained employees, a reduction of devices to be burned
is preferable.

More cost-efficient methods are statistical screen-
ing methods which are capable of detecting potential
early life failures. If a device is suspicious compared

to the majority represents a risk device, so-called
Maverick. Depending on the classification power of
the screening method, detected Mavericks are imme-
diately rejected or further investigated, e.g. with the
BI. Due to the development towards sub-micron tech-
nologies, a distinction between reliable devices and
Mavericks becomes increasingly challenging. There-
with, commonly known screening methods do not
work as reliable as before. This opens the need for
advanced methods to solidly detect Mavericks.

A promising approach which is investigated in
the present PhD, is a combination of the Independent
Component Analysis (ICA) followed by the Nearest
Neighbor Residuals (NNR) method (Turakhia et al.,
2005). The idea behind is to perform a data transfor-
mation to reveal masked information by applying the
ICA and afterwards, taking spatial dependencies over
the wafer into account with the NNR (cf. Figure 2).
An ad hoc investigation shows that this is a promising
research direction, but a thorough data analysis has to
precede the ICA to guarantee reliable results.

Figure 2: Wafers can be distinguished e.g. regarding the
size and number of devices, which is considered with NNR.

2 STATE OF THE ART

Commonly, BI testing is performed to detect weak
devices during their early lifetime. Currently, this is
the only fully accepted method among semiconductor
manufacturers to sort out early lifetime failures. Re-
liable screening methods, which can classify devices
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in good ones and Mavericks, consequently reduce the
effort spent on BI. The detection of Mavericks using
screening methods is a cost-efficient, fast and well-
established procedure. Their main target is the identi-
fication of Mavericks already at an early stage, where-
upon a lot of following tests and production steps can
be skipped which results in a more efficient manufac-
turing sequence. While usual test concepts are de-
signed to detect functionality failures, the intention of
screening methods is the detection of reliability prob-
lems. They are not a question of actual functionality,
but of hidden evidence for failures during early life
stage at customer level. This is then a safety and war-
ranty issue.

2.1 Burn-In Testing

An established method to detect Mavericks is the
Burn-In (BI), where devices are tested over several
hours under increased, but still close to reality, test
conditions, such as high temperature and high sup-
ply voltage. The reliability of this method regarding
detection of early failures is acceptable, but contains
the drawback of high costs, including testing time,
special equipment requiring routine maintenance and
extra trained employees. Moreover, the pre-damage
caused during BI stress implies that the device is no
longer ’virgin’, which introduces an additional reason
to search for other testing methods. Due to the fact
that BI is currently the only fully accepted screen-
ing method among semiconductor manufacturers, the
aim to reduce the number of devices tested with BI
is more realistic than replacing this method. This can
be achieved if the classification of good devices and
Mavericks can be performed reliably.

2.2 Part Average Testing

Part Average Testing (PAT) is a standard method,
based on the evaluation of data distributions. These
distributions should be calculated in a robust way,
meaning that the calculated distribution parameters
are insensitive to outliers. Although a variety of dif-
ferent measurements can be used, electrical tests like
diverse current and voltage measurements are prefer-
able. The idea behind is to detect suspicious de-
vices, which indicate some abnormality compared to
the majority of the devices. These devices are then
scrapped and not delivered to the customer. To de-
cide whether a device is suspicious or not, upper and
lower PAT limits, most often calculated on the basis
of a normal distribution, have to be set. In generally,
they are tighter than the lower (LSL) and upper (USL)
specification limits, see 3. Further, these PAT limits

can be divided into static and dynamic limits. The
main difference between is that the static limits are
calculated once, on the basis of a reasonable amount
of data, and then are further applied for subsequent
wafers. In contrast to this, the dynamic limits are up-
dated for each wafer, which takes the variation be-
tween the wafers into account.

Figure 3: PAT limits, marked in red, are more severe than
the lower (LSL) and upper (USL) specification limits.

A further powerful PAT variant is the multivari-
ate PAT. Its focus is the detection of correlated failure
mechanisms of two or more test measurements. Ex-
pert knowledge and experiences with different tech-
nologies are mandatory up to now, to take meaningful
combinations of test measurements for the evaluation
of the multivariate PAT.

2.3 Good Die in Bad Neighborhood

Another commonly used method, known as Good
Die in Bad Neighborhood (GDBN), takes spatial de-
pendencies of devices over the wafer into account.
More accurately, a comparison of each device with its
neighborhood indicates the devices potential risk. It
is known that supposedly good devices surrounded by
bad ones are more likely to fail than those surrounded
by further good ones. An example is given in Figure
4, where a supposed good device is inked out (colored
in gray) because it is surrounded by many bad devices
(marked in black).

Further, it can be observed that devices with the
same risk behavior tend to cluster and those at the
edge of a wafer are more likely to fail due to the man-
ufacturing process of a wafer. The evaluation of good
or bad is done on the basis of the Unit Level Predic-
tive Yield (ULPY) calculation (Riordan et al., 2005),
taking a combination of yield per wafer (local yield)
and yield per lot (stacked yield) into account:

ULPY =
p

local yield� stacked yield: (1)

Again, devices being outside specified limits are
inked automatically and rejected in the next produc-
tion step.

ICPRAM�2014�-�Doctoral�Consortium

4



Figure 4: Good devices surrounded by bad devices (marked
in black), are inked out (marked as gray devices).

3 OUTLINE OF OBJECTIVES

Due to the miniaturization of semiconductor devices,
new challenges on screening methods arise. The clas-
sification in good devices and Mavericks does not
work as accurate as before with screening methods
described in Section 2. Other failure mechanisms ap-
pear or dominate the device failure. To counteract,
advanced screening methods are needed with the aim
to capture as many Mavericks as possible on the ex-
pense of only few good devices (misclassifications).
To evaluate the classification power of a method, this
ratio can be visualized as an operating curve (see Fig-
ure 5). The steeper the ascent of the curve, the more
efficient the method works to separate good devices
and Mavericks. A 100% Maverick detection without
any misclassification forms the optimal case.

It is often not the development of a completely
new method which leads to better results, but a combi-
nation of meaningful methods implemented in a rea-
sonable order. It is important to analyze the data basis
which will be used. Further, a transformation is of-
ten necessary to extract special features which lead to
a better understanding of the underlying data. Sec-
tion 5 presents the method of Independent Compo-
nent Analysis (ICA), which is a promising approach
to detect and separate latent information. Afterwards,
post-processing steps can be applied. The Near-
est Neighbor Residuals (NNR) method is proposed,
which takes spatial dependencies over the wafer into
account.

Generally, any combination of data analysis, data
transformation and post-processing methods can lead

Figure 5: With ever smaller devices, a distinction between
good devices and Mavericks becomes challenging. There-
with, the efficiency of currently applied screening methods
decreases. New methods are expected to counteract. Con-
sequently, the steeper the operating curve, the higher the
classification power of the method.

to advanced screening quality. Therewith, the operat-
ing curve wants to be improved in a way that nearly
all Mavericks can be identified, including hardly any
misclassification.

4 RESEARCH PROBLEM

The intention of this PhD is to develop advanced
screening methods, which can handle the new chal-
lenges on sub-micron devices. As a first approach the
work flow schematically displayed in Figure 7 is ex-
amined.

First step is the evaluation and collection of mean-
ingful data for this purpose. Although a variety
of conventional test measurements are done during
the production process, for many applications IDDQ
measurements (Miller, 1999), i.e. measurements of
the power supply current in the quiescent state, are
more informative as e.g. functional voltage tests. De-
pending on the product and the technology, different
numbers of measurements are taken. For the prod-
uct under investigation, 577 IDDQ measurements per
device are collected. When the power consuming el-
ements are switched off, a perfect CMOS has IDDQ
values in the range of some microamperes whereas
higher values indicate a suspicious behavior of one
or more transistors. Sub-micron technologies contain
new failure mechanisms where it is expected that the
currently used screening methods do not work as ac-
curate as before. For instance, smaller devices have
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increased leakage current which makes it hard to find
a threshold for separating good devices from Maver-
icks. Although, as a first attempt, IDDQ measure-
ments seem to be a good choice, also other test mea-
surements or a meaningful combination of them in-
cluded in the calculation may be suitable.

High dimensional data often contain latent infor-
mation, which becomes visible after a meaningful
data transformation, preferably in a 2 or 3 dimen-
sional space for complexity reduction as well as for
visualizing purposes. Afterwards, a separation cri-
terion to divide good devices and Mavericks has to
be found. As a first attempt, the ICA is investigated,
which is widely spread e.g. in the fields of speech
recognition, image processing, text document analy-
sis and biomedical applications. The applicability of
ICA on device data is not that well investigated by
now, but will be evaluated in this PhD.

The aim is to find a reliable combination of data
analysis techniques, followed by a meaningful data
transformation (e.g. ICA) and a final classification
method to detect Mavericks.

5 METHODOLOGY

5.1 Independent Component Analysis

High dimensional data often mask informative fea-
tures which may help to explain an underlying pro-
cess. Independent Component Analysis (ICA) per-
forms a transformation of observable data x, i.e. test
measurements, into a new representation of sources
s. This can be obtained by applying a transformation
matrix A (mainly called mixing matrix) to reveal la-
tent structures. In other words, it is expected that the
measured data are mixtures of sources that want to
be recovered. Mathematically this can be written as
follows:

x = As: (2)

With a simple inversion of the mixing matrix A,
the sources can be calculated:

A�1x = Wx = s: (3)

Due to the fact that both, the sources and the mix-
ing matrix, are unknown, conventionally solving the
equation is not possible. This means that A or W
have to be estimated, leading to approximations for
the sources as well:

ŝ = Ŵx: (4)

The idea behind ICA is to separate measurement
data into statistically independent sources. Statisti-
cally independent data contain the most information

because they do not include any redundancy. To
achieve independence, either the non-gaussianity can
be maximized or the mutual information can be min-
imized, as will be outlined in the next section.

5.1.1 Pre-processing for ICA

To perform a reliable ICA, main emphasis lies on data
preparation of the test measurements x. Various pre-
processing methods are available. Commonly used
techniques (Naik and Kumar, 2011) are centering fol-
lowed by whitening. Centering means a subtraction
of the mean from the data. The ensuing whitening
data, xw, is a linear transformation of the measure-
ments whereby xw is uncorrelated with a unit vari-
ance:

Varfxwg= EfxwxT
wg= I: (5)

The advantage of whitened measurements is the
reduction of the computational complexity of ICA;
the number of variables to be estimated decreases
from n2 for matrix A to

�n
2

�
= n(n�1)

2 for a resulting or-
thogonal matrix Aw. One method to obtain whitened
data xw is the Singular Value Decomposition with

xw = VD�
1
2 VT x; (6)

where V contains the eigenvectors of the covariance
matrix EfxxTg and D is the diagonal matrix of eigen-
values. This modifies the mixing matrix A to an or-
thogonal mixing matrix Aw as shown in the following
equation:

xw = VD�
1
2 VT As = Aws (7)

with,

EfxwxT
wg = EfAwssT AT

wg
= AwEfssTg| {z }

=I

AT
w

= AwAT
w

= I: (8)

Here, EfssTg= I can be assumed without loss of gen-
erality because ICA is insensitive to the variance. The
new representation in Equation 7, containing now an
orthogonal matrix Aw, has the previously mentioned
advantage of a decrease in complexity. Instead of
the Singular Value Decomposition, also a PCA can
be performed to get uncorrelated data with unit vari-
ance. Geometrically spoken, just a rotation of the ma-
trix has to be found to get the desired independent
data. Therefore, numerical optimization algorithms,
like the gradient descent, can be used and optimized
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using a quantitative measure of non-gaussianity, like
the kurtosis and the Neg-entropy.

Regardless of the distribution of independent ran-
dom variables, based on the central limit theorem,
their sum converges to a Gaussian distribution for a
sufficiently large sample size. Conversely, making the
measurements as non-Gaussian as possible will return
these independent sources. This implies the assump-
tion that the sources are independent and further, that
at most one of the measurements is Gaussian. The
usage of the kurtosis as evaluation criterion for non-
gaussianity is quite popular because it is computation-
ally easy to implement. A kurtosis value of zero im-
plies a perfect Gaussian distribution of the underlying
data, whereas a nonzero value indicates a deviation
from the Gaussian distribution. Unfortunately, the
kurtosis is very sensitive to outliers. A more robust
criterion is so-called Neg-entropy which is defined
as a measure of gaussianity, reflecting the deviation
of the data from a Gaussian distribution. The disad-
vantage of this method is that the probability density
function of the data has to be known in advance. The
uncertainty about the underlying probability density
function can be compensated using approximations
instead. Another procedure is the Infomax-principle
(Bell and Sejnowski, 1995), which stands for infor-
mation maximization and will be realised by minimiz-
ing mutual information.

Further pre-processing steps, which often result in
dimension reduction techniques, can be performed.
Depending on the data and the application, some
of them use PCA, Projection Pursuit (Friedman,
1987), filtering, stochastic search variable selection
like Bayesian networks and wavelet transformation.

5.1.2 Post-processing after ICA

After the ICA has been performed, the resulting
sources have to be evaluated. This can be again a form
of filtering, e.g. the separation in informative sources
and noise. As a first attempt, the NNR method is used,
which takes spatial dependencies of devices over the
wafer into account, see Equation 9. From each device
value, v(xi;y j), the median of the surrounding devices
is subtracted, whereas m and n are dependent on the
neighborhood:

NNR(xi;y j) = v(xi;y j)�med(v(xi+m;y j+n)): (9)

The size of the neighborhood (8, 24 or more) for
calculating the NNR is a further topic which will be
investigated in this PhD. Previous investigations have
shown that the nearest 24 surrounding devices (m;n=
f�2;�1;1;2g) are a good choice. However, first eval-
uations of the NNR on the sources have shown that the

number of surrounding devices taken into calculation
needs to be determined for this project.

Figure 6: To calculate the NNR value for each device (here
marked in gray), just the pass devices are taken into account
because for the electrical fail devices (marked in black) no
value is available. The black square shows the involved de-
vices for a 24-based neighborhood.

As visualized in Figure 6, only pass devices are
considered for the NNR calculation and therefore it
happens that not all surrounding neighbors are avail-
able. In this case it might be useful to consider either
just the given values or other significant ones instead.
As a first attempt, the gap can be filled up with de-
vices on the main x-y-directions, starting from device
(xi;yi). Those from the diagonal directions are only
considered if further devices are needed. Addition-
ally, depending on e.g. the distance, weights can be
incorporated.

5.2 Further Considerations

As outlined in Section 5.1.1, various pre-processing
methods are listed, where the most meaningful one
has to be determined to provide a useful starting po-
sition for the ICA method itself. Generally, the num-
ber of sources is unknown, implying that there can be
more sources than measurements (underdetermined)
or vice versa (overdetermined system of equations)
(Naik and Kumar, 2011). For the first case, the cal-
culation of a pseudo-inverse is necessary. An applica-
tion can be found e.g. in bio-signal processing, where
the number of electrodes are limited compared to the
active muscles involved. For an overdetermined sys-
tem of equations dimension-reducing pre-processing
steps can be performed, see Section 5.1.1. A re-
duction of the measurements to the number of ex-
pected sources is preferable. For ICA itself, different
MATLAB R packages, like the FastICA (Hyvärinen
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et al., 2001), are available.

6 STAGE OF THE RESEARCH

A first and promising approach to detect Mavericks is
depicted in Figure 7.

Figure 7: The flowchart provides an overview of the pro-
posed way of proceeding.

The proposed way of proceeding starts with the col-
lection of meaningful data, followed by their analysis
and preparation as a pre-processing step for ICA. Af-
ter ICA is performed, the most informative source or
even sources have to be identified. It is expected that
an additional NNR calculation reveals further latent
information to finally detect suspicious devices.

6.1 Data and Pre-processing Step

As explained in Section 4, the data under investiga-
tion are 577 IDDQ measurements per device. Figure
8 shows the first five of them. The correlation matrix
C shows strong similarity between the measurements,

Figure 8: Each IDDQ measurement can be visualized as a
signal over all devices. This figure shows the first 5 (su-
perimposed) IDDQ measurements taken from overall 577
available, used as a dimension-reduced basis for the follow-
ing ICA.

with Ci j > 0:97. Also the PCA has shown, that al-
ready one component explains more than 90 % of the
variability in the measurement data. A dimension re-
duction of the measurement data is recommended as
a pre-processing step. For this, different techniques
will be investigated. With knowledge about the num-
ber of hidden sources in the measurements, the size
of dimension reduction would be determined but this
insight is generally not given. Nevertheless, due to
the high correlations between the measurements, a
huge amount of measurements is at least mathemat-
ically negligible, i.e. contains no additional informa-
tion. This implies the assumption of an overdeter-
mined system, where more measurements are avail-
able than sources expected. As outlined in Section5.2,
a pre-processing step in terms of a dimension reduc-
tion is proposed.

6.2 ICA on 5 IDDQ Measurements

As a first attempt, the ICA calculation has been per-
formed on the basis of the first five IDDQ measure-
ments (see Figure 8). The ICA is performed using
the implemented MATLAB function FastICA. The
(5� 5) mixing matrix A and de-mixing matrix W
are calculated and applied to the measurements (see
Equation 4). The resulting 5 sources are visualized in
Figure 9.

To calculate the mixing matrix, symmetric or-
thonormalization is recommended, which calculates
the sources in parallel. Consider, that for repro-
ducibility the continual ambiguities of scaled and per-
muted sources remain.

ICPRAM�2014�-�Doctoral�Consortium

8



Figure 9: With a quadratic de-mixing matrix W the di-
mension of the resulting sources remains the same. Source
3 (red) is conspicuous compared to the remaining sources
and is therefore assumed to contain the most information.
Source 2 and 4 show one peak each and thus will be inves-
tigated in more detail.

6.3 Post-processing Step

While each of the measurements seems to contain the
same information (optically (see Figure 8) and in-
dicated by high correlations), the ICA transformed
sources show clearly separated signals (see Figure 9).
In contrast to other applications of ICA, e.g. investi-
gations of EEG signals, where the pathway of a stan-
dard signal is known, there is no reference signal for
IDDQ measurements which can be used on a compar-
ative basis. Without the identification of one specific
significant source, the NNR is calculated for each of
the five sources based on 8 as well as on 24 neigh-
bors. Source 3 (see Figure 9, colored in red), which is
conspicuous compared to the remaining sources, even
provides 7 Mavericks from totally 8 detected ones, see
Figure 10 and Figure 11.

Therewith, source 3 seems to include the most in-
formation. Source 4 reveals device 413, whereas this
device has been found with source 3 as well. Source
2 is responsible for the suspicious device 294. NNR8
has to be considered carefully because for devices on
the edge of the wafer, just the available neighborhood
is used, without any gap filling adaptation (c.f. Sec-
tion 5.1.2). This means that for some NNR calcu-
lations, only few surrounding devices are available,
especially if just an 8-based neighborhood is chosen.
Nevertheless, both figures show clearly suspicious de-
vices. Device number 284, additionally marked with
a black cross, is extremely suspicious in even both
NNR calculations. Altogether, device 191, 192, 193,
284, 302 and 443 has been detected in source 3, de-
vice 413 in source 3 as well as in source 4 and device
294 is just suspicious in source 2 (see Figure 9). To fi-

Figure 10: The wafer map represents the resulting NNR
calculation on source 3 (see Figure 9) with 8 neighbors
(NNR8). Device 284 is the most significant one.

Figure 11: The wafer map represents the resulting NNR
calculation on source 3 (see Figure 9) with 24 neighbors. In
contrast to NNR8, device 284 is the third significant one.

nally judge these 8 suspicious devices the results from
the BI study are provided in the next section.

6.4 Investigation of Detected Mavericks

To verify the actual behavior of the previously de-
tected 8 devices during their early lifetime, a BI-study
was performed. Results from Backend and BI testing
reveal that 5 devices (192, 193, 294, 302, 443) failed
in the standard Backend test flow before BI and 2 de-
vices (191 and 284) failed during BI after 2 hours and
12 hours, respectively. Altogether, 7 out of the 8 de-
tected Mavericks failed indeed. Just device number
413 survived the 96h BI test, although it is suspicious
in even two sources. BI survivors are not necessar-
ily devices no longer containing any risk. A lifetime
investigation of these devices may explain their long-
time behavior. Nevertheless, 7 out of 8 is a promis-
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ing intermediate result. Further, a more precise in-
vestigation of the BI failure mechanisms is planned to
examine a possible connection between the theoreti-
cally detected Mavericks and their failure type. Pos-
sibly different sources might indicate different failure
mechanisms but this is an open question yet.

Since source 3 itself detects most of the Maver-
icks, an automated detection instead of a visual as-
sessment to identify a meaningful source s, is desired.
Calculating the L2-norm for each source, Equation 10,
reflects the applicability at least for source 3, see Ta-
ble 1.

jjsijj2 =

 
577

å
j=1

(si j)
2

!1=2

for i = 1; : : : ;5: (10)

Table 1: Calculation of the L2-norm for the 5 sources.

Source L2-norm
1 39.9
2 35.6
3 353.5
4 35.7
5 52.9

Source 3 takes the highest norm value. Unfortu-
nately, rearranging the remaining sources regarding
their descending order of the norm values does not
fit to the observed outcome. Beside source 3, source
2 and 4 detected Mavericks and therewith were ex-
pected to get higher values than source 1 and 5. An
investigation of the sources regarding their four mo-
ments, namely mean, variance, skewness and kur-
tosis, identifies source 3 as the most non-Gaussian
source whereas the remaining 4 sources are close to
noise. Further evaluations have to be done to quantify
this information.

7 EXPECTED OUTCOME

The aim of this PhD is to develop an advanced screen-
ing method to detect Mavericks on sub-micron tech-
nologies with higher integration density, where cur-
rently existing screening techniques do not work as
accurate as before on larger structures. To judge the
classification power of the new method, its operating
curve will be evaluated and compared to those of the
already existing screening methods. As an interim re-
sult on the currently investigated data, Table 2 com-
pares the classification power between the proposed
method and the commonly used dynamic PAT.

First investigations (see Section 6) have shown
that a meaningful combination of pre- and post-
processing methods improves the performance of

Table 2: Comparison of the classification power between
the proposed method (see flowchart in Figure 7) and the
dynamical PAT (DPAT) on the 8 suspicious devices (191,
192, 193, 284, 294, 302, 413, 443).

classification proposed method DPAT
correct 7 1

incorrect 1 7

ICA, while ICA itself has free selectable optimization
criteria as well, depending on the application. With
a new improved approach to detect Mavericks, the ef-
fort spend on BI can be reduced and a relevant amount
of time and money can be saved. Additionally, life-
time investigations of Mavericks which survive the
BI may even give information about an appropriate
BI time.

ACKNOWLEDGEMENTS

Special thanks goes to Johannes Kaspar from Infineon
Technologies Austria AG for his valuable discussions
and for being at hand with his expert knowledge any-
time.

This work is funded by the Federal Ministry
for Transport, Innovation and Technology (BMVIT)
funding scheme Talente of the Austrian Research Pro-
motion Agency (FFG, Project No. 839342) and by
Infineon Technologies Austria AG.

REFERENCES

Bell, A. J. and Sejnowski, T. J. (1995). An information-
maximization approach to blind separation and blind
deconvolution. Neural Computation, 7:1129–1159.

Friedman, J. H. (1987). Exploratory projection pur-
suit. Journal of the American Statistical Association,
82:249–266.

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Indepen-
dent Component Analysis. John Wiley & Sons.

Miller, A. C. (1999). Iddq testing in deep submicron inte-
grated circuits. In ITC International Test Conference.

Naik, G. R. and Kumar, D. K. (2011). An overview of inde-
pendent component analysis and its applications. In-
formatica, 35:63–81.

Riordan, W. C., Miller, R., and St. Pierre, E. R. (2005). Reli-
ability improvement and burn in optimization through
the use of die level predictive modeling. In Annual
IRPS. 43rd IEEE Annual IRPS.

Turakhia, R. P., Benware, B., Madge, R., Shannon, T. T.,
and Daasch, W. R. (2005). Defect screening using
independent component analysis on iddq. In VTS’05.
23rd IEEE VLSI Test Symposium.

ICPRAM�2014�-�Doctoral�Consortium

10


