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Abstract: Several methods for reducing the running time of support vector machines (SVMs) are compared in terms 
of speed-up factor and classification accuracy using seven large real world datasets obtained from the UCI 
Machine Learning Repository. All the methods tested are based on reducing the size of the training data that 
is then fed to the SVM. Two probabilistic methods are investigated that run in linear time with respect to the 
size of the training data: blind random sampling and a new method for guided random sampling (Gaussian 
Condensing). These methods are compared with k-Nearest Neighbour methods for reducing the size of the 
training set and for smoothing the decision boundary. For all the datasets tested blind random sampling gave 
the best results for speeding up SVMs without significantly sacrificing classification accuracy. 

1 INTRODUCTION 

One of the most attractive learning machine models 
for pattern recognition applications, from the point 
of view of high classification accuracy, appears to be 
the Support Vector Machine (SVM) (Vapnik, 1995). 
There exists empirical evidence that SVMs yield 
lower rates of misclassification than even the 
classical k-Nearest Neighbour rule (Toussaint and 
Berzan, 2012), in spite of the fact that (at least in 
theory) the latter is asymptotically Bayes optimal for 
all underlying probability distributions (Devroye, 
1981). The drawback of SVMs is their worst-case 
complexity, which is O(N3), where N is the number 
of instances in the training set, so that for very large 
datasets the training time may become prohibitive 
(Bordes, Ertekin, Weston, Bottou, 2005.). Therefore 
much effort has been devoted to finding ways to 
speed up SVMs (Almeida, Braga, and Braga, 2000; 
Chen and Chen, 2002; Panda, Chang, and Wu, 2006; 
Wang, Zhou, Huang, Liang, and Yang, 2006; Chen 
and Liu, 2011; Li, Cervantes and Yu, 2012; Liu, 
Beltran, Mohanchandra and Toussaint, 2013; Chen, 
Zhang, Xue, and Liu, 2013). The simplest approach 
is to select a small random sample of the data for 
training (Lee and Mangasarian, 2001). This 

approach may be trivially implemented in O(N) 
worst-case time. Here this method is called blind 
random sampling because it uses no information 
about the underlying structure of the data. Non-blind 
random sampling techniques such as Progressive 
Sampling (PS) and Guided Progressive Sampling 
(GPS) have also been investigated with some 
success (Provost, Jensen and Oates, 1999; Ng and 
Dash, 2006; Portet, Gao, Hunter and Quiniou, 2007). 
Non-random sampling methods attempt to use 
intelligent data analysis such as genetic algorithms 
(Kawulok and Nalepa, 2012) or proximity graphs 
(Toussaint and Berzan, 2012; Liu, Beltran, 
Mohanchandra and Toussaint, 2013) to preselect a 
supposedly better representative subset of the 
training data, which is then fed to the SVM, in lieu 
of the large original set of data. However, the use of 
guided data condensation methods usually incurs an 
additional worst-case cost of O(N log N) to O(N3).  
Since 1968 the literature contains a plethora of such 
algorithms and heuristics of varying degrees of 
computational complexity, for preselecting small 
subsets of the training data that will perform well 
under a variety of circumstances (Hart, 1968; 
Sriperumbudur & Lanckriet, 2007; Toussaint, 2005). 
Although such techniques naturally speed up the 
training phase of the SVMs, by virtue of the smaller 
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size of the training data, many studies primarily 
focus on and report only the number of support 
vectors retained, ignoring the additional time taken 
to perform the pre-selection. Indeed, it has been 
shown empirically, for methods that used proximity 
graphs for training data condensation, that if the 
additional time taken by the pre-selection step is 
taken into consideration, the overall training time is 
generally much worse than that of simple blind 
random sampling (Liu, Beltran, Mohanchandra and 
Toussaint, 2013).  

Some hybrid methods that combine blind random 
sampling with structured search for good 
representatives of datasets have also been tried. An 
original method combining blind random sampling 
with SVM and near neighbour search, has recently 
been suggested by Li, Cervantes and Yu (2012). 
Their approach first uses blind random sampling to 
select a small subset of the data, from which the 
support vectors are extracted using a preliminary 
SVM. These support vectors are then used to select 
points from the original training set (the data 
recovery step) that are near the preliminary support 
vectors, thus yielding the condensed training set on 
which the final SVM is applied. 

In this paper several methods for speeding up the 
running time of support vector machines (SVMs) are 
compared in terms of the speed-up factor and the 
classification accuracy, using seven large real world 
datasets taken from the University of California at 
Irvine Machine Learning Repository (Bache, 
Lichman, 2013). All the methods are based on 
efficiently reducing the size of the training data that 
is subsequently fed to the SVM (SMO). Two 
probabilistic methods are investigated that run in 
O(N) worst-case time. The first uses blind random 
sampling and the second is a new method proposed 
here for guided random sampling (Gaussian 
Condensing). These methods are also compared with 
the standard leading competitor, the k-Nearest 
Neighbour rule, as well as nearest neighbour 
methods for reducing the size of the training set (k-
NN condensing), and for smoothing the decision 
boundary (Wilson editing), both of which run in 
O(N2) worst-case time. 

2 THE CLASSIFIERS TESTED 

2.1 Blind Random Sampling  

Blind random sampling is the simplest method for 
reducing the size of the training set, both 
conceptually and computationally, with a running 

time of O(N). Its possible drawback, in theory, is 
that it is blind with respect to the quality of the 
resulting reduced training set, although this need not 
result in poor performance. In the experiments 
reported here the percentages of training data 
randomly selected for training the SVM (SMO) were 
varied from 10% to 90% in increments of 10%. 

2.2 Wilson Editing (Smoothing) 

Wilson’s editing algorithm was used for smoothing 
the decision boundary (Wilson, 1973). Each instance 
X in the training set is classified using the 3-Nearest 
Neighbour rule (the three nearest neighbours of X, 
not including itself). Classification is done by means 
of a majority vote. If the instance is misclassified it 
is marked. After all instances have been classified, 
all the marked points are deleted. This condensed set 
is then used to classify the testing set. Wilson editing 
was not designed to significantly reduce the size of 
the training set; its goal is rather to improve 
classification accuracy, and is used here as a pre-
processing step before reducing the training set 
further with methods tailored for that purpose. Since 
k = 3, Wilson smoothing runs in O(N2) worst-case 
time using software packages available in the Weka 
Machine Learning Software (Witten and Frank, 
2000), and a straightforward naïve implementation. 

2.3 k-nearest-Neighbour Condensation 

When all k nearest neighbours of a point X belong to 
the class of X, the k-NN rule makes a decision with 
very high confidence. In other words the point X is 
surrounded by close data points from its own class, 
and is therefore located relatively far from the 
decision boundary. This suggests that many points 
with this property could be safely deleted. Before 
classifying each testing set, the corresponding 
training set is condensed as follows. Each instance in 
the training set is classified using the k-NN rule (not 
including itself). If the instance is correctly 
classified with very high confidence it is marked. 
After all instances are classified, all marked points 
are deleted. This condensed set is then used to 
classify the testing set. High confidence in the 
classification of X is measured by the proportion of 
the k nearest neighbours of X that belong to the class 
of X. The standard k-NN rule uses a majority vote as 
its measure of confidence. In our approach we use 
the unanimity vote (all the k nearest neighbours 
belong to the same class), and select a good value of 
k. This algorithm runs in O(kN2) worst-case time 
using the naïve straightforward implementation and 

Speeding�up�Support�Vector�Machines�-�Probabilistic�versus�Nearest�Neighbour�Methods�for�Condensing�Training�Data

365



packages available in Weka. Note that when data of 
different classes are widely separated it may happen 
(at least in theory) that for every point X its k nearest 
neighbours all belong to the class of X. In such a 
situation the unbridled k-NN condensation might 
discard the entire training set. For such an 
eventuality, if for some pattern class all training 
instances are marked for deletion, the mean of those 
instances is retained as the representative of that 
class. Experiments were also performed with k-NN 
condensation preceded by Wilson editing. 

2.4 Gaussian Condensing 

Gaussian Condensing is a novel heuristically guided 
random sampling algorithm introduced here. The 
heuristic implemented assumes that instances with 
feature values relatively close to the mean of their 
own class are likely to be furthest from the decision 
boundary, and therefore not expected to contain 
much discrimination information. Conversely, points 
relatively far from the mean are likely to be closer to 
the decision boundary, and expected to contain the 
most useful information. First, for each class, the 
mean value of each feature is calculated. Then, for 
each feature in each instance, the ratio between the 
Gaussian function of the mean, and the Gaussian 
function of the feature value of that instance is 
computed. This determines a parameter termed the 
partial discarding probability. Finally, all instances 
are discarded probabilistically in parallel with a 
probability equal to the mean of the partial 
discarding probabilities of all their features. The 
main attractive attribute of this algorithm is that it 
runs in O(N) worst-case time, where N is the number 
of training instances. It is therefore linear with 
respect to the size of the training data, and thus 
much faster than previous discarding methods that 
use proximity graphs, which are either quadratic or 
cubic in N. Indeed, the complexity of Gaussian 
Condensing is as low as that of blind random 
sampling. 

The goal of Gaussian Condensing is to invert the 
probability distribution function of instances for all 
features of each class. Hence, points near the mean 
are certain to be thrown away, and points near the 
boundaries are almost never thrown away. If applied 
to data with a Gaussian distribution, the probability 
distribution function would result in an inverted bell 
curve, with the minimum point occurring at the 
center, and increasing towards the boundaries before 
decreasing again. A similar idea was introduced by 
Chen, Zhang, Xue, and Liu, (2013), with strong 
results. However, their algorithm deletes a ratio of 

the total data closest to the mean. The approach 
proposed here is superior in two ways: (1) it does 
not require a method to decide the ratio of data that 
should be optimally kept, and (2) it does not create a 
“hole” in the data, but rather preserves the entire 
distribution of points, by simply altering the density. 
Experiments were also performed with Gaussian 
Condensing preceded by Wilson editing. 

3 THE DATASETS TESTED 

Wine Quality Data: The white wine quality dataset 
includes over 2000 different vinho verde wines 
(instances).  The dataset comprises twelve features 
that include acidity and sulphate content. There are 
ten classes defined in terms of quality ratings that 
vary between 1 and 10.  

Year Prediction Million Song Data: The original 
dataset is extremely large, (515,345 instances) and 
therefore some of the data were randomly discarded. 
The pattern classes were converted from years to 
decades (1950s through 2000s) and then 3,000 
instances of each class were chosen, comprising six 
classes with a total of 18,000 instances. 

Handwritten Digits Data: This dataset contains 32 
by 32 bitmaps that have been obtained by centering 
and normalising the input images from 43 different 
people. The training set consisting of 5,620 instances 
and has data from 30 people, while the test set 
comes from the 13 others, so as to prevent learning 
algorithms from classifying digits based on the 
writing style rather than features of the shape of the 
digits themselves. To decrease the dimensionality of 
the data, the bitmaps are divided into 4 by 4 blocks 
and the number of pixels in each block is counted. 
The total number of features is thus 63 and the 
number of classes is 10, the digits 0 through 9. 

Letter Image Data: This dataset contains black-
and-white rectangular pixel displays of the 26 upper-
case letters in the English alphabet. The letter 
images were constructed from twenty different fonts. 
Each letter from the twenty fonts was randomly 
distorted to produce 20,000 unique instances. Each 
instance is described using 17 attributes: a letter 
category (A, B, C, …, Z) and 16 numeric features. 

Wearable Computing Data: This dataset (PUC-
Rio) contains information matching accelerometer 
readings from various parts of the human body, with 
the readings taken while the actions were performed. 
Accelerometers collected x, y, and z axes data from 
the waist, left-thigh, right ankle, and right upper-arm 

ICPRAM�2014�-�International�Conference�on�Pattern�Recognition�Applications�and�Methods

366



of the subjects. In each instance, the subjects were 
either sitting-down, standing-up, walking, in the 
process of standing, or in the process of sitting. 
Metadata about the gender, age, height, weight and 
BMI of each subject are also provided. In total 
165,632 instances of such data are included in this 
dataset.  

Spambase data: The Spambase dataset provides 
information about email spam. The emails are 
classified into two categories: spam and non-spam. 
The data labelled spam were collected from 
postmasters and individuals who had reported spam, 
and the non-spam data were collected from filed 
work and personal emails. The dataset was created 
with the goal of designing a personal spam filter. It 
contains 4601 instances, of which 1813 (39.4%) are 
spam. These instances are characterized by 57 
attributes (57 continuous features and one nominal 
class label). The class label is either 1 or 0, 
indicating that the email is either spam or non-spam, 
respectively. 

The MAGIC Gamma Telescope data: This data 
consist of Monte-Carlo generated simulations of 
high-energy gamma particles. There are ten 
attributes, each continuous, and two classes (‘g’ and 
‘h’). The number of instances was 12,332 for ‘g’ and 
6,688 for ‘h’. For the purpose of this study 
approximately half of class ‘g’ was removed at 
random, since the goal of the present research is the 
improvement of the running time of SVMs, rather 
than the minimization of the probability of 
misclassification for this particular application. 

4 RESULTS AND DISCUSSION 

4.1 The Computation Platform 

The timing experiments were performed on the 
fastest high-performance computer available in the 
United Arab Emirates (second fastest in the Gulf 
region): BuTinah, operated by New York University 
Abu Dhabi. The computer consists of 512 nodes, 
each one equipped with 12 Intel XeonX5675 CPU’s 
clocked at 3.07GHZ and 48GB of RAM with 10GB 
of swap memory. BuTinah operates at approximately 
70 trillion floating-point operations per second (70 
teraflops). The experiments utilized seven nodes, 
in total, consuming 9 hours of computation time and 
12 GB of memory. The testing environment was 
programmed in Java, using the Weka Data Mining 
Package, produced by the University of Waikato. 
 

4.2 Blind Random Sampling  

The SMO (Sequential Minimization Optimization) 
version of SVM, invented by John Platt (1998) and 
improved by Keerthi, Shevade, Bhattacharyya, and 
Murthy, (2001) that is installed in the Weka machine 
learning package was compared to the classical k-
NN decision rule when both are preceded by blind 
random removal of data before feeding the 
remaining data to each classifier. A typical result 
obtained with the Wearable Computing dataset is 
shown in Figure 1, for the classification accuracy 
(left vertical axis) and the total running time (right 
vertical axis). Total time refers to the sum of the 
times taken for training data condensation, training 
time, and testing time (results for the three 
individual timings will be presented in a following 
section). In this and all other experiments the 
classification accuracies and timings were obtained 
by the method of K-fold cross-validation (or  
method) with a value of K = 10 (Toussaint, 1974). 
This means that for each of the classifiers and 
condensing methods tested the procedure for 
estimating the classification accuracy for each fold 
was the following. Let {X} denote the entire dataset. 
The ith fold is obtained by taking the ith 10% of {X} 
as the testing set, denoted by {XTS-i}, and the 
remaining 90% of the data as the training set, 
denoted by {XTR-i}. Estimates of the 
misclassification accuracy of any classifier are then 
obtained by training the classifier on {XTR-i}, and 
testing it on {XTS-i}, for i = 1, 2, …, 10, yielding a 
total of ten estimates. Similarly, when estimating the 
classification accuracy of an editing (or condensing) 
method, the editing (or condensing) is first applied 
to {XTR-i}, and the resulting edited (condensed) set is 
used to classify {XTS-i}. Finally, in all cases the 
average of the ten estimates obtained in this way is 
calculated. Thus the results shown in the figures are 
the mean values over the ten folds. This method also 
permits the computation of standard deviations (over 
the ten folds) to serve as indicators of statistically 
significant differences between the means. The error 
bars in the figures indicate ± one standard deviation.  
All seven datasets exhibit similar behaviour to that 
depicted in Figure 1, with respect to how the 
classification accuracy varies as a function on the % 
of training data removed. The classification accuracy 
results are not unanimous, but favour k-NN over 
SMO, the latter having significantly better accuracy 
than k-NN only for the Song data (Figure 2).  For the 
Letter Image, Wearable Computing, and MAGIC 
Gamma datasets k-NN did significantly better 
(example: Figure 1). Furthermore, for some of the 
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datasets such as the Spam, Wine, and Handwritten 
Digits data there are no significant differences 
between SMO and k-NN. For the Spambase data 
SMO is significantly better only when more than 
60% of the data are discarded (see Figure 3). 

 

Figure 1: Accuracy and time vs % training data removed 
by random sampling for Wearable Computing data.  

 

Figure 2: Accuracy and time versus % of training data 
removed by blind random sampling for Song data. 

 

Figure 3: Accuracy and time versus % of training data 
removed by blind random sampling for Spambase data. 

With respect to the total time taken by SMO and k-
NN, in all the datasets, SMO takes considerably less 
running time than k-NN, and all show behaviour 
similar to the curves in Figures 1-3. For example, if 
70% of the data are discarded then k-NN runs about 
five times faster (and SMO about ten times faster) 
than when all the data is used for training. This is 
not too surprising since k-NN runs in O(N2) 
expected time and SMO is able to run faster in 
practice depending on the structure of the data. 

4.3 The Condensing Classifiers 

Experiments were done applying various training

 data condensation classifiers to reduce the size of 
the training data that was fed to both the SMO and k-
NN classifiers. The condensing classifiers tried 
were: (1) Gaussian condensation, (2) Wilson editing, 
(3) Wilson editing+Gaussian condensation, (4) 
Wilson editing+k-NN condensation, and (5) k-NN 
condensation. Figures 4-10 show the per-cent mean 
accuracy and mean total running times (in seconds) 
for all the five condensation classifiers, plus the 
results for blind random sampling obtained by 
discarding 40% (rem40) and 70% (rem70) of the 
training data. In all the figures ‘Con’ indicates 
condensation, ‘Wilson’ denotes Wilson smoothing, 
and ‘Gauss’ stands for Gaussian condensation. 

 

Figure 4: Accuracy and total time of condensing algorithm 
methods for the Spambase data.  

Perusal of the figures reveals that none of the 
condensing methods improves the accuracy of the 
classifiers that do not use condensing. With some of 
the datasets the accuracy remains unchanged, such 
as for the Wearable Computing data in Figure 7, and 
the Handwritten Digits in Figure 8. For other 
datasets accuracy suffers considerably, as with the 
Wine data in Figure 5, and the Song data in Figure 9.  

 

Figure 5: Accuracy and total time of condensing algorithm 
methods for the Wine data.  

With k-NN classification, random removal of 70%
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 of the training set, and Gaussian condensation were 
the fastest methods for all the datasets other than the 
Handwritten Digits. Similar relative behavior was 
observed with SMO. However, in all cases the 
running times for condensing with SMO were much 
smaller than those for condensing with k-NN.  

 

Figure 6: Accuracy and total time of condensing algorithm 
methods for the Letter Image data.  

 

Figure 7: Accuracy and total time of condensing algorithm 
methods for the Wearable Computing data.  

 

Figure 8: Accuracy and total time of condensing algorithm 
methods for the Handwritten Digits data.  

In Figures 4-10 the times plotted are total times: 
condensing time + training time + testing time. One 
of the  main  goals of  this research is to compare the 
testing  times  of  the  various  classifiers, since these 

 

Figure 9: Accuracy and total time of condensing algorithm 
methods for the Song data.  

 

Figure 10: Accuracy and total time of condensing 
algorithm methods for the MAGIC Gamma data.  

reflect the speed of the classifier on all future data. 
However, if the condensing times and training times 
dominate the testing time, then the total times listed 
in the figures may hide the testing times. Therefore a 
breakdown of the individual times was also plotted 
for all the experiments. Space does not permit 
including all the figures, and therefore an example is 
offered for the Magic Gamma data in Figure 11. 
Note from Figure 10 that the classifiers with the 
smallest total times are: SMO, SMO+rem40, 
SMO+rem70, and SMO+Gauss. Furthermore their 
accuracies are not significantly different. Therefore 
the classifiers with the fastest testing times would be 
preferred in this case.  

Figure 11 shows the breakdown of condensing, 
training, testing, and total time for the MAGIC 
Gamma data on a linear scale in seconds. This figure 
clearly shows how large the testing time for k-NN is 
compared to all other classifiers, thus making it 
difficult to compare the four classifiers of main 
interest. To zoom in on their performance the data 
from Figure 11 are shown on a logarithmic scale in 
Figure 12, where it can be clearly seen that SMO 
runs faster when pre-processed by rem40 or rem60, 
but     not     when     pre-processed     by     Gaussian 
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Figure 11: Breakdown of condensing, training, testing, and 
total time for the MAGIC Gamma data.  

condensation. Similar behaviour is observed with the 
other six datasets. 

 

Figure 12: The data of Figure 11 on a logarithmic scale.  

5 CONCLUSIONS 

One of the main conclusions that can be made from 
the experiments reported here is that blind random 
sampling is surprisingly good and robust. For all the 
datasets, as much as 70% to 80% of the data may be 
discarded, without incurring any significant decrease 
in the classification accuracy. Furthermore, for six of 
the seven datasets, discarding 70% of the data at 
random in this way made k-NN run about five times 
faster, and SMO about ten times faster. Since this 
method is so simple and requires so little 
computation time we believe that it should play a 
role as a pre-processing step for speeding up SVMs. 

Previous research has shown that SVMs perform 
better than k-NN. However, some of the 
comparisons have used synthetically generated data 
that does not resemble real world data. On the other 
hand, the results of the present study with seven 
real-world datasets tell a different story. SMO is 
significantly better only for the Song data, whereas 

k-NN does better for the Letter Images, Wearable 
Computing, and Magic Gamma datasets. For the 
other three datasets (Spam, Wine, and Handwritten 
Digits) there are no significant differences between 
SMO and k-NN. In future research we hope to 
discover structural features of the data that predict 
when SMO is expected to outperform k-NN. 

One of the goals of this research was too test 
how much Wilson editing improves the accuracy of 
classifiers in practice. It was found that for all seven 
datasets that using Wilson editing as a pre-
processing step to either SVM or k-NN, yielded no 
statistically significant improvement in accuracy. 
Furthermore, except for the Wine and Song datasets 
Wilson editing incurs a considerable additional cost 
in the editing (condensing) time, although it can 
speed up the training and testing times.  

Another main goal of this research project was to 
compare the new proposed method for condensing 
training data in O(N) worst-case time: Gaussian 
condensation. This probabilistic method falls in the 
category of guided (or intelligent) random sampling 
and is almost as fast as blind random sampling. The 
results of this study show that Gaussian 
condensation is competitive with 70% blind random 
sampling, with respect to both accuracy and running 
time, relative to the other methods tested. However, 
the main overall conclusion of this study is that blind 
random sampling is the best overall method for 
speeding up support vector machines. 
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