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Abstract: Optical Character Recognition (OCR) is an important technology. The Arabic language lacks both the 
variety of OCR systems and the depth of research relative to Roman scripts. A machine learning, Haar-
Cascade classifier (HCC) approach was introduced by Viola and Jones (Viola and Jones 2001) to achieve 
rapid object detection based on a boosted cascade Haar-like features. Here, that approach is modified for the 
first time to suit Arabic glyph recognition. The HCC approach eliminates problematic steps in the pre-
processing and recognition phases and, most importantly, the character segmentation stage. A recognizer 
was produced for each of the 61 Arabic glyphs that exist after the removal of diacritical marks. These 
recognizers were trained and tested on some 2,000 images each. The system was tested with real text images 
and produces a recognition rate for Arabic glyphs of 87%. The proposed method is fast, with an average 
document recognition time of 14.7 seconds compared with 15.8 seconds for commercial software. 

1 INTRODUCTION 

The HCC approach was initially presented in 2001. 
(Viola and Jones, 2001) introduced a rapid object 
detection algorithm using a boosted cascade of 
simple features applied to face detection. Integral 
images were introduced as a new image 
representation allowing very quick computation of 
features. The Haar-like features were extended by 
adding rotated features, and an empirical analysis of 
different boosting algorithms with improved 
detection performance and computational 
complexity was presented in (Lienhart, Kuranov et 
al., 2002). 

Experimental work on the novel application of 
the HCC approach to the recognition of Arabic 
glyphs is presented. First, we justify the application 
of the Viola and Jones approach to Arabic character 
recognition, then section 2 briefly reviews the 
theoretical basis of the HCC method. An experiment 
is then described in which all the Arabic naked 
glyphs (Arabic glyphs after the removal of 
diacritical marks) are recognised, with the results 
presented in section 3. The paper concludes with a 

discussion of the usefulness of the HCC approach in 
Arabic character recognition in section 4. 

1.1 The Challenge of Arabic Character 
Recognition 

Research in OCR faces common difficulties 
regardless of approach. A method is needed to 
distinguish ink from non-ink, skew detection and 
correction algorithms are needed to correct 
rotational scanning error and a normalization 
algorithm is also required to scale the document so 
input and model glyphs are the same size (Al-
Marakeby, Kimura et al., 2013, Alginahi, 2013). 

The Arabic language causes additional 
difficulties. It is cursive, so a sophisticated character 
segmentation algorithm is needed if the word is to be 
segmented into its consituent glyphs. Character 
segmentation is one of the bottlenecks of current 
Arabic character recognition systems (Abdelazim, 
2006, Naz, Hayat et al., 2013). We suggest that 
skipping the character segmentation process could 
improve Arabic character recognition success rates. 

This section provides an overview of Arabic 
script and discusses the problems facing the 
developer of an OCR application (AbdelRaouf, 
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Higgins et al., 2008, AbdelRaouf, Higgins et al., 
2010). 

1.1.1 Key Features of Written Arabic 

Arabic script is rich and complex. Most notably: 
 It consists of 28 letters (Consortium, 2003) 

written from right to left. It is cursive even 
when printed and letters are connected by the 
baseline of the word. No distinction is made 
between capital and lower-case letters. 

 Dots are used to differentiate between letters. 
There are 19 “joining groups” (Consortium, 
2013), each of which contains multiple similar 
letters which differ in the number and place of 
dots. For example (ج ح خ) have the same 
joining group (ح) but different dots. The root 
character is referred to as a glyph. 

 Arabic script incorporates ligatures such as 
Lam Alef (لا) which actually consists of two 
letters (ل ا) but when connected produce 
another glyph (Alginahi, 2013). 

 Arabic words consist of one or more sub-
words, called PAWs (Pieces of Arabic Word) 
(Slimane, Kanoun et al., 2013, Lorigo and 
Govindaraju May,  2006), PAWS without dots 
are called naked PAWS (AbdelRaouf, Higgins 
et al. 2010)).  

 Arabic letters have four different shapes 
according to their location in the word (Lorigo 
and Govindaraju May,  2006); start, middle, 
end and isolated. 

 Arabic font files exist which are similar to the 
old form of Arabic writing. For example a 
statement with an Arabic Transparent font like 
 when written in Andalus (احمد يلعب في الحديقة)
old shape font becomes ( حمد يلعب في الحديقةا  ). 

1.2 Implementing the Haar-Cascade 
Classifier (HCC) Approach 

The HCC approach (Viola and Jones, 2001) is 
implemented in the Open Computer Vision library 
(OpenCV). OpenCV is an open source library of 
Computer Vision functions. It is aimed at real time 
computer vision applications using C/C++ and 
Python. (Bradski, 2000; Bradski and Kaehler, 2008). 

1.2.1 Faces and Glyphs 

The HCC approach was originally intended for face 
detection. There are, however, important similarities 
between faces and Arabic glyphs: 
 Like faces, most Arabic glyphs have clear and 

distinguishing visual features. 

 Arabic characters are connected, and 
recognition requires individual glyphs to be 
picked out from a document image. 

 Characters can have many font sizes and may 
also be rotated, similar to size and orientation 
differences in face images. 

 Facial images may vary considerably, 
reflecting gender, age and race. The use of 
different fonts introduces similar variations 
into images of Arabic glyphs.  

Each glyph can be considered a different object to 
be detected and having a distinct classifier. That 
glyph classifier will detect its glyph, ignoring 
others, and so becomes a glyph recogniser. 

1.2.2 Training and Testing 

Two sets of training images are needed; a positive 
set contains images which include at least one target 
and a negative set containing images which without 
any target objects. A further positive set is required 
for testing. Each positive set includes a list file 
containing the image name(s) and the position(s) of 
the object(s) inside each image. 

As each Arabic letter can appear in four locations 
(hence four glyphs) a total of 100 datasets and 
classifiers are needed.  

1.2.3 Advantages 

Combining the feature extraction with the 
classification stages in HCC facilitates the process of 
training and testing the many glyphs that must be 
recognised. The HCC approach is scale invariant 
and so removes the need for explicit normalization. 
Using extended, rotated features also removes the 
need for skew detection and correction. HCC is 
applied directly to grey-scale images, removing the 
need for a binarization algorithm. This leads to a 
segmentationless process. 

2 THEORETICAL BACKGROUND 

The HCC is a machine learning approach that 
successfully combines three basic ideas. The first is 
an image representation that allows the features to 
be computed very quickly (integral image). 
Secondly, an extensive set of features that can be 
computed in a short and constant time. Finally, a 
cascade of gradually more complex classifiers 
results in fast and efficient detection (Viola and 
Jones 2001, Kasinski and Schmidt 2010, Wang, 
Deng et al., 2013). 
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2.1 Integral Image 

Integral images were first used in feature extraction 
by (Viola and Jones, 2001). (Lienhart and Maydt, 
2002) developed the algorithm by adding the rotated 
integral image (Summed Area Table - SAT). This is 
an algorithm for calculating a single table in which 
pixel intensity is replaced by a value representing 
the sum of the intensities of all pixels contained in 
the rectangle. This is defined by the pixel of interest 
and the upper left corner of the image (Crow, 1984). 

The integral image at any location ሺx, yሻ is equal 
to the sum of the pixels’ intensities (grey-scale) from 
the ሺ0, 0ሻ to ሺx, yሻ as shown in Figure 1 (a) and is 
known as SATሺx, yሻ. 

SATሺx, yሻ ൌ  Iሺxᇱ, yᇱሻ
୶ᇲஸ୶,୷ᇱஸ୷

 (1)

The RecSumሺrሻ for the upright rectangle 
r ൌ ሺx, y, w, h, 0°ሻ as shown in Figure 1 (b) is: 
RecSumሺrሻ ൌ SATሺx െ 1, y െ 1ሻ

 	SATሺx  w െ 1, y  h
െ 1ሻ
െ 	SATሺx  w െ 1, y െ 1ሻ
െ 	SATሺx െ 1, y  h െ 1ሻ

(2)

The integral image for the 45° rotated rectangle 
at any location ሺx, yሻ is equal to the sum of the 
pixels’ intensities at a 45° rotated rectangle with the 
bottom most corner at ሺx, yሻ and extending upward 
till the boundary of the image as shown in Figure 1 
(c) and is known as RSATሺx, yሻ. 

RSATሺx, yሻ
ൌ ∑ሺ୷^ᇱஸ୷,୷^ᇱஸ୷ି|୶ି୶^ᇱ	|		ሻ	Iሺx^′, y^′	ሻ	 

(3)

 

Figure 1: Image illustration of SAT and RSAT. 

The RecSum (r) for the upright rectangle 
ݎ ൌ ሺݔ, ,ݕ ,ݓ ݄, 45°ሻ as shown in Figure 1 (d) is: 

ሻݎሺ݉ݑܴܵܿ݁ ൌ ݔሺܶܣܴܵ െ ݄  ,ݓ ݕ  ݓ  ݄
െ 1ሻ
െ ݔሺܶܣܴܵ	 െ ݄, ݕ  ݄ െ 1ሻ
െ ݔሺܶܣܴܵ	  ,ݓ ݕ  ݓ െ 1ሻ
 ,ݔሺܶܣܴܵ	 ݕ െ 1ሻ 

(4)

2.2 Haar-like Feature Extraction 

Haar-like feature extraction captures basic visual 
features of objects. It uses grey-scale differences 
between rectangles in order to extract object features 
(Viola and Jones, 2001). Haar-like features are 
calculated by subtracting the sum of a sub-window 
of the feature from the sum of the remaining window 
of the feature (Messom and Barczak, 2006). The 
Haar-like features are computed in short and 
constant time  

Following (Lienhart, Kuranov et al., 2002) we 
assume that the Haar-like features for an object lie 
within a window of ܹ ൈܪ of pixels, which can be 
defined in Equation 5: 

features ൌω୧



୧୍

∙ RecSumሺr୧ሻ (5) 

where ω୧ is a weighting factor which has a 
default value of 0.995 (Lienhart, Kuranov et al., 
2002). A rectangle is specified by five parameters 
r ൌ ሺx, y, w, h, αሻ and its pixel sum is denoted by 
RecSumሺr୧ሻ as explained in Equations 2 and 4. Two 
examples of such rectangles are given in Figure 2. 

 
Figure 2: Upright and 45° detection windows. 

Equation 5 generates an almost infinite feature 
set, which must be reduced in any practical 
application. The 15 feature prototypes are shown in 
Figure 3: (1) four edge features, (2) eight line 
features, (3) two centre-surround features, and (4) a 
special diagonal line feature. This set of features was 
scaled in the horizontal and vertical directions. Edge 
features (a) and (b), line features (a) and (c) and the 
special diagonal line feature were first used in 
(Papageorgiou, Oren et al., 1998, Mohan, 
Papageorgiou et al., 2001, Viola and Jones, 2001). 
They took as the value of a two-rectangle feature 
(edge features) the difference between the sum of 
the pixels in the two regions. A three-rectangle 
feature (line features) subtracts the sum of the two 
outside rectangles from the sum of the middle 
rectangle. A four-rectangle feature (special diagonal 
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line feature) subtracts the sum of the two diagonal 
pairs of rectangles (as in Figure 3). 

(Lienhart and Maydt, 2002) added rotated 
features, significantly enhancing the learning system 
and improving the classifier performance. These 
rotated features were significant when applied to 
objects with diagonal shapes, and are particularly 
well suited to Arabic character recognition. 

The number of features differs among 
prototypes. E.g., a 24 ൈ 24 window gives 117,941 
features (Lienhart, Kuranov et al. 2002). 

 
 

(1) Edge features (2) Line features 

  

  
(3) Centre-surround 

features 
(4) Special diagonal line 

feature 

Figure 3: Haar-like feature prototypes. 

2.3 Cascade of Boosting Classifiers 

A classifier cascade is a decision tree that depends 
upon the rejection of non-object regions (Figure 4). 
Boosting algorithms use a large set of weak 
classifiers in order to generate a powerful classifier. 
Weak classifiers discriminate required objects from 
non-objects simply and quickly. Only one weak 
classifier is used at each stage and each depends on a 
binary threshold decision or small Classification 
And Regression Tree (CART) for up to four features 
at a time (Schapire 2002). 

3 EXPERIMENTS 

A successful pilot experiment made to investigate 
the HCC approach for Arabic glyphs and test the 
methods  applicability.  A  single  Arabic letter,  Ain 
 was used in its isolated form. 88.6% recognition ,(ع)
was achieved which showed that the HCC approach 
is suitable for printed Arabic character recognition. 

 
Figure 4: Cascade of classifiers with N stages. 

3.1 Planning the Experiment 

The hypothesis to be tested is that HCC allows the 
pre-processing, binarization, skew correction, 
normalisation and segmentation phases typically 
associated with OCR to be skipped. The 
experimental steps are: 
 The binarization and noise removal step is 

skipped and the original grey-scale images 
used. 

 The approach deals with the basic and rotated 
features of the glyphs so there is no need for 
the skew detection and correction step. (For 
this reason an application was designed to 
generate rotated images for testing). 

 The text lines detection step is skipped. Each 
glyph is detected along with its location in the 
document image implying the location of the 
lines. 

 The normalization step is not needed because 
the HCC approach is scale invariant. For that 
reason, different font sizes are used and tested. 

 The character segmentation phase can be 
omitted when using the HCC approach. Thus 
the system was trained and tested using real 
Arabic document images. 

The following aspects were addressed in the 
experiment: 
 Naked glyphs were used in the experiment to 

reduce the number of classifiers generated for 
classification which also reduces the 
recognition duration. It is easy to later locate 
and count the dots in the recognized glyph 
(Abdelazim, 2006). 

 There are 18 naked Arabic letters (Unicode 
1991-2006). (AbdelRaouf, Higgins et al. 
2010) showed that adding Hamza (ء) and Lam 
Alef (لا) is essential; Table 1 shows all the 
naked Arabic glyphs used in the experiment. 

3.2 Data Preparation 

The datasets used in the experiment are images of 
real and computer generate Arabic documents which 
act  as  both  negative  and positive images. Negative 

(c) (d)(a) (b)

(a) (b) (c) (d)

(e) (f) (g) (h)

(a) (b)
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Table 1: Arabic naked glyphs as used in the experiment. 

Letter English 
name 

Arabic 
Letter 

Isolated 
glyphs 

Start 
glyphs 

Middle 
glyphs 

End 
glyphs 

ALEF ـا ا ا

BEH ـبـ ـتـ ـثـ ـنـ ـيـ ـئـ بـ تـ ثـ نـ يـ ئـ ب ت ث ب ت ث ـب ـت ـث

HAH ـجـ ـحـ ـخـ جـ حـ خـ ج ح خ ج ح خ ـج ـح ـخ

DAL ـد ـذ د ذ د ذ

REH ـر ـز ر ز ر ز

SEEN ـسـ ـشـ سـ شـ س ش س ش ـس ـش

SAD ـصـ ـضـ صـ ضـ ص ض ص ض ـص ـض

TAH ـطـ ـظـ طـ ـظ ط ظ ط ظ ـط ـظ

AIN ـعـ ـغـ عـ غـ ع غ ع غ ـع ـغ

FEH ـفـ ـقـ فـ قـ ف ف ـف

QAF ـق ق ق

KAF ـكـ كـ ك ك ـك

LAM ـلـ لـ ل ل ـل

MEEM ـمـ مـ م م ـم

NOON ـن ن ن

HEH ھــ ھـ ه ة ه ـه ـة

WAW ـو ـؤ و و ؤ

YEH ـى ـي ـئ ى ى ي ئ

HAMZA ء ء 

LAM ALEF ـلا لا لا

and positive images were generated for each glyph. 
The MMAC corpus (AbdelRaouf, Higgins et al., 

2010) provided data for this experiment. The data 
originated from 15 different Arabic document 
images. Five of these documents were from scanned 
documents (Real data), five documents were 
computer generated (Computer data), and the 
remaining five were computer generated with 
artificial noise added (Noise data). The Computer 
and Noise data used different Arabic fonts, sizes, 
bold and italic. 

3.2.1 Creating Positive and Negative Images 

The dataset required for each of the 61 glyphs in this 
part of the experiment are: 
 Positive images: This set of images is 

separated into two sub-sets; one for training 
and the other for testing. The testing sub-set 
accounted for 25% of the total positive 
images, while the training sub-set was 75% 
(Adolf 2003). Figure 5 (a) shows a sample of 
a positive image for the Heh middle glyph 
 .(ـھـ)

 Negative images: These are used for the 
training process of the classifiers. Figure 5 (b) 
shows a sample of a negative image for Heh 
middle (ـھـ). 

A program separated the positive from the 
negative images for each glyph. The Objectmaker 
utility offered in OpenCV (OpenCV, 2002) was used 
to manually define the position of the glyph in each 
positive document image. This process was very 
labour intensive and time consuming, but produced 
an excellent research resource. 

 
 (a) 

A positive image of Heh 
middle (ـھـ) 

 
 (b) 

A negative image of Heh 
middle (ـھـ) 

Figure 5: Sample of positive and negative image for Heh 
middle glyph (ـھـ). 

For the 61 glyphs, the total number of positive 
images was 6,657 while the total number of negative 
images was 10,941. The relationship between the 
total numbers of positive and negative images for 
each glyph shows the following three different 
categories of Arabic glyphs: 
 Glyphs that exist in almost all of the images. 

These glyphs are Alef isolated (ا), Alef end (ـا) 
and Lam start (لـ). These have very few 
negative images, so more were generated by 
manually masking out images that contained 
only one or two glyphs. Figure 6 (a) shows a 
positive image of the glyph Alef end. Figure 6 
(b) shows the same document after converting 
it to a negative image. 

 
 (a) 

A positive document 
image of Alef end

 
 (b) 

Converting positive 
image to negative

Figure 6: Sample of converting a positive image to 
negative. 

 Glyphs that rarely appear in the images and 
so have a very small number of positive 
images. Any editing here would be too 
artificial, however, good results are not 
expected from their classifiers (e.g. Tah 
isolated (ط)). 

 Most of the glyphs have a reasonable ratio of 
negative to positive images. 

3.2.2 Creating Numerous Samples of 
Positive and Negative Images 

The experiment requires a huge amount of images 
which are not immediately available. Software was 
developed to generate more positive and negative 
document images from the available test images, see 
(Lienhart, Kuranov et al., 2002). This uses two 
algorithms; the nearest neighbour interpolation 
algorithm (Sonka, Hlavac et al., 1998) to rotate the 
images; the Box-Muller transform algorithm (Box 
and Muller, 1958) to generate a normal distribution 
of random numbers from the computer generated 
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uniform distribution. The document rotation angles 
use σ=5 and μ = 0. μ as the mean value and it is 
considered to be angle 0 as the scanning process 
may be skewed in any direction with the same value. 
Sigma (σ) is the standard deviation of the angles (i.e. 
σ=5 means that 68.2% falls within ±5°). 

The program produced a total of over 2000 
positive and negative images as recommended by 
(OpenCV, 2002; Adolf, 2003; Seo, 2008) which 
allowed the HCC approach to run properly. 

3.3 Training the Classifiers 

Preparing the files and folders for the training 
process was a lengthy process. The training itself 
additionally took around a year. Each training 
process took two days on average. As each glyph 
has on average 3 different trials and there are 61 
glyphs this gives around a year of continuous work 
on a single dedicated computer. 

3.3.1 Defining Training Parameters 

It was important to define the training parameters 
before the experiment. The parameters used were the 
width, height, number of splits, minimum hit rate 
and boosting type. These parameters were chosen 
following the results and conclusions of auxiliary 
experiments. 

Training size of the glyph: This is a very 
important issue to address. The optimum width and 
height of the training size was empirically 
determined to achieve the best classification results. 
Experiment showed the optimal value for the sum of 
width and height is between 35 to 50 pixels. 

The number of splits: This defines which weak 
classifier will be used in the stage classifier. If the 
number of splits used is one (stump), this does not 
allow learning dependencies between features. A 
Classification And Regression Tree (CART) is 
obtained if the number of splits is more than 1, with 
the number of nodes smaller than the number of 
splits by one (Barros, Basgalupp et al., 2011). The 
default value of number of splits is one. 

Minimum hit rate: In order for the training 
process to move to the next stage, a minimum hit 
rate (TP) needs to be obtained (Viola and Jones, 
2001). As the minimum hit rate increases it slows 
down the training process. The default value is 
0.995. (Lienhart, Kuranov et al., 2002) reported a 
value of 0.999 which proved remarkably slow so a 
range of 0.995 to 0.997 was used. 

Boosting type: The experiment showed that the 
GAB boosting type is the best algorithm for Arabic 
glyph recognition and is similar to face detection

 (Lienhart, Kuranov et al., 2002). 

3.3.2 Training Statistics 

The total number of positive images for all glyphs is 
106,324, the number of negative images is 168,241. 
The total number of all glyphs in all positive images 
is 181,874. The average number of glyphs in each 
positive image is 1.71. The average width of all 
glyphs is 18.9 while the average height is 24.9. 
There are 1743 positive and 2758 negative images. 

Table 2 shows, for each location, the trained 
width and height, the total number of positive and 
negative images and total number of glyphs. 

Table 2: Training information of glyphs in all locations. 

Position Isolated Start Middle End 

Average Width 20.05 17.90 17.27 19.21 

Average Height 25.20 24.64 25.27 24.68 
Average No. of Positive images 1,645.5 1,799.8 1,853.1 1,749.1 
Average No. of Negative images 3,190.2 2,261.0 2,349.5 2,827.4 
Average No. of glyphs 2,603.5 3,450.3 3,500.4 2,807.6 
Total No. of Positive images 32,910 19,798 20,384 33,232 
Total No. of Negative images 63,805 24,871 25,845 53,720 
Total No. of glyphs 52,071 37,953 38,505 53,345 

3.4 Testing the Classifiers 

The testing process of the experiment was separated 
into two distinct parts. The first used the 
performance utility available in OpenCV. The 
second tested the HCC glyphs classifier against real 
commercial software. 

The main concerns in the testing process were 
the values of True Positive (TP), False Negative 
(FN) and False Positive (FP) ratios in all tests 
(Kohavi and Provost, 1998). TP is the number or 
ratio of the glyphs that were detected correctly. FP is 
when glyphs are detected wrongly. FN is when 
glyphs are not detected at all even though they exist. 

3.4.1 Testing using the OpenCV 
Performance Utility 

This experiment tried to investigate the influence of 
the testing parameters on detection accuracy. Two 
parameters have a very big effect on detection 
accuracy; the scale factor and the minimum 
neighbours (Lienhart, Kuranov et al., 2002; Seo, 
2008; Kasinski and Schmidt, 2010). 

The detection phase starts with a sliding window 
using the original width and height and enlarges the 
window size depending on the scale factor (Lienhart, 
Kuranov et al., 2002). A suitable scale factor for 
Arabic glyph detection was found to be 1.01 or 1.02. 
The minimum neighbour is the number of neighbour 
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regions that are merged together during detection in 
order to form one object (Lienhart, Kuranov et al., 
2002). A suitable minimum neighbour value was 
found to lie between 1 and 3 inclusive. 

Table 3 shows the minimum, average and 
maximum number of positive testing images and the 
total number of glyphs in the positive images for 
each location. 

Table 3: The testing information of glyphs in all locations. 

Position Isolated Start Middle End 

Minimum No. of 
Positive images 

142 525 527 284 

Average No. of Positive 
images 

533.9 593.6 610.4 559.1 

Maximum No. of 
Positive images 

858 704 752 768 

Minimum No. of 
glyphs in images 

142 560 589 284 

Average No. of glyphs 
in images 

857.6 1,180.4 1,136.5 887.4 

Maximum No. of 
glyphs in images 

3,168 2,376 4,192 2,211 

3.4.2 Testing using a Commercial Arabic 
OCR Application 

Here the HCC approach is compared to well known 
commercial Arabic OCR software. This gives 
realistic measures of the performance of the HCC 
approach. All the glyphs classifiers of the HCC 
approach are tested against Readiris Pro 10 (IRIS 
2004) which was used in (AbdelRaouf, Higgins et 
al., 2010). 

A new small sample of Arabic paragraph 
documents that represents a variety of document 
types was used. The sample includes 37 Arabic 
documents with 568 words and 2,798 letters. 

The Levenshtein distance algorithm used by 
(AbdelRaouf, Higgins et al., 2010) was used to 
calculate the commercial software accuracy. The 
accuracy of the HCC approach was calculated after 
running the performance tool offered by OpenCV to 
detect the glyphs using the 61 generated classifiers. 

3.5 Experiment Results 

Results showed that the HCC approach is highly 
successful. High accuracy was produced using the 
OpenCV testing utility as well as when compared 
with commercial software. Two sets of results were 
obtained, one for the OpenCV performance utility 
and the other for the commercial software. 

3.5.1 Results using the OpenCV 
Performance Utility 

The four  location  types give different accuracy  for 

Table 4: Testing information of glyphs in all locations. 

Position Isolated Start Middle End 

Minimum TP 73% 81% 74% 74% 

Average TP 88% 91% 89% 92% 
Maximum TP 100% 97% 97% 100% 

Minimum FN 0% 3% 3% 0% 
Average FN 12% 9% 11% 8% 
Maximum FN 27% 19% 26% 26% 

Minimum FP 0% 0% 0% 0% 
Average FP 8% 7% 9% 4% 
Maximum FP 29% 17% 24% 16% 

each glyph. Table 4 shows the statistical results of 
TP, FN and FP values in the four different locations. 

3.5.2 Results of Testing with the 
Commercial OCR Application 

The HCC approach achieved marginally better 
accuracy (87%) than that of the commercial software 
(85%). 

3.5.3 Experiment Results Comments 

 The HCC accuracy achieved (87%) is high at 
this stage of the work and proves the validity of the 
approach. 
 The glyphs with a small number of samples 

return unreasonable results, as expected (e.g. 
most isolated location glyphs). 

 Glyphs with a balanced number of samples 
return good results, for example Beh end (ـب). 

 The glyphs with complicated visual features 
get higher recognition accuracy, as expected 
e.g. Hah (ح), Sad (ص) and Lam Alef (لا). 

 Using naked glyphs improved the recognition 
rate and reduced the number of classifiers. 

 The higher the number of glyph samples the 
better the recognition accuracy. 

4 CONCLUSIONS AND 
FURTHER WORK 

The HCC approach is applicable to Arabic printed 
character recognition. This approach eliminates pre-
processing and character segmentation. A complete, 
fast, Arabic OCR application is possible with this 
technique (average documentation time for HCC 
(14.7 seconds) is comparable with commercial 
software (15.8 seconds). 

Enhancements can be obtained by keeping the 
glyph classifiers continually updated. The training of 
the glyphs that have a small number of positive or 
negative images can be improved by adding new 
document images. Hindu and Arabic numerals for 
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example ( 1 2 3 ) and (1 2 3) and for the Arabic 
special characters such as ( ’؛ ‘ ، ؟  ) could be added. 
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