
a one-class SVM for geographic object based novelty 
detection. In Proceedings of the first AfricaGeo 
conference. Cape Town, South Africa: p. 1-25. 
Hayashi-Kurahashi, N., Kidokoro, H., Kubota, T. et al., 
2012. EEG for predicting early neurodevelopment in 
preterm infants: an observational cohort study. In 
Pediatrics, 130: p.891-897. 
Hellström-Westas, L., Klette, H., Thorngren-Jerneck, K., 
et al., 2001. Early prediction of outcome with aEEG in 
preterm infants with large intraventricular 
hemorrhages. In Neuropediatrics, 32: p. 319-324. 
Hellström-Westas, L. and Rosén I., 2005.  
Electroencephalography and brain damage in preterm 
infants. In Early Human Development, 81: p. 255-261. 
Holmes, G. and Lombroso, T., 1993. Prognostic value of 
background Patterns in the neonatal EEG. In Journal 
of Clinical Neurophysiology, p. 323-352. 
Hunyadi, B., De Vos, M., Signoretto, M., et al., 2011. 
Automatic Seizure Detection Incorporating Structural 
Information. In Artificial Neural Networks and 
Machine Learning–ICANN, 6791: p. 233–240.  
Hunyadi, B., De Vos, M., Van Paesschen, W., et al., 2010. 
A mimicking approach for human epileptic seizure 
detection. In Proc. of the International Biosignal 
Processing Conference. Berlin, Germany: p. 1-4. 
Koolen, N., Jansen, K., Vervisch, J., et al., 2013. 
Automatic burst detection based on line length in the 
premature EEG. In Proc. of the 6
th
 International 
Conference on bio-inspired systems and signal 
processing (BIOSIGNALS). Barcelona, Spain: p. 105-
111.  
Le Bihannic, A., Beauvais, K., Busnel, A., et al., 2012. 
Prognostic value of EEG in very premature newborns.  
In Arch Dis Child Fetal Neonatal, 97: p.106-109. 
Okumura, A., Hayakawa, F., Kato, T., et al., 2002. 
Developmental outcome and types of chronic-stage 
EEG abnormalities in preterm infants. In 
Developmental Medicine and Child Neurology, 44: p. 
729-734.  
Palmu, K., Wikström, S., Hippeläinen, E., et al., 2010. 
Detection of ‘EEG bursts’ in the early preterm EEG: 
Visual vs. automated detection. In Clinical 
Neurophysiology, 121: p. 1015-1022. 
Schölkopf, B., Smola, A. J., Williamson, R. C., et al., 
2000. New Support Vector Algorithms. In Neural 
Computation, 12: p. 1207-1245.  
Schölkopf, B., Platt, J.C., Shawe-Taylor, J., et al., 2001. 
Estimating the Support of a High-Dimensional 
Distribution. In Neural Computation, 13: p. 1443-
1471. 
Smyser, C. D., Inder, T. E., Shimony, J.S., et al., 2010. 
Longitudinal analysis of neural network development 
in preterm infants. In Cerebral cortex, 20: p. 2852-
2862. 
Vanhatalo, S. and Kaila, K., 2006. Development of 
neonatal EEG activity: from phenomenology to 
physiology. In Seminars in fetal & neonatal medicine,  
11: p. 471-478.  
Van Putten, M. and Tavy, D., 2004. Continuous 
Quantitative EEG Monitoring in Hemispheric Stroke 
Patients Using the Brain Symmetry index. In Stroke, 
35: p. 2489-2492. 
Vecchierini, M. F., André, M., d’Allest, A. M., et al., 
2007. Normal EEG of premature infants born between 
24 and 30 weeks gestational age: Terminology 
definitions and maturation aspects. In Clinical 
Neurophysiology, 37: p.311-323. 
 
 
ICPRAM2014-InternationalConferenceonPatternRecognitionApplicationsandMethods
770