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Abstract: For the last few decades, optimization has been developing at a fast rate. Bio-inspired optimization 
algorithms are metaheuristics inspired by nature. These algorithms have been applied to solve different 
problems in engineering, economics, and other domains. Bio-inspired algorithms have also been applied in 
different branches of information technology such as networking and software engineering. Time series data 
mining is a field of information technology that has its share of these applications too. In previous works we 
showed how bio-inspired algorithms such as the genetic algorithms and differential evolution can be used to 
find the locations of the breakpoints used in the symbolic aggregate approximation of time series 
representation, and in another work we showed how we can utilize the particle swarm optimization, one of 
the famous bio-inspired algorithms, to set weights to the different segments in the symbolic aggregate 
approximation representation. In this paper we present, in two different approaches, a new meta 
optimization process that produces optimal locations of the breakpoints in addition to optimal weights of the 
segments. The experiments of time series classification task that we conducted show an interesting example 
of how the overfitting phenomenon, a frequently encountered problem in data mining which happens when 
the model overfits the training set, can interfere in the optimization process and hide the superior 
performance of an optimization algorithm. 

1 INTRODUCTION 

For the last few decades, optimization has been 
developing at a fast rate. Novel algorithms appear 
and new applications emerge in different fields of 
engineering, economics, and science. The purpose of 
an optimization process is to find the best-suited 
solution of a problem subject to given constraints. 
These constraints can be in the boundaries of the 
parameters controlling the optimization problem, or 
in the function to be optimized. This can be 
expressed mathematically as follows: Let 

 nbp21 x,...,x,xX  be the candidate solution to the 

problem for which we are searching an optimal 

solution. Given a function RR  nbpU:f  (nbp 

is the number of parameters), find the solution 

 *
nbp

*
2

*
1

* x,...,x,xX  which satisfies: 

  UX,XfXf * 




 . The function f is called 

the fitness function,  or  the objective function (These 

 

Figure 1: Some of the main bio-inspired metaheuristics. 

two concepts are not really identical, but in this 
paper we will use them interchangeably). 

Metaheuristics are probabilistic optimization 

Bio-inspired Optimization 

Swarm Intelligence Evolutionary Algorithms

        Genetic Algorithms

Differential Evolution

Genetic Programming 

Evolution Strategies 

Particle Swarm Optimization 

     Artificial Ant Colony 

      Artificial Bee Colony 

645Muhammad Fuad M..
One-Step or Two-Step Optimization and the Overfitting Phenomenon - A Case Study on Time Series Classification.
DOI: 10.5220/0004916706450650
In Proceedings of the 6th International Conference on Agents and Artificial Intelligence (ICAART-2014), pages 645-650
ISBN: 978-989-758-015-4
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)



algorithms which are applicable to a large variety of 
optimization problems. Metaheuristics can be 
divided into single solution –based metaheuristics 
and population-based metaheuristics. Many of these 
metaheuristics are inspired by natural processes, 
natural phenomena, or by the collective intelligence 
of natural agents, hence the term bio-inspired, also 
called nature-inspired, optimization algorithms.  
Figure 1 shows the main bio-inspired metaheuristics.  

One of the main bio-inspired optimization 
families is Evolutionary Algorithms (EA). EA are 
population-based metaheuristics that use the 
mechanisms of Darwinian evolution. The Genetic 
Algorithm (GA) is the main member of EA. GA is 
an optimization and search technique based on the 
principles of genetics and natural selection (Haupt 
and Haupt, 2004). GA has the following elements: a 
population of individuals, selection according to 
fitness, crossover to produce new offspring, and 
random mutation of new offspring (Mitchell, 1996).  

Differential Evolution (DE) is an optimization 
method which is mainly effective to solve 
continuous problems. DE is also based on the 
principles of genetics and natural selection. 

DE has the same elements as a standard 
evolutionary algorithm; i.e. a population of 
individuals, selection according to fitness, crossover, 
and random mutation. DE starts with a collection of 
randomly chosen individuals constituting a 
population whose size is popsize. Each of these 
solutions is a vector of nbp  dimensions and it 

represents a possible solution to the problem at hand. 
The fitness function of each individual is evaluated. 
The next step is optimization. In this step for each 

individual, which we call the target vector iT


, of the 

population three mutually distinct individuals 

1rV


, 2rV


, 3rV


, and different from iT


, are chosen at 

random from the population. The donor vector D


is 
formed as a weighted difference of two of 

1rV


, 2rV


, 3rV


 added to the third; i.e. 

 321 rrr VVFVD


 . F is called the mutation 

factor or the differentiation constant and it is one of 
the control parameters of DE.  

The trial vector R


is formed from elements of 

the target vector iT


and elements of the donor 

vector D


. In the following we present the crossover 
scheme presented in (Feoktistov, 2006) which we 
adopt in this paper; an integer Rnd is randomly 
chosen among the dimensions  nbp,1 . Then the trial 

vector R


is formed as follows:  
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where nbp,...,i 1 . rC is the crossover constant, 

which is another control parameter.  
The next step of DE is selection. This step 

decides which of the trial vector and the target 
vector will survive in the next generation and which 
will die out. The selection is based on which of the 
two vectors; trial and target, yields a better value of 
the fitness function. Crossover and selection repeat 
for a certain number of generations.     □ 
   

Data mining is a field of computer science which 
handles several tasks such as classification, 
clustering, anomaly detection, and others. 
Processing these tasks usually requires extensive 
computing. As with other fields of computer science, 
different papers have proposed applying bio-inspired 
optimization to data mining tasks (Muhammad Fuad, 
2012a, 2012b, 2012c, 2012d).  

Data mining models may suffer from what is 
called overfitting. A classification algorithm is said 
to overfit to the training data if it generates a 
representation of the data that depends too much on 
irrelevant features of the training instances, with the 
result that it performs well on the training data but 
relatively poorly on unseen instances (Bramer, 
2007). In overfitting the algorithm memorizes the 
training set at the expense of generalizability to the 
validation set (Larose, 2005).  

We will show in this paper a generalization of 
the optimization methods that we presented in 
(Muhammad Fuad, 2012b, 2012c, 2012d) and how 
the overfitting phenomenon can interfere to alter the 
outcome of the optimization process. In Section 2 
we present the problem and our previous work on it 
and the new generalization, in two different 
approaches, of this previous work. We compare  
these two approaches in Section 3 and we discuss 
the results of the experiments in Section 4. We 
conclude the paper in Section 5. 
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2 ONE-STEP OR TWO-STEP 
OPTIMIZATION OF THE 
SYMBOLIC AGGREGATE 
APPROXIMATION  

A time series S is an ordered collection: 

      nn2211 v,t,...,v,t,v,tS   (2)

where  n21 t...tt  , and where iv are the values 

of the observed phenomenon at time points  it .  

Time series data mining handles several tasks 
such as classification, clustering, similarity search, 
motif discovery, anomaly detection, and others.  

Time series are high-dimensional data so they 
are usually processed by using representation 
methods that are used to extract features from these 
data and project them on lower-dimensional spaces.    

The Symbolic Aggregate approXimation method 
(SAX) (Lin et. al., 2003) is one of the most 
important representation methods of time series. The 
main advantage of SAX is that the similarity 
measure it uses, called MINDIST, uses statistical 
lookup tables, which makes it easy to compute with 
an overall complexity of   NO . SAX is based on 

the assumption that normalized time series have 
Gaussian distribution, so by determining the 
breakpoints that correspond to a particular alphabet 
size, one can obtain equal-sized areas under the 
Gaussian curve. SAX is applied as follows: 
1-The time series are normalized.  
2-The dimensionality of the time series is reduced 
using PAA (Keogh et. al., 2000), (Yi and Faloutsos, 
2000). 
3-The PAA representation of the time series is 
discretized by determining the number and location 
of the breakpoints (The number of the breakpoints is 
chosen by the user). Their locations are determined, 
as mentioned above, using Gaussian lookup tables. 
The interval between two successive breakpoints is 
assigned to a symbol of the alphabet, and each 
segment of PAA that lies within that interval is 
discretized by that symbol. 

The last step of SAX is using the following 
similarity measure: 

    



N

i
ii r̂,ŝdist

N

n
R̂,ŜMINDIST

1

2 (3)

Where n is the length of the original time series, 
N is the length of the strings (the number of the 

segments), Ŝ and R̂ are the symbolic representations 

of the two time series S and R , respectively, and 
where the function )(dist  is implemented by using 

the appropriate lookup table. It is proven that the 
similarity measure in (3) produces no false 
dismissals.  

In (Muhammad Fuad, 2012b), (Muhammad 
Fuad, 2012c), we showed that this assumption of 
Gaussianity oversimplifies the problem and can 
result in very large errors in time series mining 
tasks, and we presented alternatives to SAX; one 
which is based on the genetic algorithms (GASAX), 
and another which is based on the differential 
evolution (DESAX), to determine the locations of 
the breakpoints. We showed that these two 
optimized alternatives clearly outperform the 
original SAX.   

In (Muhammad Fuad, 2012d), we used Particle 
Swarm Optimization (PSO), well-known 
metaheuristics, to optimize SAX using a different 
approach; to propose a new minimum distance 
WMD that can better recover the information loss 
resulting from SAX. The method we introduced, 
(PSOWSAX), gives different weights to different 
segments of the times series in the lower-
dimensional space. These weights are proportional 
to the information contents of the different 
segments. In (PSOWSAX) PSO is utilized to set 
these weights.                                                                                                                                                  □ 

A logical extension, which we present in this 
work, of the above optimized alternatives to SAX is 
one meta optimization process that can find optimal 
locations of the breakpoints and optimal weights of 
the segments corresponding to these breakpoints. 
Such an optimization process can actually be 
handled in two different ways; the first, which we 
call Two-Step OSAX constitutes of two steps, as the 
name implies. In the first step the optimization 
searches for the optimal locations of the breakpoints 
assuming that all segments have the same weight wi 
= 1 , and then in the next step another optimization 
process sets optimal weights based on the optimal 
locations of the breakpoints, which are the outcome 
of step one. Since the weights are related to the 
locations of the breakpoints, it is logical that step 
one should start by optimizing the locations of the 
breakpoints. The other way, which we call One-Step 
OSAX uses one step to find the optimal locations of 
the breakpoints and the weights corresponding to 
those breakpoints.  

We tended to think before conducting the 
experiments that Two-Step OSAX will give better 
results than One-Step OSAX since it seemed more 
intuitive. We will see in the experimental section if 
this intuition is founded. 
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3 EXPERIMENTS 

We conducted the same experiments that we used to 
validate (GESAX), (DESAX), and (PSOWSAX), 
which are 1-NN classification task experiments. The 
goal of classification, one of the main tasks of data 
mining, is to assign an unknown object to one out of 
a given number of classes, or categories (Last, 
Kandel, and Bunke , 2004).  In k-NN each time 
series is assigned a class label. Then a “leave one 
out” prediction mechanism is applied to each time 
series in turn; i.e. the class label of the chosen time 
series is predicted to be the class label of its nearest 
neighbor, defined based on the tested distance 
function. If the prediction is correct, then it is a hit; 
otherwise, it is a miss.   

The classification error rate is defined as the ratio 
of the number of misses to the total number of time 
series (Chen and Ng, 2004). 1-NN is a special case 
of k-NN, where k=1.  

We conducted experiments using datasets of 
different sizes and dimensions available at UCR 
(Keogh et. al., 2011). 

The values of the alphabet size we tested in the 
experiments were 3, 10, and 20. We chose these 
values because the first version of SAX used 
alphabet size that varied between 3 and 10. Then in a 
later version the alphabet size varied between 3 and 
20. So these values are benchmark values.  

As for the control parameters of DE that we 
used, the population size popsize  was 12. The 
differentiation constant Fr was set to 0.9, and the 
crossover constant Cr  was set to 0.5. The dimension 
of the problem nbp is breakpoints + weights in One-
Step OSAX, and it is breakpoints and weights, in the 
first step of Two-Step OSAX and the second step of 
Two-Step OSAX, respectively. As for the number of 
generations NrGen, it is 100 for One-Step OSAX and 
50 for each step of Two-Step OSAX. Since the fitness 
function is the same (the classification error) this 
configuration guarantees that the complexities of 
One-Step OSAX and that of Two-Step OSAX are 
almost the same. 

The training phase for Two-Step OSAX is as 
follows; for each value of the alphabet size, we run 
the optimization process for 50 generations to get 
the optimal locations of the breakpoints. This 
corresponds to the first step of Two-Step OSAX, then 
we use these optimal locations of the breakpoints to 
run the optimization process for 50 generations to 
obtain the optimal weights. Later we use these 
optimal weights and locations of the breakpoints on 
the testing datasets to obtain the minimal 
classification error (which we show in  Figure  2  for 
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Figure 2: Comparison of the classification errors between 
One-Step OSAX and Two-Step OSAX on different testing 
datasets.  

some of the different datasets that we tested in our 
experiments). As for the experimental protocol for 
One-Step OSAX, it is the same as that for Two-Step 
OSAX, except that we optimize in one step for the 
locations of the breakpoints and for the weights, also 
NrGen in the case is equal to 100.  

The results shown in Figure 2 do not show, in 
general, a difference in performance between One-
Step OSAX and Two-Step OSAX. We will discuss 
these results more thoroughly in the next section.  

4 DISCUSSION 

At first glance the results we obtained in Section 3 
suggest that there is no real difference between the 
performance of One-Step OSAX and that of Two-
Step OSAX. We have to admit that these results were 
a bit surprising to us as we expected, before 
conducting the experiments, that Two-Step OSAX 
would give better results than those obtained by 
applying One-Step OSAX for reasons we mentioned 
in Section 2. However, a deeper examination of the 
results may yet reveal more surprising results. 

If we remember from the experimental protocol 
illustrated in the previous section, the two 
optimization processes: One-Step OSAX and Two-
Step OSAX are applied to the training datasets to find 
the  optimal  locations  of  the  breakpoints   and  the 
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Table 1: Comparison of the classification errors between One-Step OSAX and Two-Step OSAX on the training datasets 
presented in Figure 2. 

           Dataset    Method Classification Error  
     α*=3      α=10     α=20 

DiatomSizeReduction One-Step OSAX       0.062      0.062      0.062 
Two-Step OSAX       0.687      0.125      0.062 

FaceFour One-Step OSAX     0.042     0.042      0.167 
Two-Step OSAX      0.292      0.167      0.167 

MoteStrain One-Step OSAX     0.150     0.050      0.050 
Two-Step OSAX      0.700      0.150      0.100 

SonyAIBORobotSurfaceII      One-Step OSAX     0.148     0.111      0.074 
Two-Step OSAX      0.444      0.185      0.148 

synthetic_control   One-Step OSAX     0.170     0.003      0.000 
Two-Step OSAX      0.833      0.020      0.003 

TwoLeadECG One-Step OSAX     0.130     0.087      0.043 
Two-Step OSAX      0.652      0.260      0.087 

α* is the alphabet size 

optimal weights, and then these optimal values are 
applied to the testing datasets, so the real 
comparison between the efficiency of One-Step 
OSAX and Two-Step OSAX, as optimization 
processes, should in fact compare their performances 
on the training datasets. Table 1 shows the 
classification error; the fitness function in our 
optimization problem, obtained by applying One-
Step OSAX and Two-Step OSAX to the datasets 
presented in Figure 2. The results presented in Table 
1 show that One-Step OSAX clearly outperforms 
Two-Step OSAX. These results raise two questions; 
the first is why these results did not appear in Figure 
2, which represents the final outcome of the whole 
process, and the second question is why One-Step 
OSAX outperformed Two-Step OSAX. As for the first 
and the most interesting question which is why the 
superior performance of One-Step OSAX did not 
show in the final results presented in Figure 2, the 
reason for this is that the optimal solutions obtained 
by One-Step OSAX on the training datasets 
overfitted the data; they were “too good” that when 
they were used on the testing datasets the 
performance dropped. This was not the case with 
Two-Step OSAX. This interesting finding may 
establish a new strategy to applying optimization in 
data mining that “less optimal” solutions obtained by 
applying the optimization algorithm to the training 
datasets may finally turn out to be better than “more 
optimal” solutions which may overfit the training 
data. 

As for the other question of why One-Step OSAX 
outperformed Two-Step OSAX, we believe the 
reason for this could be that finally the locations of 
the breakpoints play a more important role in the 
optimization process than the weights, so in One-

Step OSAX the optimization process kept improving 
the locations of the breakpoints until the final stages 
of the optimization process while Two-Step OSAX 
interrupted this optimization after the first step. 

5 CONCLUSIONS 

In this paper we presented two approaches of an 
optimization algorithm that handles a certain 
problem of time series classification. These time 
series are represented using a symbolic 
representation method, SAX, of time series data. 
Our optimized versions produce optimal versions, in 
terms of classification task accuracy, of the original 
SAX in that they spot optimal locations of the 
breakpoints and optimal weights compared with the 
original SAX. The first of the two approaches we 
presented, One-Step OSAX, consists of one step to 
perform the optimization process, while the second 
one, Two-Step OSAX, applies the optimization 
process in two steps. The experiments we conducted 
show that One-Step OSAX outperforms Two-Step 
OSAX. The interesting finding of our experiments is 
that the superior performance of One-Step OSAX 
was actually “hidden” because of the overfitting 
phenomenon.  

We believe the results we obtained shed new 
light on the application of optimization algorithms, 
mainly stochastic and bio-inspired ones, in data 
mining, where the risk of overfitting is frequently 
present.   We think that an optimization algorithm, 
applied to the training data, should avoid searching 
for very close-to-optimal solutions, which highly fit 
the training data and thus may not give optimal 
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solutions when deployed to testing data. A possible 
strategy that we suggest is to terminate the 
optimization process, on the training sets, 
prematurely. However, the output of our 
experiments applies to times series only, and to the 
classification task in particular, so we do not have 
enough evidence that our remarks are generalizable. 

REFERENCES 

Bramer, M., 2007.  Principles of Data Mining, 
Undergraduate Topics in Computer Science, Springer. 

Chen, L., Ng, R., 2004. On the Marriage of Lp-Norm and 
Edit Distance, In Proceedings of 30th International 
Conference on Very Large Data Base, Toronto, 
Canada, August, 2004. 

Feoktistov, V., 2006. Differential Evolution: “In Search of 
Solutions” (Springer Optimization and Its 
Applications)”. Secaucus, NJ, USA: Springer- Verlag 
New York, Inc.. 

Haupt, R.L., Haupt, S. E., 2004. Practical Genetic 
Algorithms with CD-ROM. Wiley-Interscience.  

Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra , 
2000. Dimensionality reduction for fast similarity 
search in large time series databases. J. of Know. and 
Inform. Sys. 

Keogh, E., Zhu, Q., Hu, B., Hao. Y.,  Xi, X., Wei, L. & 
Ratanamahatana, C.A., 2011. The UCR Time Series 
Classification/Clustering Homepage: www.cs.ucr.edu/ 
~eamonn/time_series_data/    

Larose, D., 2005. Discovering Knowledge in Data: An 
Introduction to Data Mining, Wiley, Hoboken, NJ. 

Last, M., Kandel, A., and Bunke, H., editors. 2004. Data 
Mining in Time Series Databases.    World Scientific. 

Lin, J., Keogh, E., Lonardi, S., Chiu, B. Y., 2003. A 
symbolic representation of time series, with 
implications for streaming algorithms. DMKD 2003: 
2-11. 

Mitchell, M., 1996. An Introduction to Genetic 
Algorithms, MIT Press, Cambridge, MA.  

Muhammad Fuad, M.M., 2012a. ABC-SG: A New 
Artificial Bee Colony Algorithm-Based Distance of 
Sequential Data Using Sigma Grams. The Tenth 
Australasian Data Mining Conference - AusDM 2012, 
Sydney, Australia, 5-7 December, 2012. Published in 
the CRPIT Series-Volume 134, pp 85-92.  

Muhammad Fuad, M.M. , 2012b. Differential Evolution 
versus Genetic Algorithms: Towards Symbolic 
Aggregate Approximation of Non-normalized Time 
Series. Sixteenth International Database Engineering 
& Applications Symposium– IDEAS’12 , Prague, 
Czech Republic,8-10 August, 2012 . Published by 
BytePress/ACM. 

Muhammad Fuad, M.M. , 2012c. Genetic Algorithms-
Based Symbolic Aggregate Approximation.  14th 
International Conference on Data Warehousing and 
Knowledge Discovery - DaWaK 2012 – Vienna, 
Austria, September 3 – 7. 

Muhammad Fuad, M.M. , 2012d. Particle Swarm 
Optimization of Information-Content Weighting of 
Symbolic Aggregate Approximation. The 8th 
International Conference on Advanced Data Mining 
and Applications -ADMA2012, 15-18 December 2012, 
Nanjing, China . Published by Springer-Verlag in 
Lecture Notes in Computer Science/Lecture Notes in 
Artificial Intelligence, Volume 7713, pp 443-455. 

Yi, B. K., and Faloutsos, C., 2000. Fast time sequence 
indexing for arbitrary Lp norms. Proceedings of the 
26th International Conference on Very Large 
Databases, Cairo, Egypt. 

 

ICAART�2014�-�International�Conference�on�Agents�and�Artificial�Intelligence

650


