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Abstract: The problem of discovering temporal and attribute dependencies from multi-sets of events derived from real-
world databases can be mapped as a sequential pattern mining task. Although generative approaches can offer
a critical compact and probabilistic view of sequential patterns, existing contributions are only prepared to deal
with sequences with a fixed multivariate order. Thus, this work targets the task of modeling itemset sequences
under a Markov assumption. Experimental results hold evidence for the ability to model sequential patterns
with acceptable completeness and precision levels, and with superior efficiency for dense or large datasets.
We show that the proposed learning setting allows: i) compact representations; ii) the probabilistic decoding
of patterns; and iii) the inclusion of user-driven constraints through simple parameterizations.

1 INTRODUCTION

Recent work in the area of data mining reveals the im-
portance of defining learning methods to simultane-
ously mine temporal and cross-attribute dependencies
in real-world data (Henriques and Antunes, 2014).
For this purpose, multi-dimensional and relational
structures have been mapped as itemset sequences,
temporally ordered sets of itemsets. This turns the
mining of itemset sequences applicable not only to
transactional databases like market basket analysis,
but also over multi-dimensional databases as ob-
served in healthcare and business domains. However,
the common option to explore itemset sequences, se-
quential pattern mining (SPM), has not been largely
adopted due to its voluminous results and parameter-
ization needs. Additionally, although generative ap-
proaches allow for effective pattern-centered analyzes
of multivariate sequences of fixed order, there are not
yet experiments that show whether or not they can
be extended to consider itemsets of varying length
(cross-attribute occurrences) with acceptable perfor-
mance. In this work we rely on parameterized hidden
Markov models (HMMs) to deliver a compact and
generative representation of sequential patterns that
combine frequent co-occurrences (intra-transactional
analysis) and precedences (inter-transactional analy-
sis).

With the goal of overcoming the critical problems
of traditional SPM methods, some approaches rely on

compressed representations or define a deterministic
generator of sequential patterns (Mannila and Meek,
2000). However, they can still grow exponentially.
Additionally, these methods cannot disclose the like-
lihood of a pattern to be generated when assuming
underlying noise distributions. To tackle these draw-
backs, formal languages and HMMs have been ap-
plied to solve SPM task (Chudova and Smyth, 2002;
Laxman et al., 2005; Jacquemont et al., 2009). How-
ever, these generative solutions are not able to model
itemset sequences and depend on restrictive assump-
tions regarding the size, shape and noise of patterns.

This paper answers the question: to which extent
can HMMs address these challenges. To answer we,
first, propose solutions based on alternative Markov-
based architectures. Second, we evaluate their per-
formance by assessing the efficiency and the output
matching against deterministic outputs for synthetic
data and real databases. To the best of our knowl-
edge, this is the first systematized work on how to use
HMMs over multivariate symbolic sequences.

This paper is structured as follows. In Section 2,
generative SPM is formalized and motivated. Section
3 describes the proposed solutions. Results are pro-
vided in Section 4 and their implications synthesized.

2 BACKGROUND

Recent research shows that real-world databases can
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be expressively mined by mapping them as sets of
itemset sequences (Henriques et al., 2013). Here,
these mappings are seen as a pre-processing step of
the target methods. Sequential pattern mining (SPM),
originally proposed by (Agrawal and Srikant, 1995),
still is a default option to explore itemset sequences.

Let an item be an element from an ordered set S.
An itemset I is a set of non-repeated items. A se-
quence s is an ordered set of itemsets. A sequence
a=a1:::an is a subsequence of b=b1:::bm (a�b), if
91�i1<::<in�m: a1� bi1 ,..,an� bin . A sequence is max-
imal, with respect to a set of sequences, if it is not
contained in any other sequence of the set. The il-
lustrative sequence s1=fagfbeg=a(be) is contained in
s2=(ad)c(bce) and is maximal w.r.t. S=fae;(ab)eg.
Definition 1. Given a set of sequences S and some
user-specified minimum support threshold q, a se-
quence s 2 S is frequent if contained in at least q se-
quences. The sequential pattern mining task aims
for discovering the set of maximal frequent sequences
(sequential patterns) in S.

Considering a database S=f(bc)a(abc)d;a(ac)c;
cad(acd)g and a support threshold q=3, the set
of maximal sequential patterns for S under q is
fa(ac);ccg. Traditional SPM approaches rely on pre-
fixes and suffixes, subsequences with specific mean-
ings, and on the (anti-)monotonicity property to de-
liver complete and deterministic outputs. However,
these outputs are commonly highly voluminous and
the frequency is a deterministic function (cannot flex-
ibly consider underlying noise distributions).

Alternatives have been proposed, with a first class
focused on formal languages and on the construction
of acyclic graphs that define partial orders and con-
straints between items (Guralnik et al., 1998; Lax-
man et al., 2005). Probabilistic generative models
as neural networks, hidden Markov models (HMMs)
and stochastic grammars hold the promise to deliver
compact representations given by the underlying lat-
tices (Ge and Smyth, 2000). The expressive power,
simplicity and propensity towards sequential data of
HMMs turn them an attractive candidate.
Definition 2. Consider a discrete alphabet S, a first-
order discrete HMM is a pair (T;E) that defines
a stochastic finite automaton where a set of con-
nected hidden states X=fx1; ::xkg is expressed by a
probability transition matrix T =(ti j), with observable
emissions described by probability emission matrix
E=(ei(s)) = (eis), where 1<i<k, 1<j<k and s 2 S.

Under a first-order Markov assumption, emissions
depend on the current state only. Let the system be in
state xi: it has a probability ti j=P(x jjxi) of moving
to x j state and probability eis=P(sjxi) of emitting s

item. (T;E) defines the HMM architecture.

Preferred emissions and transitions (paths with
higher generation probability) are usually associated
with regions that may have structural and functional
significance. For specific architectures, different pat-
terns such as periodicities or gap-based patterns can
be revealed by analyzing the learned (T;E) parame-
ters (Baldi and Brunak, 2001). Based on this observa-
tion, alternative Markov-based approaches have been
proposed for the mining of patterns using different:
i) task formulations, ii) assumptions, and iii) learning
settings (Chudova and Smyth, 2002; Ge and Smyth,
2000; Laxman et al., 2005; Murphy, 2002).

The commonly target tasks include the discov-
ery of generative strings1 as consensus patterns and
profiles (across a set of sequences) or motifs (within
one sequence). These tasks have been mainly applied
to univariate sequences (Chudova and Smyth, 2002;
Ge and Smyth, 2000; Fujiwara et al., 1994; Mur-
phy, 2002), with some exceptions allowing numeric
sequences with a fixed multivariate order (Bishop,
2006) and graph structures (Xiang et al., 2010). Ad-
ditionally, the majority is centered on the discovery
of contiguous items, not accounting for items’ prece-
dences of arbitrary distance.

Previous work by (Laxman et al., 2005; Jacque-
mont et al., 2009; Cao et al., 2010) provide important
principles for the decoding of sequential patterns but
both fail to model co-occurrences.

What makes the problem difficult is that few is
known a priori about what these patterns may look
like. Typically, the number and disposal of prece-
dences and co-occurrences can significantly vary
across patterns. State-of-the-art approaches (Chudova
and Smyth, 2002; Murphy, 2002) place assumptions
regarding the type, length and number of patterns, and
commonly assume that patterns do not overlap. These
restricted formulations require background knowl-
edge that may not be available.Even so, traditional
learning settings of HMMs may still present signifi-
cant additional challenges to pattern-based tasks. One
of them is the convergence of emission probabilities.
The spurious background matches in long sequences
can lead to false detections, making pattern discov-
ery difficult. The Viterbi algorithm alleviates this
problem (Bishop, 2006) but does not guarantee the
convergence of emission probabilities. In literature,
three learning settings have been proposed. (Murphy,
2002) requires emission distributions to be (nearly)
deterministic, i.e., each state should only emit a single
symbol, although this symbol is not specified. This
is achieved using the minimum entropy prior (Brand,

1Given an alphabet S, a generative string is a distribu-
tion over S allowing substitutions with noise probability e
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Figure 1: Pattern mining with fully inter-connected arch.

1999)2. An alternative is to use a mixture of Dirichlets
(Brown et al., 1993). Finally, Chudova (Chudova and
Smyth, 2002) introduces a Bayes error framework.

3 TECHNICAL SOLUTIONS

In this section we propose solutions to mine sequen-
tial patterns using HMMs without the need to rely
on assumptions. We overview existing architectures,
propose a simple data mapping for their application
over itemset sequences, define initialization, decod-
ing and learning principles, and, finally, incrementally
propose more expressive architectures.

3.1 Existing HMM Architectures

The paradigmatic case of pattern mining over uni-
variate sequences is to use fully inter-connected ar-
chitectures (Baldi and Brunak, 2001), illustrated in
Fig.1, plus an efficient method (based on propagation
on graphs or dynamic programming) to exploit the
model. Such method can retrieve patterns of arbitrary
length by exploiting the most probable transitions and
emissions. The criteria of whether is frequent or not
may either depend on the ranking position of the pat-
tern or on the overall generation probability.

Although the fully inter-connected architecture
can be always used as a default option, in order
to minimize the introduced problem of emissions’
convergence there are alternative HMM architec-
tures with sparser connectivity. A basic architecture
adopted for motif discovery in univariate sequences is
one that explicitly models the pattern shape and uses
a distribution that either guarantees the convergence
of emission probabilities, such as in (Murphy, 2002),
or allows for a fixed error threshold, such as in (Chu-
dova and Smyth, 2002). An important assumption for
these architectures, illustrated in Fig.2, is whether the
target pattern emerge from the supporting sequences
or/and from the recurrence of the pattern within each
sequence. For this case, a new state and transitions

2Assuming e j to be multinomial emissions for a x j state,
entropy is given by: H(e j)=�Sse jslog(e js)

Figure 2: Motif discovery with shape-specific architecture.

Figure 3: LRA: precedences of arbitrary length.

ft45; t55g need to be included, and x4 ! x1 transition
deleted (t41=0). Additionally, transition probabilities,
T , need to be carefully initialized. For instance, the
self-loop transitions encode the expected length of the
inter-pattern segments by using, for instance, a geo-
metric distribution.

However, this architecture does not support pat-
terns with non-contiguous items. For the discovery
of more relaxed patterns, Left-to-Right Architectures
(LRAs) (Baldi and Brunak, 2001; Liu et al., 1995)
are commonly adopted in biology and speech recog-
nition. LRAs consider both insertions (to allow spar-
sity) between pattern items and deletions (skip states)
characterized by void emissions. Deletions can be
used both to skip noisy occurrences or discover pat-
terns with reduced length. With LRAs, a large num-
ber of precedences can be retrieved through the anal-
ysis of emissions along the main path. These emis-
sions can be though as the set of symbols for aligning
sequences. Fig.3 illustrates this architecture. Uniform
initialization of transition probabilities without a prior
that favors transitions toward the main states should
be avoided in order to guarantee that main states are
selected (instead of only insert-delete combinations).

3.2 Proposed Solutions

To be able to process itemset sequences under a
Markov assumption, we propose a simple mapping of
each sequence of itemsets introducing a special sym-
bol for delimiters, S[f$g. Illustrating, a sequence of
itemsets (ab)ca(ac) is now mapped into a univariate
sequence $ab$c$a$ac$, where $ is the symbol that
delimits co-occurrences.

Under this mapping, we can apply existing HMM
architectures prepared to deal with univariate se-
quences. The retrieval of patterns from the underlying
lattices results in combined sequences of both regular
items and delimiters. Empty itemsets (sequent delim-
iters) are removed from the decoded patterns.
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3.2.1 Structural Principles

Initialization Principles. To define the initialization
of transition probabilities, T, we propose the use of
metrics based on simple statistics over the dataset S
and on pattern expectations. Fig.2 shows the ini-
tializations for motif-oriented architecture where the
average length of sequences is 20 items, and where
the probability of visiting an item belonging to a
pattern is a=33,(3)% based on the expected average
pattern size (3 items) and recurrence (9 inter-pattern
items). When alternative paths are available (as in
fully-interconnected architectures), a random weight
(e>0) can be added to each transition in order to fa-
cilitate the learning convergence.

Finally, the emission probabilities, E, should be
equal for all the items in order to not bias the learn-
ing. The emission probabilities of delimiters should:
i) slightly increase for fully-interconnected architec-
tures in order to guarantee the distinction between
precedences and co-occurrences, and ii) slightly de-
creased for LRAs to avoid that all of the main path
emissions converge to the delimiter symbol.
Learning Settings. The distribution underlying the
learning of emissions probabilities must guarantee
strong convergence of emissions for the accurate de-
coding of patterns, but simultaneously avoid a too
strong convergence that limits the coverage of inter-
esting patterns. The use of entropy or Dirichlet distri-
butions offer too strong convergence that restricts the
decoding of multiple patterns along the model paths,
while the use of the Bayes error rate (Chudova and
Smyth, 2002) was observed to be difficult for pat-
terns with significant autocorrelation and with a peri-
odic structure (as bcbcbc or aaaa). The use of Viterbi
(Bishop, 2006) is a good compromise since it guaran-
tees the learning convergence without requiring a too
restrictive number of eligible emissions per state.
Decoding Principles. Beyond the definition, initial-
ization and learning of the generative model, there is
the need to define principles for a robust and efficient
decoding of patterns from lattices. First, the use of the
anti-monotonic property to prune paths. Second, the
use of probability thresholds that traduces the crite-
rion that defines whether a pattern is or not frequent.
This threshold should be weighted by the length of
the pattern to avoid a bias towards small patterns.

3.2.2 Extending the Existing Architectures

Although the existing architectures can be applied as-
is using the proposed data mapping and parameter ini-
tializations, they are prone to decoding errors. Note
the case where a state emits a reduced number of
items with high probability, but one of these items is

Figure 4: CoIA: discovery of co-occuring items.

Figure 5: IPA: discovery of inter-transactional patterns.

the itemset delimiter. For this common case, the dis-
tinction between precedences and co-occurrences be-
comes blurry, in particular if the state has a self-loop
transition (as in fully-interconnected architectures).
To improve accuracy, we propose new architectures
with dedicated states to emit delimiters.

Before introducing them, consider an extension of
LRAs where main and insert states only emit regular
items, delimited by two states that can only emit the
delimiter item with transitions to self-looping states.
This architecture, referred as CoIA (Co-occuring
Items Architecture) and illustrated in Fig.4, captures
intra-transactional patterns by seeing each itemset as
a univariate sequence. A transition to the initial state
can be used to consider the pattern recurrence within
a sequence.

Two variations can be considered over this archi-
tecture. First, an end state can be linked to the ar-
chitecture. This guarantees that, at least, one intra-
transactional pattern per sequence is used to learn the
left-to-right emissions. The end state can be imple-
mented by adding an ending symbol at the end of
each input sequence. Second, deletion states can be
removed. This turns the intra-transactional patterns of
fixed length, which simplifies the learning, although it
restricts the original potential for decoding patterns of
arbitrary length along the main path.

Now consider the proposed Itemset-Precedences
Architecture (IPA) illustrated in Fig.5. With this ar-
chitecture we can model inter-transactional patterns
by decoding learned emissions along the main path.
Two aspects of IPA should be noticed. First, insert
states are used to remove non-frequent items. Second,
each state dedicated to emit delimiters has a transi-
tion to a self-looping state in order to allow for gaps
between itemsets. In this way, we transit from con-
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Figure 6: SPA: discovery of sequential patterns.

tiguous items to item precedences.
Beyond not capturing intra-transactional patterns,

IPA suffers from another drawback. Since there is no
guarantee that most of the input sequences will reach
state xp, the significance of precedences decoded from
the first portions of the path is greater than from the
last portions. This turns the pattern decoding algo-
rithms more complex as they need to reduce the tol-
erance (cut-off thresholds) along the path in order to
avoid the output of patterns prone to errors.

Similarly to the CoIA architecture, we can con-
sider a variation of IPA that includes deletion states,
which allows for a well-distributed level of signifi-
cance for the learned probabilities across regions.

Finally, for the learning of generative models that
combine precedences and co-occurrences, we pro-
pose the integration of the previous CoIA and IPA ar-
chitectures. A CoIA architecture is applied between
each sequent pair of delimiter states from the IPA ar-
chitecture. A simplification of the resulting architec-
ture, sequential patterns architecture (SPA), is illus-
trated in Fig.6. SPA is prone to deliver shapes as the
one described by the (ab)(bcd)a pattern.

The number of discovered precedences can be ar-
bitrary by introducing deletion states across delim-
iter states. The size of the intra-transactional pat-
terns can be also arbitrary (unless the user is inter-
ested in specific pattern shapes) by considering dele-
tion states within each CoIA component. Finally,
the end requirement or the recurrence within each se-
quence (loop to initial state) are possible variations.

Beyond reducing the probability of decoding pat-
terns that are not frequent, SPA has a very efficient
decoding step. There is only the need to analyze com-
binations of emissions along the main path.

3.2.3 Convergence of emissions

A critical drawback of previous SPA, IPA and CoIA
architectures is that they cannot model a large number
of patterns. These architectures rely on one main path
only, where each state commonly emits a reduced
number of items with significant probability, which
commonly results in a compact set of patterns. This

turns this method to be not competitive with determin-
istic peers and, therefore, of limited utility. Although
one can reduce the threshold probabilities of the de-
coding phase or decrease the convergence threshold
of the adopted HMM learning algorithm (to relax the
convergence of emissions), this significantly degrades
the quality of the output patterns.

A simple solution to avoid this problem is to adopt
an iterative scheme, where each iteration is composed
of three phases – learning, decoding, and masking of
patterns – until patterns cannot be further decoded.

We propose an alternative solution that relies on
multiple paths, so the sum of the compact sets of pat-
terns from each path approximates the true number of
frequent patterns. The number of paths can be defined
by dividing the expected number of frequent patterns
by the average number of patterns able to decoded
from each SPA component.

4 RESULTS

The target hidden Markov models3 were adapted from
the HMM-WEKA extension prepared for classifica-
tion (implemented according to (Bishop, 2006; Mur-
phy, 2002) sources). The extensions were imple-
mented using Java (JVM version 1.6.0-24) and the
following experiments were computed using an Intel
Core i5 2.80GHz with 6GB of RAM.

We adopted synthesized datasets based on IBM
Generator tool4 by fixing values for all, except one,
of the parameters, and by varying the value for the
remaining parameter. The default dataset contains
m=2.500 sequences, with an average of n=10 trans-
actions each, each transaction with l=4 items on av-
erage. The alphabet has 1.000 items. The average
length of maximal patterns is set to 4 and maximal
frequent transactions set to 2. The values for different
sequential patterns and transactional patterns were set
to 1.000 and 2.000, respectively. This default setting
generates near 10.000 sequential patterns for a sup-
port of 1% (with the majority of them having more
than 5 items), and more than 400 sequential pattens
for a support of 4%. The varied parameters include
the number of items per itemsets, the number of item-
sets per sequence, and the number of available items
(density). These combinatorial set of datasets were
tested for the architectures introduced in previous sec-
tion, whose properties are illustrated in Table 1.

In order to validate if the proposed solutions have
an acceptable performance, it is critical to assess ef-
ficiency of the learning-and-decoding stages against

3Software: http://web.ist.utl.pt/rmch/software/hmmevoc
4http://www.cs.loyola.edu/�cgiannel/assoc gen.html
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Figure 7: Completeness and precision of alternative archi-
tectures for varying minimum support.

traditional SPM approaches and their ability to extract
all frequent patterns (completeness) and only those
ones (precision) (Jacquemont et al., 2009). These
metrics provide an understanding on whether is it
possible to decode patterns from compact generative
models that match the output of deterministic ap-
proaches. Completeness is the fraction of frequent se-
quential patterns that were decoded by our approach.
Correctness or precision is the fraction of decoded se-
quential patterns that are also retrieved by determin-
istic miners.

Completeness = jGenerativeOut put\DeterministicOut putj
jDeterministicOut putj

Precision = jGenerativeOut put\DeterministicOut putj
jGenerativeOut putj

The provided results for these metrics are an aver-
age using 10 datasets per parametrization. Addition-
ally, we statistically tested the significance of the ob-
served differences by using a paired two-sample two-
tailed t-Student test with 9 degrees of freedom.

4.1 Completeness-precision

An initial view on how the generative outputs com-
pare against deterministic outputs for varying lev-
els of support is depicted in Fig.7. When assessing
these results against the number of frequent patterns
of the dataset, two major observations can be derived.
First, our generative approach is able to cover all fre-
quent itemsets with support above�5%, and the com-
pleteness level degrades for lower supports (2% sup-
port delivers >3000 frequent patterns) although the
larger architectures can still cover a large number of

Table 1: Tested HMM architectures.

Architecture Properties

Fully Interc. 10 states. Delimiter emissions allowed on every state.

LRA
Main path with 14 states (max number of items and
delimiters in pattern using expectations). Delimiter
emissions allowed on main and insertion states.

SPA (no end
requirement)

Max N precedences with max L co-occurrences each
(N=8 and L=4 are the default data expectations).

SPA (end
requirement)

Max N precedences with max L co-occurrences each
(N=8 and L=4 are the default data expectations).

Multi-path SPA Three SPA (end requirement) paths.

Figure 8: Completeness of alternative architectures against
parameterizable datasets (q=4%).

frequent patterns (>1500). Second, precision levels
are 100% above 1% of support, which means that
our approach is able to only deliver patterns whose
frequency is >1% – important since generative ap-
proaches allow for noisy occurrences. Multi-path
SPA is significantly superior than remaining options
in terms of completeness, while all the proposed ar-
chitectures were significantly better than traditional
fully-interconnected and LRA architectures in terms
of precision.

Completeness. Fig.8 illustrates the completeness of
the proposed architectures to capture patterns with
support above 4%. Note that an increase of support
to 6% results in an approximated levels of 100% for
all the architectures across datasets.

Two major observations result from the analy-
sis. First, multi-path and fully-interconnected archi-
tectures achieve a good completeness since they can
focus on different subsets of probable emissions along
the alternative architectural paths. Second, the lev-
els of completeness degrade for higher densities and
itemset length. This is a natural result of the explosion
of patterns discovered by deterministic approaches
under such hard settings. Note that an increase of
multi-path SPA to six paths is able to hold complete-
ness levels above 96% for all the adopted settings.
Precision. Fig.9 illustrates the precision of the pro-
posed architectures, that is, the fraction of decoded
patterns deterministically frequent (support higher
than 1.5%). Note that a decrease of support to 0.8%
results in an approximated levels of 100% for all the
architectures across datasets. Generative approaches
hold high levels of precision (>90%) across the ma-
jority of dataset settings. There is a slight decrease of
precision for short itemsets since the number of de-
terministic patterns is smaller than the average num-
ber of decoded patterns and for large itemsets due
to a cumulative decoding error associated with larger
patterns and the intra-transactional size constraints
adopted for SPA architectures. Additionally, the ob-
served decrease in precision for high levels of spar-
sity is not only explained by a reduced set of de-
terministic patterns (potentially smaller than the de-
coded set) but also by an intrinsic difficulty to guar-
antee the convergence towards a reduced set of emis-
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Figure 9: Precision of alternative architectures against pa-
rameterizable datasets (q=1.5%).

Figure 10: Efficiency against parameterizable datasets.

sions that can block larger decoded outputs. Finally,
fully-interconnected and LRA architectures are not as
competitive as SPA-based architectures due to the ad-
ditional error propagation associated from not con-
straining delimiter emissions to dedicated states.

4.2 Efficiency

The comparison of efficiency for the alternative archi-
tectures against PrefixSPAN5 (Pei et al., 2001), one
of the most efficient deterministic SPM algorithms,
applied with a support threshold of 1% is illustrated
in Fig.10. Under this threshold, the number of de-
terministic frequent patterns vary between 1.000 pat-
terns (sparser and smaller datasets) to near 100.000
patterns (denser and larger datasets).

Generative approaches are particularly suitable
over dense datasets against deterministic approaches,
whose performance rapidly deteriorates for densities
above 10%. Datasets with densities beyond 20%
are very common across a large number of domains.
Interestingly, the performance of the generative ap-
proaches does not significantly change with varying
densities. This is explained by a double-effect: learn-
ing convergence deteriorates with an increased den-
sity, but this additional complexity is compensated by
a higher efficiency per iteration since there is a sig-
nificantly lower number of emission probabilities to
learn per state.

Additionally, generative approaches scale better
with an increased number of itemsets per sequence
than PrefixSPAN. Under the default settings, PrefixS-
PAN is only efficient for sequences with less than 15
itemsets. Understandably, fully-interconnected and
LRA are the most efficient solutions due their inher-
ent structural simplicity.

5http://www.philippe-fournier-viger.com/spmf/

Figure 11: Completeness-precision for Foodmart dataset.

4.3 Real-world databases

Our approach was applied in sparse and dense real-
world databases. Fig.11 illustrates the performance
of our approach over itemset sequences derived from
the Foodmart data-warehouse6

pentaho/mondrian/mysql-foodmart-database.
Each itemset sequences is composed of temporally
ordered basket sales from a specific customer be-
tween 1997-98 (average of 6 items per basket and 6
baskets). Two important observations result from this
analysis. First, the best Markov-based architectures
are able to achieve 100% precision levels while still
being able to recover more than half of the frequent
patterns for very low levels of support (q=0.5%).
Second, for medium levels of support (2%), our
generative approach is able to cover all the frequent
patterns, although it additionally delivers patterns
with a lower support (1.5-2%) that can penalize the
precision.

Secondly, we applied our approach over the dense
Plan dataset7, which is not tractable for determinis-
tic SPM approaches even when considering a con-
strained number of instances (<1000). In line with
previous efficiency observations, our generative al-
ternatives were able to learn emission and transition
probabilities in useful time. In fact, our approach is
critical for similar dense cases as it is able to decode
patterns based on the most accentuated probability
differences across the learned lattices.

4.4 Discussion

Generative SPM approaches provide more scalable
principles than deterministic peers to deal with dense
datasets and with very large sequences. Even when
considering complex architectures, generative ap-
proaches tend to perform better in terms of efficiency
for dataset with these properties. Additionally, the
analyzed precision-completeness levels is over 90%
for the most expressive architectures across settings,
which guarantees the deterministic significance of the
decoded patterns. These are particularly attractive
levels knowing that the probabilistic learning of pat-

6https://sites.google.com/a/dlpage.phi-integration.com/
7http://www.cs.rpi.edu/�zaki/software/plandata.gz
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terns accounts for noisy occurrences that can lead to a
substantially different (but similarly interesting) out-
put. The observed performance shows that compact
representations of large outputs is possible for SPM
over itemset sequences using generative models.

Additionally, these models present three intrinsic
properties of interest. First, they provide a probabilis-
tic view for the sequential patterns’ support that ac-
counts for occurrences under noise distributions. Sec-
ond, the probability of generating any sequential pat-
tern can be assessed on a query-basis. Note that de-
terministic approaches only disclose support for the
frequent patterns. Third, the introduction of back-
ground knowledge and constraints, as the selection of
specific pattern shapes in accordance with domain ex-
pectations, can be easily incorporated in the mining
process by parameterizing the target architecture.

5 CONCLUSION

This article proposes a methodology for the defini-
tion of generative models under a Markov assump-
tion to explore itemset sequences, an increasingly
adopted data format to capture temporal and cross-
attribute dependencies in real-world data. This allows
a compact and probabilistic view of sequential pat-
terns that tackles the problems of existing generative
approaches, which can only deal with constrained for-
mulations of the task. The methodology covers multi-
ple architectures and learning settings that guarantee
the relevance of the decoded patterns.

We show that the efficiency of the proposed SPM
generative approaches is competitive with traditional
SPM deterministic approaches on synthetic and real
data. Additionally, the proposed approaches hold
good levels of output-matching across a wide variety
of synthetic datasets. This is considerably attractive
since generative approaches offer a probabilist view
of patterns where the notion of pattern relevance is
rather different than the traditional counting support
as it allows for noise distributions underlying pattern
occurrences. This opens a new door for the gen-
erative formulation of SPM. This formulation holds
the potentiality to deliver: compact representations
of commonly large outputs; a probabilistic view of
patterns (allowing for noise distributions, an alterna-
tive view of the traditional support); pruned searches
under user-driven constraints; and a basis for query-
driven decoding of patterns of interest.

Relevant future directions include: the assessment
of changes in classifiers performance when adopting
pattern-sensitive generative models; the study of the
potential to dynamically self-learn expressive archi-

tectures from data; and the analysis of the impact of
these generative models for a broader-range of real-
world databases.
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