
A Framework for the Discovery of Predictive Fix-time Models

Francesco Folino, Massimo Guarascio and Luigi Pontieri
Institute ICAR, National Research Council (CNR), via P. Bucci 41C, 87036 Rende, CS, Italy

Keywords: Data Mining, Prediction, Business Process Analysis, Bug Tracking.

Abstract: Fix-time prediction is a key task in bug tracking systems, which has been recently faced through the definition
of inductive learning methods, trained to estimate the time needed to solve a case at the moment when it is
reported. And yet, the actions performed on a bug along its life can help refine the prediction of its (remaining)
fix time, possibly with the help of Process Mining techniques. However, typical bug-tracking systems lack any
task-oriented description of the resolution process, and store fine-grain records, just capturing bug attributes’
updates. Moreover, no general approach has been proposed to support the definition of derived data, which
can help improve considerably fix-time predictions. A new methodological framework for the analysis of bug
repositories is presented here, along with an associated toolkit, leveraging two kinds of tools:(i) a combination
of modular and flexible data-transformation mechanisms, for producing an enhanced process-oriented view of
log data, and(ii) a series of ad-hoc induction techniques, for extracting a prediction model out of such a view.
Preliminary results on the bug repository of a real project confirm the validity of our proposal and, in particular,
of our log transformation methods.

1 INTRODUCTION

In general, issue tracking systems (a.k.a. “trou-
ble/incident ticket” systems) are commonly used in
real collaboration environments in order to manage,
maintain and help resolve various issues in an organi-
zation/community. A popular sub-class of these sys-
tems it that of bug tracking systems, aimed at support-
ing the fixing of bugs in software artifacts, and widely
used in complex software-development projects, es-
pecially in the open-source world.

A key task in such a context amounts to accurately
foreseeing a bug fix time (i.e. the time needed to
eventually solve the bug). This problem recently at-
tracted the attention of data-mining researchers (An-
balagan and Vouk, 2009; Marks et al., 2011; Pan-
jer, 2007), who tried to extract either a discrete (i.e.
classification-oriented) or continuous (i.e. regression-
oriented) fix-time predictor, out of historical bug logs.
Current solutions rely on standard propositional pre-
diction methods, while regarding each bug record as a
tuple encoding all information available when the bug
was initially reported, and labelled with a discrete or
numerical (target) fix-time value. In this way, the rich
amount of log data collected across the life of each
bug — including any change made to bug properties,
like its priority, criticality, status, or assignee — is dis-
regarded, despite it may well help update, at run-time,

the prediction of (remaining) fix times.
The analysis of activity logs is the general aim of

Process Mining research (van der Aalst et al., 2003),
which recently started facing right the induction of
predictive process models (van der Aalst et al., 2011;
Folino et al., 2012; Folino et al., 2013). However,
these approaches need a mapping of log records to
well-specified process tasks, which are rarely defined
in real systems, where the logs typically register only
the sequence of changes made to a bug’s attributes. In
fact, despite many systems support the design of bug-
handling workflows, these are rarely used in real ap-
plications. Moreover, different bug repositories tend
to exhibit heterogeneous data schemes (even if built
with the same system, such as, e.g., Bugzilla), by
virtue of the possibility, offered by most tracking plat-
forms, to customize the data fields of bugs.

In this work, we propose a comprehensive
methodological framework for the analysis of bug
data and, in particular, for the discovery of fix times,
which allows for taking full advantage of bug at-
tributes and bug modification records, so overcom-
ing the limitations of current solutions. In particular,
in order to help the analyst grasp a suitable abstrac-
tion level over bug histories, we define a modular set
of parametric data-transformation methods for con-
verting each bug history into a process trace (where
update records are abstracted into higher-level activ-

99Folino F., Guarascio M. and Pontieri L..
A Framework for the Discovery of Predictive Fix-time Models.
DOI: 10.5220/0004897400990108
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 99-108
ISBN: 978-989-758-027-7
Copyright c
 2014 SCITEPRESS (Science and Technology Publications, Lda.)

ities), and for possibly enriching these traces with
derived/aggregated data. In this way, a high-quality
process-oriented view of bug histories can be obtained
and analyzed with existing (or novel) process min-
ing methods, in order to eventually build a predictive
model, capable to estimate, at run-time, the remain-
ing fix time of a bug. The approach has been imple-
mented in a system prototype, offering an integrated
and extensible set of data-transformation and predic-
tive learning tools.

By virtue of its generality and flexibility, the pro-
posed approach can be applied profitably to a variety
of real-life bug repositories, while allowing the ana-
lyst to customize the discovery of a fix-time model
to the specific data schema and business rules of the
repository under analysis. Moreover, as the approach
only assumes that each log event represents a modi-
fication to a case attribute, it can be easily extended
to analyze the logs of other lowly-structured process
management systems (such as, e.g., issue-tracking
systems or data-centric transactional systems).

The rest of the paper is structured as follows. Sec-
tion 2 summarizes some relevant related works, and
the main points of novelty of our proposal. After in-
troducing a few basic concepts in Section 3, we illus-
trate, in Section 4, our core log-abstraction methods.
The overall discovery approach and the implemented
system are presented in Sections 5 and 6, respectively.
We then discuss a series of tests in Section 7, and draw
some concluding remarks in Section 8.

2 RELATED WORK

Previous approaches to the forecasting of bug fix
times mainly rely on the application of classical learn-
ing methods, devised for analysing propositional data
labelled with a discrete or numerical target. In par-
ticular, linear regressors and random-forest classi-
fiers were trained in (Anbalagan and Vouk, 2009) and
in (Marks et al., 2011), respectively, in order to pre-
dict bug lifetimes, using different bug attributes as
input variables. Different standard classification al-
gorithms were exploited instead in (Panjer, 2007) to
the same purpose. Decision trees were also exploited
in (Giger et al., 2010) to estimate how promptly a new
bug report will receive attention. Moreover, a stan-
dard linear regression method was used in (Hooimei-
jer and Weimer, 2007) to predict whether a bug report
will be triaged within a given amount of time.

As mentioned above, none of these approaches ex-
plored the possibly to improve such a preliminary es-
timate subsequently, as long as the bug undergoes dif-
ferent treatments and modifications. The only (par-

tial) exception is the work in (Panjer, 2007), where
some information gathered after the creation of a bug
is used as well, but just for the special case of un-
confirmed bugs, and up to the moment of their accep-
tation. On the contrary, we want to exploit the rich
amount of log data stored for the bugs (across their
entire life), in order to build a history-aware predic-
tion model, providing accurate run-time forecasts for
the remaining fix time of new (unfinished) bug cases.

Predicting processing times is the goal of an
emerging research stream in the field of Process Min-
ing, which specifically addresses the induction of
state-aware performance model out of historical log
traces. In particular, the discovery of an annotated
finite-state model (AFSM) was proposed in (van der
Aalst et al., 2011), where the states correspond
to abstract representations of log traces, and store
processing-time estimates. This learning approach
was combined in (Folino et al., 2012; Folino et al.,
2013) with a predictive clustering scheme, where the
initial data values of each log trace are used as de-
scriptive features for the clustering, and its associated
processing times as target features. By reusing ex-
isting induction methods, each discovered cluster is
then equipped with a distinct prediction model — pre-
cisely, an AFSM in (Folino et al., 2012), and classical
regression models in (Folino et al., 2013).

Unfortunately, these Process Mining techniques
rely on a process-oriented representation of system
logs, where each event refers to a well-specified task;
conversely, common bug tracking systems just regis-
ter bug attribute updates, with no link to resolution
tasks. To overcome this limitation, we try to help
the analyst extract high-level activities out of bug his-
tory records, by providing her/him with a collection
of data transformation methods, tailored to fine-grain
attribute-update records, like those stored in bug logs.

The capability of derived data to improve fix-
time predictions was pointed out in (Bhattacharya and
Neamtiu, 2011), where a few summary statistics and
derived properties were computed for certain Bugzilla
repositories, in a pre-processing phase. We attempt
to generalize such an approach, by devising an ex-
tensible set of data transformation and data aggrega-
tion/abstraction mechanisms, allowing to extract and
evaluate such derived features for a generic bug log.

3 PRELIMINARIES

In order to make the discourse concrete, let us fo-
cus on the structure of a bug repository developed
with Bugzilla(http://www.bugzilla.org), a general-
purpose bug-tracking platform, devoted to support

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

100

people in various bug-related tasks – e.g., keep track
of bugs, communicate with colleagues, submit/review
patches, and manage quality assurance (QA). Notice,
however, that this particular choice does not under-
mine the generality of our approach, since very simi-
lar bug tracking strategies take place in most real-life
software development/maintenance environments.

In typical Bugzilla applications, tasks are often
carried out in an unstructured manner, without be-
ing enforced by a prescriptive process model. Such
applications mainly looks like a repository, where an
extensible set of attributes are associated with a bug,
and possibly updated along its entire life.

For example, in the Bugzilla repository of project
Eclipse(used in our experiments), the main attributes
associated with each bugb are: who enteredb into the
system (reporter); the last solverb was assigned to
(assignee); thecomponent andproduct affected by
b; severity’s andpriority’s levels; the list of users
that must be kept informed onb’s progress (CC); the
lists of other bugs depending onb (dependsOn), and
of related documents (seeAlso); a milestone; the
status andresolution of b (both described below).

Few bug attributes (e.g.,reporter) are static,
whereas the others (e.g.,status, resolution,
assignee) may change as long as the bug case
evolves. In particular, thestatus of a bugb may
take the following values:unconfirmed(i.e. b was
reported by an external user, and it needs to be
confirmed by a project member),new (i.e. b was
opened/confirmed by a project member),assigned
(i.e. b was assigned to a solver),resolved(i.e. a fix
was made tob, but it needs to be validated),verified
(i.e. a QA manager has validated the fix),reopened
(if the last fix was judged incorrect), andclosed. For
a resolved bugb, theresolution field may take one
of these values:fixed, duplicate(i.e. b is a duplicate
of another bug),works-for-me(i.e. b has been judged
unfounded),invalid, won’t-fix.

In any Bugzilla repository, the whole history of a
bug is stored as a list of update records, all of which
share the same structure, consisting of five predefined
fields (in addition to a bug identifier):who (the per-
son who made the update),when(a timestamp for the
record),what (the attribute modified),removed(the
former value of that attribute) andadded(the newly
assigned value). Figure 1 reports, as an example, the
update records of an Ecplise’s bug.

Bug Traces and Associated Data: The contents of
a bug repository can be viewed as a set of bugtraces,
each storing the sequence ofeventsrecorded during
the life of the bug. As explained above, each of these
events concerns the modification of a bug attribute,

Figure 1: Activity log for a single Bugzilla’s bug (whose ID
is omitted for brevity). Row groups gather “simultaneous”
update records (sharing the same timestamp and executor).

and takes the form of the records in Figure 1.
Let E be the universe of all possible bug events,

andT be the universe of all possible bug traces. For
any evente∈ E, let who(e) and when(e), what(e),
removed(e), andadded(e) be the executor, the times-
tamp, the attribute modified, the former value and new
value stored ine, respectively.

For each (bug) traceτ ∈ T , let len(τ) be the
number of events stored inτ; moreover, for anyi =
1 .. len(τ), let τ[i] be thei-th event ofτ, andτ(i] ∈ T

be theprefixtrace gathering the firsti events inτ.
Clearly, prefix traces have the same form as fully

unfolded traces (and yet belong toT), but only rep-
resent partial bug histories. In actual fact, the prefix
traces of any bug allow us to look at the evolution of
that bug, across its whole life. For example, the activ-
ity log of Figure 1 (which just stores the history of one
bug) will be represented as a traceτex consisting of 12
events, one for each of the update records (i.e. rows
of the table) in the figure; in particular, for the first
event, it iswho(τex[1]) = svihovec, what(τex[1]) = CC,
added(τex[1])) = {margolis,svihovec}.

As mentioned above, typical bug tracking systems
store several attributes for each bug instance (e.g.,
reporter, priority, etc.), which may take differ-
ent values during its life. LetF1, . . . ,Fn be all of the
attributes defined for a bug. Then, for any (either par-
tial of completed) bug traceτ, let data(τ) be a tuple
storing the updated values of these attributes associ-
ated withτ (i.e. the values taken by the correspond-
ing bug after the last event ofτ), anddata(τ)[Fi] be the
value taken byFi (for i = 1..n). Clearly, for any fully
unfolded bug traceτ, the data tuple of each sub-trace
τ(i] is a snapshot of the data associated with the bug
at thei-th step of its history (withi ∈ {1, . . . , len(τ)}).

Finally, a (bug)log L is a finite subset ofT , while
theprefix setof L, denoted byP (L), is the set of all
possible prefix traces that can be extracted fromL.

Fix-time Measurements and Models: Let µ̂F :
T → R be an unknown function assigning a fix-time

A�Framework�for�the�Discovery�of�Predictive�Fix-time�Models

101

value to any bug (sub-)trace. The value of ˆµF is
clearly known over allP (L)’s traces, for any given
log L — indeed, for any log traceτ and prefixτ(i], it
is µ̂F(τ(i]) = when(τ[len(τ)])−when(τ[i]). For exam-
ple, for the traceτex(2], encoding the first 2 events in
Figure 1, it isµ̂F(τex(2]) = when(τ[12])−when(τ[2])
= 197 days (assuming that time spans are measured in
days).

A Fix-time Prediction Model (FTPM)is a model
approximating ˆµ, which can estimate the remaining
fix time of a bug, based on its current trace. Learn-
ing such a model is an inductive problem, where the
training set is a logL, and the value ˆµF(τ) of the target
measure is known for each (prefix) traceτ ∈ P (L).

4 CORE BUG TRACE
ABSTRACTION OPERATORS

In the discovery of anFTPM model we want to take
into account all bugs’ histories (i.e. all sequences of
update records), in addition to the intrinsic features of
the bugs (e.g., the affected product, severity level, re-
porter). Our core idea is to regard some of the actions
performed on a bug as a clue for the activities of an
unknown (bug resolution) process, in order to possi-
bly exploit Process Mining approaches. To this end,
we discard the naı̈ve idea of just defining such activi-
ties as all possible changes to the status of a bug, since
this will lead to discard relevant events, such as the
(re-)assignment of the bug to a solver, or the modifi-
cation of key properties (like its severity, criticality, or
category). On the other hand, we do not either adopt
the extreme solution of looking at all attribute updates
as resolution tasks, seeing as many of them are hardly
linked to fix times, and they may even have a noise-
like effect on the discovery of fix-time predictors.

The rest of this section presents a collection of
parametric data-transformation methods, which are
meant to turn bug histories into abstract traces of rel-
evant resolution activities, suitable for the application
of process-oriented prediction techniques.

Activity-oriented Event Abstraction: An event
abstraction functionα is a function mapping each
evente∈ E to an abstract representationα(e), which
captures relevant facets of the action performed. To
this end, in current process mining approaches, log
events are usually abstracted into their associated
tasks, possibly combined with other properties of
them (e.g., their executors), under the assumption that
the events correspond to the execution of work-items,
according to a workflow-oriented view of the process
analyzed.

In our framework, such a functionα is right in-
tended to turn each bug-tracking event into a high-
level bug-resolution activity, by mapping the former
to a label that captures well its meaning. As a bug
system only tracks attribute-update events, the ana-
lyst is allowed to define this function in terms of their
fields (i.e.who, when, what, added, andremoved).

The default instantiation ofα, denoted byα, is
defined as follows (with symbol+ denoting the string
concatenation operator):

α(e) =







what(e)+ “:=”+ added(e), if what(e) ∈
{status,resolution}

“∆”+what(e), otherwise
(1)

This particular definition ofα focuses on what bug
attribute has been modified, while abstracting any
other event’s field (namely,who, when, removed, and
added); as an exception, the assigned values are in-
cluded in the abstract representation when the update
involves thestatus or resolution, since such in-
formation can help characterize the current state of a
bug, and improve fix-time predictions. For example,
for the first two events of the bug traceτex (gather-
ing all the records in Figure 1), it isα(τex[1]) = ∆CC,
andα(τex[2]) = ∆TargetMilestone, while the activ-
ity label of the last event (τex[12]) is status:=closed.

Different event abstraction functions can be de-
fined by the analyst, in order to focus on other facets
of bug activities, or to change the level of detail,
depending on the specific bug attributes (and as-
sociated domains) available in the application sce-
nario at hand. For instance, with regard to the sce-
nario of Section 3, one may refine the representa-
tion of severity-level changes by defining two distinct
activity labels for them, say∆Severity-Eclipseand
∆Severity-NotEclipse, based on the presence of sub-
string “eclipse” in the e-mail address of the person
who made the change.

Macro-event Criterion: In real bug tracking envi-
ronments, multiple fields of a bug are often modi-
fied in a single access session, and the correspond-
ing activity records are all stored with the same
timestamp, in an almost arbitrary order. For exam-
ple, in our experimentation, we encountered many
cases where the closure of the bug (i.e. an event of
typestatus:=closed) preceded a “contemporaneous”
change of assignee (or a message dispatch).

Regarding each set of contemporaneous events as
onemacro-event, the analyst can define three kinds
of data-manipulation rules, in order to rearrange them
based on their fields:(i) a predominancerule, assign-
ing different relevance levels to simultaneous events
(with the ultimate aim of purging off less relevant

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

102

Table 1: Default macro-event criterion: predominance, merging and sort rules over simultaneous events. No merging rules for
levels 2 and 3 (whose events are only reordered), and no sort rules for level-1 events (which are merged together) are defined.

Predominance levels Merging rules Sort rules
(lev.) (bug attributes) (macro-event activity label) (ordering relation)

1 status, resolution α(〈 , ,status, , 〉)+ “ +′′+α(〈 , ,resolution, , 〉) —

2 priority, severity, assignee — priority<severity<assignee

3 milestone,CC — milestone<CC

ones);(ii) a set ofmergingrules, indicating when two
or more contemporaneous events (with the same pre-
dominance level) must be merged together, and which
activity label must be assigned to the resulting aggre-
gated event;(iii) a set ofsort rules, specifying an or-
dering relation over (non-purged and non-merged) si-
multaneous events.

Any combination of the above kinds of rules will
be collectively regarded, hereinafter, as amacro-
event criterion. The default instantiation of this cri-
terion is summarized in Table 1, where each event
is given a “predominance” level, only based onwhat
attribute was updated in the event. Such levels acts
as a sort of priority in the selection of events (the
lower the level, the greater the priority): an event
is eventually kept only if there is no simultaneous
event with a lower level than it. In particular, events
involving a change to thestatus or resolution
hideassignee/priority/severity updates, which,
in their turn, hide changes to themilestone or CC.

A mergingrule is defined in Table 1 only for 1-
level simultaneous events, which states that, when-
ever thestatus andresolution of a bug are mod-
ified contemporarily, the respective events must be
merged into a single macro-event, labelled with the
concatenation of their associated activity labels. For
example, this implies that the ninth and tenth events
in Figure 1 will be merged together, and labelled with
the string “state:=resolved+ resolution:=fixed”.

Also the default sort rule (shown in the table as an
ordering relation<) only depends on thewhat field,
and states that events involving attributemilestone
must precede those concerningCC, and thatpriority
(resp.,severity) updates must precedeseverity
(resp.,assignee) ones. In this way, e.g., the first two
events in Figure 1 will be switched with one another.

Example 1. Let us apply all default log abstraction
operators introduced above (i.e. the event abstrac-
tion function in Equation 1 and the macro-event cri-
terion of Table 1) to the bug traceτex encoding the
events in Figure 1. For the sake of conciseness,
let us only consider events involving the attributes
in Table 1. The resulting traceτ′ex consists of 8
events, which are associated with the following ac-
tivity labels, respectively:l1=“∆milestone”, l2=“∆CC”,
l3= “∆assignee”, l4= “∆CC”, l5= “∆CC”, l6= “∆assignee”,
l7= “status:=resolved+resolution:=fixed”, l8= “status

:= closed”, wherel i is the activity label ofτ′ex[i]. The
respective timestamps (at 1-hour granularity) of these
events are: t1 = t2 =(2012-06-20 10EDT), t3 =(2012-
06-20 22EDT), t4 =(2012-06-21 11EDT), t5 =(2012-06-
25 05EDT), t6 =(2012-07-02 10EDT), t7 =(2012-07-02
15EDT), t8 =(2013-01-03 11EST). ⊳

State-oriented Trace Abstraction: For each trace
τ, a collection of relevant prefixes (i.e. sub-traces)
rp(τ) is selected, in order to extract an abstract rep-
resentation for the states traversed by the associ-
ated bug, during its life. Two strategies can be
adopted to this end, namedevent-orientedandblock-
oriented. In the former strategy all possibleτ’s pre-
fixes are considered, i.e.rp(τ) = {τ(i] | i = 1. . . len(τ)},
whereas in the latter only prefixes ending with the last
event of a “macro-activity” are selected, i.e.rp(τ) =
{ τ(i] | 1 ≤ i ≤ len(τ) and when(τ[j]) > when(τ[i]) ∀ j ∈
{i+1, . . . , len(τ)} }.

Independently of the selection strategy, each trace
τ′ in rp(τ) is turned into a tuplestateα(τ′), whose at-
tributes are all the abstract activities produced by a
given event abstraction functionα (e.g., that in Eq. 1).
The value taken by each of these activities, saya, is
denoted bystate(τ′)α[a] and computed as follows:

stateα(τ′)[a]= SUM({δ(τ′[i])| α(τ′[i])=a, i=1..len(τ′)}) (2)

whereδ is a function assigning an integer weight to
each event, based on its properties; by default it is(i)
δ(e) = |added(e)|, if e is not an aggregation of multi-
ple simultaneous events (i.e. it corresponds to one raw
update record) ande involves a multivalued attribute
(like CC, seeAlso), or (ii) δ(e) = 1 otherwise.

Any prefix traceτ′ is hence encoded by an integer
vector in the space of the abstract activities extracted
by α, where each component accounts for all the oc-
currences, inτ′, of the corresponding activity. Such
a vector captures the state of a bug (at any step of its
evolution) through a summarized view of its history.

Example 2. Let us consider the traceτ′ex shown
in Example 1. The unfolding of this trace gives
rise to 8 distinct prefix sub-traces, denoted by
τ′ex(1], τ′ex(2], . . ., τ′ex(8]. Five distinct abstract ac-
tivities occur in these traces:a1=“∆milestone”,
a2=“∆CC”, a3=“∆assignee”, a4=“status:=resolved+
resolution:=fixed)”, a5=“status :=closed”. As to trace

A�Framework�for�the�Discovery�of�Predictive�Fix-time�Models

103

abstractions, all components ofstateα(τ′ex(1]) (i.e.
the tuple encoding the state reached after the first
step) are 0 but that associated witha1 anda2, which
arestateα(τ′ex(1])[a1] = 1, andstateα(τ′ex(1])[a2] = 2.
— indeed, two values were added toCC in the
first macro-activity. If using the event-oriented
strategy, the above traces will generate 8 state tuples:
stateα(τ′ex(1])=〈1,2,0,0,0〉, stateα(τ′ex(2])=〈1,2,1,0,0〉,
stateα(τ′ex(3])=〈1,4,1,0,0〉, stateα(τ′ex(4])=〈1,5,1,0,0〉,
stateα(τ′ex(5])=〈1,5,2,0,0〉, stateα(τ′ex(6])=〈1,5,2,1,0〉,
stateα(τ′ex(7])=〈1,5,2,1,1〉. ⊳

Such a state-oriented representation of a logL will
be eventually exploited to induce a fix-time predictor
(i.e. aFTPM) for L, as explained in the next section.

5 DISCOVERY APPROACH

We can now illustrate our whole approach to the
discovery of a Fix-time Prediction Model (FTPM),
based on a given set of raw bug records. The approach
is illustrated in Figure 2 as a meta-algorithm, named
FTPM Discovery, which encodes the main logical
steps of our (process-oriented) data-transformation
methodology, as well as the eventual application of
a predictive induction method to the transformed log.

The algorithm takes as input a bug repository, stor-
ing a collection of bug records (like those described
at the beginning of Section 3), along with a num-
ber of parameters concerning the application of data-
manipulation operators.

In order to apply the abstraction operators intro-
duced in Section 4, bug data are first turned into a set
of bug traces (i.e. a bug log).

Based on a givenfiltering criterion Φ, function
filterEvents is used to possibly remove uninterest-
ing events (e.g., outliers or noisy data), which may
confuse the learner, and lead to poor predictions.

FunctionhandleMacroEvents allows us to ap-
ply a givenmacro-eventcriterionΓ (such as that de-
scribed in Table 1) to rearrange each group of simulta-
neous log events according to the associatedpredom-
inance, reorderingand/ormergingrules.

The two following steps (Steps 4 and 5) are
meant to possibly associate each bug traceτ with
additional “derived” data, in order to complement
the original contents ofdata(τ) with context in-
formation. In fact, the insertion of such addi-
tional information was already considered in previous
bug analysis works (Hooimeijer and Weimer, 2007;
Marks et al., 2011), and was proven effective in
improving the accuracy of predictive models (Bhat-
tacharya and Neamtiu, 2011). Basically, function
deriveTraceAttributes is devoted to insert new

Input: A collection B of bug records (cf. Section 3),
a filtering criterionΦ, a macro-event criterionΓ, an
event abstraction functionα, and a prefix selection
strategyS∈ {BLOCK, EVENT}

Output: An FTPM (Fix-time Prediction Model) forB

Method: Perform the following steps:

1 ConvertB into a logL of bug traces;
2 L := filterEvents(L,φ);
3 L := handleMacroEvents(L,Γ);
4 L := deriveTraceAttributes(L);
5 L := refineTraceAttributes(L);
6 if S= BLOCK then
7 RS:={τ(i]) | τ ∈ L,1≤ i ≤ len(τ), and

when(τ[j])> when(τ[i]) ∀ j ∈ N s.t. i < j ≤ len(τ)};
8 else
9 RS:= {τ(i]) | τ ∈ L, and 1≤ i ≤ len(τ)};

10 end if
11 M := mineFTPM(RS,α);
12 return M.

Figure 2: Meta-algorithmFTPM Discovery.

derived trace attributes, defined as some summarized
statistics over bug field/trace collections. Conversely,
function refineTraceAttributes allows to trans-
form a number of (raw or derived) bugs/events at-
tributes, by turning each of them into a more expres-
sive attribute. Two kinds of capabilities are provided
by our framework to this end:(i) attribute enrich-
ment, which consists in extending the values of an
attribute with correlated information (extracted from
the same repository), and(ii) attribute aggregation,
which consists in reducing the dimensionality of an
attribute by partitioning its domain into classes. Fur-
ther details on the current implementation of both
functions are presented in the next section.

Steps 6-10 are simply meant to extract a setRSof
relevant (sub-)traces out ofP (L), based on the cho-
sen selection strategyS. RSis then used by function
mineFTPM as a training set, in order to eventually in-
duce anFTPM. To this end, as explained in Sec-
tion 4, each traceτ ∈ RSis converted into a tuple la-
belled with the fix-time measurementµF(τ), and en-
coding both the representation ofτ’s state (w.r.t. the
given event abstraction functionα), and its associ-
ated (augmented) data tupledata(τ). More precisely,
data(τ) and stateα(τ) are used as descriptive/input
attributes, while regarding the actual remaining-time
valueµF(τ′) as the target of prediction.

At this point, a wide range of learning methods
(including those described in Section 2) can be used
to induce a regression or classification model. As a
matter of fact, different solutions for carrying out this
task are available in the current implementation of our
approach, as described in detail in the next section.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

104

6 PROTOTYPE SYSTEM

A prototype system was developed to fully implement
the approach presented above, and support the discov-
ery of high-qualityFTPMs. In particular, the system
allows the analyst to flexibly and modularly apply all
the data-processing operators presented in this work,
in an interactive and iterative way, as well as to define
and store (in a reusable form) new variants of them,
according to a template-based paradigm. The archi-
tecture of the system is shown in Figure 3.

Bugzilla
Repository

Bugzilla
Gateway

Resolution
Event Log Trace

Abstraction

Simultaneous
Event

Rearrangement

Feature
Derivation

Enhanced
Event Log

Predictive
Models

Enhanced Trace Builder

Predictive
Clustering

Regression Classification

Predictive Model Discovering

Data

Transformation
Rule Repository

Figure 3: Logical architecture of the system prototype.

Module Bugzilla Gatewayis capable to extract
historical data stored in anyBugzilla repository
(through its web interface), and to convert them into
bug traces. The imported log, possibly cleaned (ac-
cording to suitable filtering rules), is stored in the
Resolution Event Log. Notice that, in principle, the
system can be extended with analogous modules for
importing log data from different bug tracking plat-
forms.

TheEnhanced Trace Buildermodule allows to ap-
ply various data-transformation criteria (possibly al-
ready stored in theData-Transformation Rule Repos-
itory), in order to produce an enhanced version of the
log, more suitable for fix time prediction. Specif-
ically, the Simultaneous Event Rearrangementsub-
module can be exploited to manipulate each group of
simultaneous events according to some macro-event
criterion, as discussed in Section 4. Conversely, the
Features Derivationsub-module helps possibly en-
rich all bug traces with additional (derived and/or ab-
stracted) context data. In any case, theTrace Abstrac-
tion block is eventually employed to build a state-
oriented abstraction for each selected (sub-)trace.

Each “refined” log view obtained by way of the
above described functionalities, and stored in theEn-
hanced Event Logrepository, can be used as input
for modulePredictive Model Discovering. To this
end, the abstracted traces are delivered to either the
Regressionor Classificationmodule, based on which
learning task was chosen by the user. Preliminary to
the induction of a prediction model, the traces can be

possibly partitioned into groups by one of the predic-
tive clustering methods implemented by thePredic-
tive Clusteringmodule, which will also produce a set
of decision rules for discriminating among the discov-
ered clusters. In this case, each cluster will be even-
tually equipped with a distinct fix-time predictor.

Details on Built-in Derived and Abstracted Data:
The following context data are automatically inserted
by our system into each bug traceτ: (i) a collection of
rough workload indicators, storing the overall num-
ber of bugs currently opened in the system, and the
number of those pertaining the same product version
(resp., component and OS) asτ; (ii) an analogous col-
lection of counters for the bugs fixed in the past year
(globally, and for the version/component/OS referred
to by τ); (iii) a “reputation” coefficient, computed for
the reporter ofτ as in (Bhattacharya and Neamtiu,
2011);(iv) the average fix-time for various groups of
related bugs (e.g., those concerning the same project
or reporter asτ) and closed in the past year;(v) sev-
eral seasonality dimensions (such as, week-day and
month) derived from the date of the last event inτ.

As to the refinement of data, the system im-
plements a specific attribute enrichment mechanism,
which allows to replace users’ identifiers (possibly
appearing, e.g., inwho fields of bug history records,
or in certain bug attributes) with their respective e-
mail addresses — actually, no further information on
people is available in many real bug repositories. To
this end, a greedy matching procedure was developed,
based on comparing any user ID with all the email ad-
dresses appearing in various attributes of the bugs.

A further semi-automated built-in procedure
available in the system allows instead to group the
values of a given bug attributea, by heuristically find-
ing a partitioning that exhibits high correlation with
fix-time values, based on a given aggregation hierar-
chy – such a hierarchy can be already available for
the attribute (as in the case of email addresses and
software products, which follow implicit meronomi-
cal and taxonomical schemes, respectively), or can be
computed automatically (via an ad-hoc clustering ap-
proach). Essentially, the procedure tries to find an op-
timal cut of the hierarchy, looking at the information
loss that is produced when real fix-time values are ap-
proximated with the averages computed over the se-
lected nodes. Details are omitted for lack of space.

Details on Built-in Induction Methods: Several
alternative learning methods are currently imple-
mented in our system, which support the induction of
a FTPM, from a propositional training set like that
described in the previous section. These methods,

A�Framework�for�the�Discovery�of�Predictive�Fix-time�Models

105

ranging from classical regression methods to state-
aware Process Mining methods (van der Aalst et al.,
2011; Folino et al., 2012; Folino et al., 2013), are
listed next:

• IBK, a lazy (case-based) naı̈ve regression method,
implementing the k-NN procedure available in
Weka (Tan et al., 2005), usingk= 1 and Euclidean
distance (and nominal attributes’s binarization);

• RepTree, implementing the homonymous
regression-tree learning method (Tan et al.,
2005), while using the variance reduction crite-
rion and 4-fold reduced-error pruning (as well
as with a minimum value of 0.001 and 2 for the
node variance and node coverage, respectively);

• AFSM, implementing the FSM-based learning
method in (van der Aalst et al., 2011), using no
history horizon and the multi-set trace abstraction
(which yields the same state codes as Eq. 2 with
unitary event weights, i.e.δ(e) = 1 ∀e∈ E);

• CATP, implementing the approach in (Folino et al.,
2012), which first builds a multi-target predictive
clustering for the bugs, using a greedy selection
of all the partial fix-time values of each bug, and
then equip each cluster with anAFSMprediction
model (by reusing the previous method);

• AATP-IBK andAATP-RepTree, which combine a
multi-target predictive clustering procedure with
the base learnersIBK andRepTree, respectively,
following the approach in (Folino et al., 2013);

• CBTP 1Reg (standing for “Clustering Based Time
Predictor with 1-dimensional Regression”), a
novel method which first computes a regression
tree by way of algorithmRepTree, using each bug
as a single training instance, with its overall fix-
time as target; a classic linear-regression model is
then learnt for each cluster.

Like in previous bug analysis works, the analyst
can also induce a classification model for the pre-
diction of (discrete) fix times, after defining a set of
a-priori classes in terms of fix-time ranges (possibly
with the help of automated binning tools). To this end,
a number of existing classifier-induction algorithms
can be exploited, including the following ones:

• J48, the Weka’s implementation of classical
C4.5 (Quinlan, 1993) algorithm (with 3-fold re-
duced error pruning);

• Random Forest, implementing the algorithm
in (Breiman, 2001) for inducing a random forest
of decision trees (of size 10);

• MRNB, a two-phase induction method proposed
in (Costa et al., 2009), which follows a sort

of predictive-clustering strategy, where an ini-
tial rule-based classification model is refined by
equipping each leaf with a probabilistic classifier.

7 CASE STUDY

This section discusses some tests performed with our
prototype system, concerning the induction of differ-
ent fix-time predictors from real data, extracted from
the Bugzilla repository of projectEclipse. Two induc-
tion tasks were considered in the tests:(i) discover a
regressionmodel for predicting numeric fix-time val-
ues, and(ii) discover aclassificationmodel, w.r.t. a
given set of time span classes.

Original Data and Derived Logs: A sample of
3906 bug records (gathered from January 2012 to
March 2013) was turned into a set of bug trace like
those described in Section 3. An explorative analysis
of this log showed that the length of full bug traces
ranges from 2 to 27, while bug fix time ranges from
one day (i.e., a bug is opened and closed in the same
day) to 420 days, with an average of about 59 days.

In order to make this log more suitable for predic-
tion, we applied the basic event abstraction function
α of Eq. 1, so obtaining a first “refined” viewL0 over
the selected bug traces.

Four further log views, namedL1, . . . ,L4, were
then derived fromL0, by incrementally applying
the data-processing functions appearing in algorithm
FTPM Discovery (cf. Figure 2).

A first cleaned viewL1, consisting of 2283 traces,
was produced by applying toL0 a specific instantia-
tion of functionfilterEvents, removing the follow-
ing data:(i) bugs never fixed,(ii) “trivial” bug cases
(i.e. all bugs opened and closed in the same day),
and(iii) trace attributes (e.g.,version, whiteboard,
andmilestone) featuring many missing values, and
bug/event fields (e.g.summary) containing long texts.

In order to take advantage of the restructuring of
simultaneous events, a viewL2 was produced by treat-
ing L1 with the default implementation of function
hanldeMacroEvents (based on the rules of Table 1).

View L3 was obtained applying a number of
attribute derivation mechanisms available in our
system (as a built-in implementation of function
deriveTraceAttributes) to L2.

L4 was derived fromL3 through the built-in imple-
mentation of functionabstractTraceAttributes.
In particular, all people identifiers in thereporter
bug attribute were replaced with a number of re-
porters’ groups representing different organizational
units (namely,{oracle, ibm.us, ibm.nous, vmware,

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

106

Table 2: Regression results on Eclipse bug data. Rows correspond to differentFTPM induction methods, tested in two
learning settings: without and with bug history events. ColumnsL0, . . . ,L4 correspond to different views of the original
dataset, each obtained by a specific combination of pre-processing operations, as explained in the text.

Predictors rmse mae

Setting Methods L0 L1 L2 L3 L4 L0 L1 L2 L3 L4

No Bug History (Baseline)
IBK 1.051 1.051 1.050 1.092 1.093 0.569 0.569 0.561 0.583 0.584

RepTree 0.973 0.973 0.970 0.966 0.925 0.562 0.562 0.552 0.547 0.546

Avg (no history) 0.973 0.973 0.970 0.966 0.925 0.562 0.562 0.552 0.547 0.546

History-aware

AFSM 1.123 1.027 1.010 1.010 1.010 0.717 0.640 0.647 0.647 0.647

CATP 0.967 0.873 0.880 0.737 0.640 0.510 0.467 0.440 0.380 0.320

IBK 0.983 0.823 0.807 0.793 0.803 0.430 0.360 0.360 0.347 0.360

AATP-IBK 1.003 1.007 0.827 0.800 0.710 0.437 0.473 0.367 0.353 0.310

RepTree 1.013 0.883 0.907 0.910 0.773 0.533 0.473 0.473 0.477 0.367

AATP-RepTree 0.970 0.930 0.887 0.783 0.657 0.510 0.530 0.437 0.390 0.313

CBPT 1Reg 0.947 0.900 0.750 0.700 0.547 0.490 0.453 0.383 0.350 0.280

Avg (history-aware) 1.001 0.920 0.867 0.819 0.734 0.518 0.485 0.444 0.420 0.371

other}), and extracted semi-automatically from e-
mail addresses. A similar approach was used
to produce a binary abstraction (namely{eclipse,
not eclipse}) of attributeassignee, and an aggregate
representation of bothproduct andcomponent.

Regression Results: When facing the prediction of
fix times by way of regression techniques, predic-
tion accuracy was evaluated through the standard er-
ror metricsroot mean squared error (rmse)andmean
absolute error (mae). Both metrics were computed
via 10-fold cross validation, and normalized by the
average fix time (59 days), for ease of interpretation.

Table 2 reports the normalizedrmseandmaeer-
rors obtained, with different numeric prediction meth-
ods available in our system (and described in Sec-
tion 6), on the five log views described above. Two
different learning setting were considered to this end:
using bug history information (originally registered
in terms of attribute-update events), and neglecting it.
Note that the latter setting is intended to provide the
reader with a sort of baseline, mimicking the approach
followed by previous fix-time prediction works.

In general, it is easy to see that results obtained in
the first setting (“no bug history”) — where only the
initial data of reported bugs are used as input variables
for the prediction — are rather poor, if compared to
the average ones obtained in the “history-aware” set-
ting. Indeed, the errors measured in the former setting
are quite high, no matter which inductive methods
(i.e. IBK or RepTree) is used, and which combination
of pre-processing operations are applied to the orig-
inal logs. Interestingly, this result substantiates our
claim that the exploitation of bug activity information
helps improve the precision of fix-time forecasts.

On the other hand, in the second setting, bothrmse
andmaeerrors tend to decrease when using more re-
fined log views. In particular, substantial reductions
were obtained with the progressive introduction of

macro-event manipulations (viewL2), and of derived
and abstracted data (viewsL3 andL4, respectively).

By a finer grain analysis, we can notice that this
trend is not followed byAFSM, which exhibits worse
performances than the other history-aware methods,
over all the log views. This bad behavior may be as-
cribed to the fact thatAFSM does not exploit context
data, which instead seem to be a key factor of im-
provement for fix-time prediction accuracy.

Very good results are obtained (in the history-
aware setting) when using some kind of predictive
clustering method, be it single-target (CBPT 1Reg and
RepTree) or multi-target (CATP, AATP-RepTree and
AATP-IBK). However, trace-centered clustering ap-
proaches (namely,CATP, AATP-RepTree, AATP-IBK
andCBTP 1Reg) achieve better results thanRepTree,
which considers all possible trace prefixes for the
clustering. In fact, the benefit of using a clustering
procedure is quite evident in the case ofIBK, which
generally gets worse achievements than any other ap-
proach, presumably due to its inability to fully exploit
derived data. Indeed, still focusing on the history-
aware setting, it can be noticed that the prediction ac-
curacy ofIBK slightly increases when it is embedded
in the predictive clustering scheme ofAATP-IBK.

Classification Results: Let us finally show some of
the results obtained by facing the discovery of a fix-
time predictor as a classification problem, as com-
monly done in current literature. Two learning set-
tings are considered again, based on the possibility
to use bug-history data when inducing a classifica-
tion model. The case where such data are disregarded
still plays here a sort of baseline, corresponding to
the approach followed in several fix-time prediction
works (Giger et al., 2010; Marks et al., 2011).

Target classes were identified by discretizing – via
equal-depth binning – the fix times of all bugs consid-
ered in the tests. These classes roughly correspond to

A�Framework�for�the�Discovery�of�Predictive�Fix-time�Models

107

Table 3: Accuracy results of different fix-time classifiers on
a fully enhanced log (L4), derived from Eclipse bugs.

Predictors Accuracy Measures

Approach Methods P R F1

No Bug History

J48 0.560 0.562 0.559

MRNB 0.582 0.583 0.582

Random Forest 0.538 0.541 0.539

Avg (no history) 0.560 0.562 0.560

History-aware

J48 0.736 0.728 0.726

MRNB 0.818 0.822 0.819

Random Forest 0.815 0.816 0.815

Avg (history-aware) 0.790 0.789 0.787

the following ranges:µF ≤ 1 day, 1 day< µF ≤ 10
days, 10 days< µF ≤ 2 months, andµF > 2 months.

Table 3 reports the accuracy results obtained,
against the most refined log view (i.e.L4)1, by
three different induction methods (namely,J48,
RandomForest and MRNB) implemented in our sys-
tem. Three standard metrics were computed (via 10-
fold cross-validation) to evaluate models’ accuracy:
precision (P), recall (R) and the balancedF1 score
(a.k.a. F-measure), defined asF1 = 2 ·P·R/(P+R).

These figures confirm that the exploitation of bug
history allows for improving neatly the accuracy of
discovered models, regardless of the learning method
and of the evaluation measure. In particular, very
good scores are achieved when using (on history-
aware logs) theRandom Forest andMRNB methods.

8 CONCLUSIONS

A methodological framework for the prediction of
bug fix times and an associated prototype system have
been proposed, which fully exploit bug attributes’
change logs. Provided with a rich collection of flexi-
ble data-transformation methods, the analyst can ob-
tain a high-quality view of such logs, prior to apply-
ing Process Mining techniques to discover a process-
aware prediction model. Encouraging results were
obtained on some bug logs of a real open-source
project, which empirically prove the benefits of ex-
ploiting bug update histories, and of employing our
data manipulation methods.

As to future work, we plan to extend our approach
in order to deal with long textual descriptions associ-
ated with bug/issue reports, as well as to predict other
process-oriented performance measures than the sole
fix time (e.g., QoS or cost indicators). We will also
explore the application of our methods to the logs of

1Less accurate models were extracted from the other
(less refined) log views (namely,L0, . . . ,L3). Detailed re-
sults found in these cases are omitted for lack of space.

other kinds of data-centric and lowly-structured col-
laboration environments (such as, e.g., issue-tracking
and data-centered transactional systems).

REFERENCES

Anbalagan, P. and Vouk, M. (2009). On predicting the
time taken to correct bug reports in open source
projects. InProc. of Int. Conf. on Software Mainte-
nance (ICSM’09), pages 523–526.

Bhattacharya, P. and Neamtiu, I. (2011). Bug-fix time
prediction models: can we do better? InProc.
of 8th Intl. Conf. on Mining Software Repositories
(MSR’11), pages 207–210.

Breiman, L. (2001). Random forests.Machine Learning,
45(1):5–32.

Costa, G., Guarascio, M., Manco, G., Ortale, R., and Ri-
tacco, E. (2009). Rule learning with probabilistic
smoothing. InProc. of 11th Int. Conf. on Data Wareh.
and Knowl. Discovery (DaWaK’09), pages 428–440.

Folino, F., Guarascio, M., and Pontieri, L. (2012). Discover-
ing context-aware models for predicting business pro-
cess performances. InProc. of 20th Intl. Conf. on Co-
operative Inf. Systems (CoopIS’12), pages 287–304.

Folino, F., Guarascio, M., and Pontieri, L. (2013). A
data-adaptive trace abstraction approach to the pre-
diction of business process performances. InProc.
of 15th Intl. Conf. on Enterprise Information Systems
(ICEIS’13), pages 56–65.

Giger, E., Pinzger, M., and Gall, H. (2010). Predicting
the fix time of bugs. InProc. of 2nd Intl. Workshop
on Recommendation Systems for Software Engineer-
ing (RSSE’10), pages 52–56.

Hooimeijer, P. and Weimer, W. (2007). Modeling bug report
quality. In Proc. of 22nd IEEE/ACM Intl. Conf. on
Automated Software Engin. (ASE’07), pages 34–43.

Marks, L., Zou, Y., and Hassan, A. E. (2011). Studying
the fix-time for bugs in large open source projects. In
Proc. of 7th Intl. Conf. on Predictive Models in Soft-
ware Engineering (Promise’11), pages 11:1–11:8.

Panjer, L. (2007). Predicting eclipse bug lifetimes. InProc.
of 4th Intl. Workshop on Mining Software Repositories
(MSR’07), pages 29–.

Quinlan, J. R. (1993).C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA.

Tan, P.-N., Steinbach, M., and Kumar, V. (2005).Introduc-
tion to Data Mining. Addison-Wesley Longman.

van der Aalst, W., van Dongen, B., Herbst, J., Maruster,
L., Schimm, G., and Weijters, A. (2003). Workflow
mining: a survey of issues and approaches.Data &
Knowledge Engineering, 47(2):237–267.

van der Aalst, W. M. P., Schonenberg, M. H., and Song,
M. (2011). Time prediction based on process mining.
Information Systems, 36(2):450–475.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

108

