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Abstract: Humans are extremely efficient in interacting with each other. They not only follow goals to exchange 
information, but modulate the interaction based on nonverbal cues, knowledge about situational context, and 
person information in real time. What comes so easy to humans poses a formidable challenge for artificial 
systems, such as social robots. Providing such systems with sophisticated sensor data that includes 
expressive behavior and physiological changes of their interaction partner holds much promise, but there is 
also reason to be skeptical. We will discuss issues of specificity and stability of responses with view to 
different levels of context. 

1 INTRODUCTION 

Early models of human communication were driven 
by the notion that information is encoded, sent as a 
message, and decoded on the receiver side. In other 
words, all the action is happening in the message. If 
it is well encoded, everything the receiver needs to 
know is contained and a successful decoding 
completes a felicitous communication episode 
(Rosengren, 2000). This of course conjures up the 
notion of a complete encapsulation in packages of 
speech that efficiently transport information from 
one person to another. We now know that this is not 
how human communication works. Not only, are 
verbal messages augmented by information 
transported via multiple nonverbal channels, but also 
the personal context of all participating individuals, 
as well as the situational context, play an important 
role in connecting interactants. When it comes to the 
communication of emotion, one also has to consider 
that a considerable amount of information is 
transmitted outside of conscious awareness, for 
example via mirror and feedback processes that are 
difficult to describe and assess. It is this complexity 
that makes it often enough difficult for humans to 
communicate successfully, but the challenge of 
creating artificial systems that succeed is at times 
daunting. 

Consider three examples: 

Jill: “Could you pass the butter?” – John 
passes the butter 

(1)

Jill: “It is cold in here” – John closes the 
window 

(2)

John: “I am sorry, I forgot our anniversary” 
– Jill is silent 

(3)

The first example is straight-forward; a demand is 
articulated. It is relatively easy to grasp what is 
intended, and a particular act, passing the butter, 
would appear to be the appropriate response. This is 
relatively easy to model and artificial service 
systems would not have difficulties in dealing with 
requests like this. The second example is somewhat 
more complicated. Jill simply utters a statement. 
However, based on speech act theory (e.g., Searle, 
1976), we can assume that any statement can imply 
a variety of things – for example, in a particular 
situational context it might become clear that Jill is 
actually uncomfortable because of the low 
temperature – even if she did not state this explicitly. 
There is, depending on the relationship between Jill 
and John, the implicit message that Jill is not well, 
but that John has the power to change this state via 
closing the window. By not stating the request 
explicitly there is much information conveyed 
regarding the relationship of the two. This scenario 
is more complicated for an artificial system to deal 
with. However, what if there were signs that Jill was 
indeed not well? She might shiver. If an artificial 
system would have access to the shivering then a) it 
could already react before something was said, or b) 
the sentence could be interpreted in the context of a 
physiological/behavioral piece of information. The 
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third example is the most challenging. The transcript 
does not allow much inference. Jill does not say 
anything. This could have many reasons. If we had 
access to her expressive behavior, perhaps we could 
sense whether Jill is very upset. We assume that she 
is upset – even if this was nowhere indicated. Why? 
Because as we interact with others, or observe the 
interaction between others we engage in something 
akin to mind reading (at least this is how some 
researchers, e.g., Baron-Cohen et al., 2000 refer to 
it). There are multiple ways of drawing inferences 
regarding the emotions, beliefs, and intents of 
others. In some cases, we use observable behavior 
(this would fit with the second example). In other 
situations, we simulate in our head how we would 
feel if we were in this situation and extrapolate how 
someone else might feel, particularly, if there is a 
lack of (supposedly) reliable nonverbal signs. There 
are many different concepts how we should or could 
understand these empathic processes (Batson, 2009), 
and it is fair to say that some of these scenarios will 
remain a challenge for artificial systems for a long 
time to come. It is important to note that many 
humans have difficulties with these situations as 
well. Children must learn these skills and some 
adults have difficulties because they are not good in 
any “theory of mind” tasks throughout their life. 

It has often been suggested (e.g., Picard, 1999) to 
augment human-computer interaction with analyses 
of nonverbal behavior, as humans also require this 
information in many situations. However, 
theoretically it is possible that an artificial system 
could overcome some of the challenges in 
communication by including information that would 
not be available to the human interactant. Imagine in 
the third scenario, that an artificial system had 
access to changes in Jill’s cardiovascular system. 
Perhaps Jill does not say anything, maybe she does 
not show anything on her face, but perhaps she is, 
metaphorically, boiling inside. An artificial system 
might be in an even better position than a human to 
conclude that Jill is very much upset – possibly 
offended by the statement of John. This is the reason 
why the idea of augmenting human computer 
interaction, for example in the context of social 
robotics, with an analysis of nonverbal behavior and 
physiological responses is so intuitively seductive. 
Thus, in the last few years, several attempts have 
been made to incorporate such information. 

It is the goal of this presentation to describe 
some of the challenges that an analysis of expression 
and psychophysiology entail. Initially, we will 
discuss some conceptual challenges, based on the 
current state-of-the-art in psychology. This relates 

particularly to the question what nonverbal behavior 
and changes in psychophysiological activation 
mean. Then, we will discuss some technical 
challenges, which include issues such as sensor 
placements and artifacts with illustrations from our 
own laboratory. 

2 CONCEPTUAL CHALLENGES 

Ideally, psychophysiological and expressive data 
would reliably yield unambiguous information about 
the emotional state of a subject across a large range 
of different situations. However, this is generally not 
the case. Even our best measures have been shown 
to correlate only moderately with any other indicator 
of emotional states (Mauss and Robinson, 2009). 
Why? The answer is not confined simply to 
technical aspects of our measurement instruments, 
but in part relates to more fundamental conceptual 
issues. To understand these conceptual challenges, 
we should first consider the specificity and 
generality of the relationships between any 
hypothetical set of measures (Cacioppo et al., 2000). 
For example, a blood glucose test at a medical 
examination (Cacioppo et al., 2000) will only be 
valid as long as certain assumptions about the 
context are met. Specifically, the measure of blood 
glucose will not be very informative about a medical 
condition like diabetes if the patient decided to have 
a quick snack just before going to the doctor. At a 
more abstract level, the need for constraints to be 
met relates to the degree of generality at which a 
given measure can be expected to faithfully reflect 
the construct that is to be measured. Within 
psychophysiology, this has been defined as the level 
of generality of psychophysiological relationships 
(Cacioppo and Tassinary, 1990; Cacioppo et al., 
2000). For the measurement of emotions in HRI, the 
implication is that different individual indicators will 
vary in their validity across experimental contexts. 

In addition to their degree of generality, or 
context-dependency, psychophysiological measures 
of emotion can vary in how specifically they are tied 
to emotional states, i.e., in how close they come to 
having a one-to-one relationship with emotions. This 
dimension is important because emotions are 
typically not the only drivers of physiological or 
expressive behaviors. In other words, there are 
typically many reasons why a physiological 
parameter might change at any given moment; i.e., 
these are instances of many-to-one relationships 
(Cacioppo et al., 2000). Important examples for this 
kind of situation are measures of electrodermal 
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activity (EDA) and facial electromyography (EMG), 
both of which are frequently used indicators of 
emotional states. While an emotionally arousing 
stimulus is likely to trigger an electrodermal 
response, and a pleasant experience will often be 
accompanied by a response of facial muscles, other 
factors have an impact on either one of these 
measures as well. For example, we may smile out of 
politeness, or we may show an EDA response due to 
an unexpected noise that has nothing to do with our 
interaction partner at the time. 

Generality of valid measurement contexts and 
specificity of the relationships of emotion measures 
can be considered jointly in terms of a 2 by 2 
taxonomy. Figure 1 shows the categories of 
relationships that can be derived from the taxonomy 
elaborated by Cacioppo and colleagues (e.g., 
Cacioppo and Tassinary, 1990; Cacioppo et al., 
2000). 

 

Figure 1: Taxonomy of psychophysiological relationships 
(adapted from Cacioppo et al., 2000). 

In most cases, our measures of emotion in HRI 
should likely be interpreted cautiously as outcomes 
that are based on many-to one relationships in a 
specific type of context. This does not mean that 
they would not allow systematic inferences about 
emotions that can be useful for live HRI – but it 
important to understand that we are generally not 
dealing with specific markers or even context-
independent, invariant, indicators of emotional 
states that could provide a readout of the true 
emotional state of a human as it evolves in 
interaction with a robot. Rather, we need to consider 
which measure, or set of measures, will be most 
appropriate for a given measurement situation, and 

understand which other factors might bias our 
indicators in this situation. As we will discuss, this 
also implies a need for further testing and validation 
of new measures that claim to measure the same 
psychological processes as conventional laboratory 
measures – but which aim to do so in a different 
context. 

Given these challenges, what type of inferences 
can still be drawn from physiology and expression? 
The recording of facial activity may be a good 
example here because recent advances in technology 
have been paving the way for fully automated face-
based affect detection (Calvo and D’Mello, 2010). 
However, as we have argued previously (Kappas, 
2010), an overestimation of cohesion between 
certain facial actions and emotional states can lead 
to wrong conclusions about user states or action 
tendencies in real-world applications. In certain 
cases, a user might smile because she is happy. At 
other times, she might smile to encourage a robotic 
system to continue – and at yet other times, she 
might smile to cope with an otherwise almost 
painful social situation. 

The relationship between certain individual 
measures of emotional states, e.g., a smile, and 
fundamental dimensions of emotions such as 
hedonic valence is not necessarily linear (e.g., 
Bradley et al., 2001; Lang et al., 1993; Larsen, 
Norris, and Cacioppo, 2003). However, the reasons 
why we need to be so cautious about interpreting 
individual measures of expression in HRI are 
primarily concerned with the social functions of 
emotional expressions. Many functions of emotions 
are social (Kappas, 2010), and the social audience at 
which participants may direct facial expressions 
need not even be physically present in an 
experimental context (Fridlund, 1991; Hess, Banse, 
and Kappas, 1995). 

There are of course cases where automatically 
recorded data from other facial actions, such as 
movements associated with frowning or with disgust 
expressions may be able to help disambiguate the 
contextualized meaning of a smile – yet even this is 
not always sufficient. In the latter case, the context-
specific implications of a particular experimental 
situation might be studied in advance with the aid of 
human judges. For example, when the intended 
application aims at an interaction between students 
of a certain age with a particular type of robot in a 
teaching context that focuses on a specific body of 
content, a common practice is to train the system 
with likely types of responses that may occur at 
certain critical moments during this interaction. 
While such a strategy obviously does not “solve” the 
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underlying conceptual challenges relating to the 
context-sensitivity of emotional expressions, it helps 
the system to learn how to respond more naturally in 
a certain set of specific situations. In consequence, 
behavioral rules can be formulated that make use of 
physiological and expressive indicators without 
overestimating their contextual generality.  

3 PRACTICAL CHALLENGES 

Apart from some of the conceptual challenges, such 
as the temptation to overestimate cohesion between 
emotional states and their physiological and 
expressive indicators across different types of social 
contexts, social robotics has to face a number of 
more practical challenges. Some of these might be 
overcome by further technical development, and 
others can be addressed at least partially by strict 
adherence to state-of-the-art research standards and 
additional basic research and validation studies. 

Among the technical challenges that, perhaps 
surprisingly, to date still have not been fully 
overcome, is the development of a truly 
comprehensive and reliable automated system that 
can distinguish as many facial Action Units (AUs, 
see Ekman and Friesen, 1978) as trained human 
coders can (Calvo and D’Mello, 2010; Valstar et al., 
2011). Further, for purposes of improving affect 
sensing in social robots, a live integration of coded 
AUs into the researchers’ own software architecture 
is required, whereas available commercial systems 
sometimes only offer this data at a pre-interpreted 
aggregate level of basic emotions such as 
“happiness” or “sadness”. In other cases, basic 
licensing issues deny direct access to the online AU-
prediction generated by commercial affect detection 
modules. Either limitation, while seemingly trivial, 
presents some very practical challenges to 
effectively incorporating facial affect sensing into 
interdisciplinary research on emotionally intelligent 
HRI. Ideally, all action units would be directly 
available to the artificial intelligence controlling the 
robot as well as the software architecture that 
records all responses made over the course of an 
interaction. 

We already know from the psychological 
literature on how humans perceive emotions that 
even subtle differences such as the type, timing, and 
onset of a smile can have a significant impact on 
how it is perceived (Johnston et al., 2010; 
Krumhuber and Kappas, 2005; Krumhuber et al., 
2007; Schmidt et al., 2006). In consequence, even 
perfectly accurate information about the presence vs. 

absence of an action unit as such may not be 
sufficient to eventually approximate a humanlike 
level of facial perception capabilities. Clearly, 
dynamics and intensities matter. While it remains an 
empirical question to what extent more 
comprehensive affect recognition systems will be 
able to improve the socio-emotional capabilities of a 
robot, work on the technological challenge to collect 
and process this data has to be accompanied by 
further empirical research on facial dynamics on the 
level of action units. 

The need for further research on facial dynamics 
on the level of Action Units relates to a more general 
set of challenges that have to do with the transfer of 
extant laboratory research to the context of more 
applied environments. In the case of facial dynamics 
in HRI, the additional issue arises that the system 
needs to interpret the evolving context of an ongoing 
interaction in real time, and this context will 
typically be based on a substantial number of 
different sources of information about changing 
emotional states. In other words, multiple levels of 
information need to be analysed in real time – the 
very task that humans appear to perform so 
effortlessly in daily life! 

In the psychological laboratory, basic research 
usually focuses on a small number of factors that are 
controlled as strictly as possible to allow inferences 
about their relative contributions. We have argued 
previously that this type of fine-grained perspective 
is crucial for understanding emotional interactions, 
for example in computer-mediated communication 
(Theunis et al., 2012). However, it is also clear that 
social robotics has to find practicable means to 
collect, filter, and use whatever emotion-related 
information is available and relevant in the applied 
context at hand. In HRI, the robot or artificial system 
has to be able to act, and interact, immediately on 
the basis of the available input. This changes the 
focus of important paradigms of laboratory research 
on emotions, such as the study of individual 
modalities (e.g., Scherer, 2003), or interindividual 
differences (e.g., Prkachine et al., 2009), toward a 
focus on parameters that may be able to help the 
system to make more sensible decisions about how 
to respond at different moments of the interaction. In 
many ways, this challenge to find parameters that 
are most useful in a number of applied situations is 
potentially a very fruitful approach, also for the 
psychological study of emotions. At the same time, 
however, we have to be aware that factors other than 
those related to affect-detection per se may turn out 
to have an even greater impact on the success of a 
social robot in an interaction. Here, practical 
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considerations are often closely linked to conceptual 
issues, such as the importance of helping the robot 
understand the context of emotional expressions 
rather than affect detection per se (see Kappas, 
2010). 

Apart from the concrete example of automatic 
affect detection from facial actions, the use of 
physiological measures of any kind faces a number 
of rather basic challenges related to the physical 
environment of the recording situation. Certain 
measures, e.g., electrodermal activity (EDA), are 
known to be influenced by environmental factors 
such as ambient temperature or noise (Boucsein, 
2012; Dawson et al., 2000). This means that sudden 
noises generated by an experimental task, ringing 
cell phones, other people in the room, or even loud 
movements of a social robot’s motors above a 
certain threshold, could elicit electrodermal 
responses that have nothing to do with the intended 
behaviour of the robot. Further relevant factors 
include speech, irregular breathing, and gross body 
movements (Boucsein et al., 2012).  

While most of the typical environmental 
confounding factors can generally be well controlled 
across experimental conditions in laboratory 
research, ambulatory recording is challenged by 
significantly more uncertainty regarding the source 
of variations in EDA (Boucsein et al., 2012). As 
Boucsein and colleagues (Boucsein et al., 2012) 
further point out, a socially engaging situation, or 
even a novel environment may cause a similar 
magnitude fluctuations in electrodermal activity as 
stress or fear. For example, the first interaction with 
a new type of robot will most probably qualify as a 
new and socially engaging situation for naïve 
participants. Therefore, ambulatory experiments 
involving measurement of electrodermal activity in 
social robotics should include additional time for 
familiarization of subjects with the experimental 
environment, the recording procedures, and the 
robot itself. This is particularly the case for 
ambulatory recording devices like Affectiva’s Q-
Sensor (http://www.affectiva.com/q-sensor/) that 
require a "warmup" period for optimal recording. 
Due to practical considerations, researchers are often 
understandably hesitant to devote several minutes of 
valuable experiment time to seemingly unnecessary 
familiarization periods and resting baselines. 
However, in particular when psychophysiological 
measures are involved, this time of getting to know 
the experimental context can help eliminate 
unwanted error variance in how users initially 
respond to an unknown recording situation. One 
concrete example where this was successfully 

applied can be found in a recent study involving the 
measurement of electrodermal activity of children 
interacting with an iCAT (Leite et al., 2013). Here, 
the sensors were attached 15 minutes prior to the 
actual experiments, and the experimenter guided 
participants to the location of the interaction with the 
robot. 

In some cases, relevant environmental factors are 
relatively method specific, and some of these may 
already be well known to computer scientists. E.g., 
the quality and type of lighting can have substantial 
impact on most facial affect recognition systems. 
Likewise, tracking of more than one human user at a 
time can pose a considerable technical challenge for 
the reliable recording of facial action units. For other 
measures, such as the recording of 
electrocardiographic (ECG) data, or facial 
electromyography (EMG), impedances between the 
skin of the subjects and the recording electrodes can 
play an important role, and that even in cases where 
traditional wired sensors are used (cf., Fridlund and 
Cacioppo, 1986; Cacioppo et al., 2007). 

For this reason, the best choice of recording 
instruments depends not only on the type of research 
questions asked, but also on the physical constraints 
of the recording situation, as well as ongoing 
developments for both sensors and software. For 
example, currently available sensors for the 
recording of electrodermal activity, like the 
aforementioned Affectiva Q-Sensor, have been 
focusing on the advantages of a convenient 
placement near the wrist of participants. However, 
this placement may not be an optimal measurement 
location for the assessment of emotional sweating 
(van Dooren et al., 2012; see also Payne et al., 
2013), nor is it recommended by the current official 
guidelines because this site may reflect more 
thermoregulatory rather than emotionally relevant 
electrodermal phenomena (Boucsein et al., 2012). 
However, either further empirical research might 
establish that this recording site can nevertheless 
generate enough emotionally significant data despite 
being not optimal (Kappas et al., 2013), or additional 
technical developments might make it possible to 
perform reliable wireless recordings from a different 
site. 

A final, but important, set of practical challenges 
relates to the impact of the psychological rather than 
physical recording environment. From a social 
psychological perspective, the presence vs. absence 
of a human experimenter in the context of an 
ongoing social interaction between a human 
participant and a robotic partner is a potentially very 
interesting variable. In HRI, there are often practical 
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reasons why researchers may decide to keep an 
experimenter nearby, e.g., in studies with younger 
children involving potentially very expensive or 
technically challenging systems. However, the 
physical presence or absence of an experimenter 
may be sufficient to fundamentally change the social 
context of an experiment, in particular in those cases 
where having an experimenter present might appear 
to be a practical requirement. In fact, social 
psychological research of the last decades has 
repeatedly demonstrated that even a merely implicit 
presence of other people can have on key emotional 
behaviors such as smiling (Fridlund, 1991; Hess et 
al., 1995; Manstead et al., 1999; Küster, 2008). For 
example, Fridlund (1991) measured facial responses 
to funny videos and found that even to believe that a 
friend was watching the same videos elsewhere was 
already sufficient to increase smiling in comparison 
to a truly solitary viewing condition. In comparison 
to such subtle effects, the actual physical presence of 
another person can hardly be expected to fail to have 
a significant effect on the psychological recording 
situation, no matter how justifiable the physical 
presence of a “silent experimenter” may appear to 
be. 

A particularly relevant and widely used 
experimental technique in the study of HRI is based 
upon the use of a Wizard of Oz (WoZ; e.g., 
Dautenhahn, 2007; Riek, 2012) paradigm, i.e., a 
human puppeteer who controls some or all of the 
behavioural responses of the robot. This is a socially 
complex situation because the participant is 
interacting with a “robot” that is at least partially 
controlled by another human who is usually seated 
outside of direct view, or in a separate room. The 
puppeteer remains anonymous and as such invisible 
to the human subject, and this presents a certain 
safeguard against sociality effects that are tied to the 
immediate physical presence of an experimenter. 
However, the WoZ paradigm can nevertheless vary 
in the level at which the wizard is implicitly present 
in the situation, and there are potentially numerous 
ways in which a confederate, i.e., the wizard, may 
influence or “prime” responses of the participant in 
rather automatic ways with little or no conscious 
awareness (see Bargh et al., 1996; Kuhlen and 
Brennan, 2013). For this reason, it is important to 
control the psychological recording environment as 
well as possible across all participants taking part in 
an experiment. In particular, the wizard(s) should 
receive systematic training to standardize responses 
as well as minimize learning effects and fatigue 
which may otherwise create undesirable systematic 
variance in how the social context of the 

experiments is perceived by the very first vs. later 
participants. This may of course be less of an issue 
in WoZ studies that focus on rapid prototyping (see, 
e.g., Dautenhahn, 2007) yet it becomes more critical 
as soon as differences in user evaluations are to be 
tested systematically, or when physiological or 
expressive measures are to be tested and trained to 
be used as parameters. As Fridlund (1991, 1994) and 
others have shown, socially relevant expressions 
appear to be surprisingly vulnerable to even very 
subtle variations of the social environment. 
However, in a recent review on Wizard of Oz 
studies in HRI (Riek, 2012), only a small minority of 
5.4% of studies reported any pre-experimental 
training of wizards, and only 24.1% reported an 
iterative use of WoZ. This suggests that in particular 
the control of seemingly minor social factors may 
require more systematic attention. 

Further challenges related to the psychological 
context of an experiment with physiological 
measures relate to the subject’s awareness of being 
measured, and the impact of preceding tasks. First, it 
is of course not surprising that a feeling of being 
observed is likely to bias results, for example when 
effects of social desirability are considered (Paulhus, 
1991; 2002). However, this is also an example of the 
context-dependency of psychophysiological 
relationships that we discussed in the section on 
conceptual challenges above. Thus, children, for 
example, can be expected to respond differently to 
observation than adults, and adult students will 
likely respond differently from other specific groups 
such as teachers, or elderly people. Importantly, 
from the perspective of physiological measures, we 
can further not assume that, e.g., differences 
observed between age groups on the level of self-
reported emotions will translate one-to-one into the 
same type of differences in the physiological 
domain. For example, if we were to ask a few 
children and a few adult students about their 
emotional experience in a pre-test, we might find 
that the children perceive certain aspects of the 
robot’s emotional capabilities more positively than 
our adult sample. However, it might be that the 
psychological context of the experiment as such, 
rather than the robot with its limited response 
repertoire, would have been much more exciting for 
the children than for the adults. This generally 
elevated level of excitement, or arousal, may show 
up in physiological or expressive measures – but it 
can depend on the specific measure in question to 
what extent this is the case. However, while 
simplified pretests of experiments can be very 
useful, e.g., for the training of a confederate or WoZ, 
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we have to be cautious about predictions derived on 
the basis of a different type of sample than the one 
that is finally used. Thus, not only may people of 
different age groups respond differently to the social 
environment of an experiment – but they might also 
express themselves in different ways. Physiological 
and expressive measures may be of particular use in 
explaining some of these potential differences. 
However, they themselves require careful testing in 
an experimental environment that should, physically 
as well as psychologically, be matched as closely as 
possible to the final experimental design. 

4 SOLUTIONS 
AND NEW CHALLENGES 

Until recently, our discussion of practical challenges 
for the use of psychophysiological measures in HRI 
research would have had to begin with a discussion 
of the very basic problems associated with moving 
amplifiers and cables out of the laboratory into 
locations that allow a certain degree of freedom of 
movement to participants without loss of signal 
quality. With the advent of a number of wireless 
lightweight recording systems for both expressive as 
well as bodily signals, many of these issues appear 
to have been reduced or eliminated. Or have they? 

As might be expected, the answer depends on the 
specific measure and measurement context in 
question. If, for example, the participant can be 
expected to remain seated, and only smiling activity 
needs to be recorded for the purposes of an 
experiment, a number of inexpensive or freely 
available facial affect detection systems can be 
expected to provide this data reliably. As discussed 
above, the detection of a larger range of AUs, 
however, is still far from solved (Valstar et al., 2012; 
Chu, De la Torre, and Cohn, 2013). Further, 
automated facial affect detection is still challenged 
by individual differences in facial morphology that 
can dramatically influence the performance of 
classifiers for previously unseen individuals (Chu et 
al., 2013). Such differences include, for example the 
shape and type of eyebrows and deep wrinkles (Chu 
et al., 2013). 

Other techniques, such as facial 
electromyography (EMG) use electrodes attached to 
the face, and can be more robust in this respect 
because trained human experimenters affix the 
electrodes at the precise recording site appropriate 
for an individual subject. Further strengths of Facial 
EMG are a high temporal resolution and sensitivity 
to even very subtle intensity changes of activation 

(van Boxtel, 2010). Due to the technical and 
practical limitations involved, however, facial EMG 
has been a strictly laboratory based measure until 
just a few years ago. Yet facial EMG is an example 
where ongoing technical developments are 
beginning to look rather promising. Thus, 
meanwhile, wireless off-the-shelf solutions have 
been produced for the recording of facial EMG (e.g., 
BioNomadix, www.biopac.com). Further, at a 
prototype level, head-mounted measurement devices 
no longer require a physical attachment of electrodes 
to the face. In an initial validation study, strong 
correlations were observed between such a device 
and traditional measurement at typical recording 
sites (Rantanen et al., 2013). This might address a 
number of disadvantages of the use of facial EMG, 
such as its relative intrusiveness compared to a video 
recording, including the pre-treatment of the skin 
before electrodes can be attached. However, further 
empirical validation of contact-free EMG recording 
is still required, as well as a reduction in weight and 
general usability before such devices may be ready 
for a larger-scale use in applied contexts. 

For other physiological signals, such as EDA, 
particularly lightweight and convenient portable 
sensors have already been developed. As for facial 
EMG, such sensors may help to overcome some of 
the typical practical challenges associated with using 
physiological recording devices “in the wild”. 
Sensors that can be worn just as easily as a wrist-
watch, for example, are likely to cause much less 
interference with an ongoing study. In consequence, 
it can be hypothesized that they will have a 
substantially smaller impact on levels of self-
awareness of participants, and the general extent to 
which subjects feel observed. Likewise, as 
physiological recording systems are becoming more 
useable and less obtrusive, the range of possible 
applications broadens, and this may allow entirely 
new avenues for research. However, new sensors in 
this domain often still lack systematic empirical 
validation studies. This concerns not only the 
reliability of the measurements taken by these 
devices but also the validity of the psychological 
constructs being measured. In particular where new 
and innovative recording sites are used, the 
empirical question arises if the convenient new 
measurement location still reflects the same kind of 
psychological mechanisms. If it does not, then the 
inclusion of such data risks contributing little to the 
effective affect-sensing capabilities of a robot – and, 
in the worst case, it might even be counter-
productive. 
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5 OUTLOOK 

We have described some of the most important 
conceptual and practical challenges that have to be 
overcome to incorporate expressive and 
psychophysiological data in field research on HRI. 
On the conceptual level, we have emphasized some 
of the fundamental limits of generality and 
specificity in the relationships between bodily 
measures of emotion and the underlying 
psychological constructs. On a more practical level, 
we have discussed many of the most commmen 
problems faced by researchers who want to employ 
psychophysiolgical measures outside the laboratory. 
We have emphasized how both the physical and the 
psychological environment of an experiment need to 
be carefully considered when designing experiments 
such as WoZ studies. This is particularly the case 
when meaningful effects are to be compared 
between experimental conditions, and when 
inferences are to be drawn about the associated 
psychological processes involved. We now conclude 
our contribution by the attempt of a brief look into 
the future. 

While the significant challenges to the use of 
bodily signals highlighted in this paper should not be 
underestimated, there are likely a substantial number 
of situations where a robot, for all practical 
purposes, need not be perfect in order to be 
perceived as attentive, empathic, or emotional. Thus, 
to improve perceived realism of robotic behaviour, it 
may not always be necessary to understand precisely 
the emotional state of participants throughout the 
entirety of the experiment. While this would, of 
course, be advantageous, even humans are not 
necessarily the gold standard of affect detection that 
we might think intuitively take them for (Kappas, 
2010). Rather, humans have been shown to be 
heavily influenced by contextual factors (Russell et 
al., 2003), to perform surprisingly poorly at 
emotional lie-detection tasks (Ekman and 
O’Sullivan, 1991), and to tend to fail at tasks 
involving interoception, such as tracking one’s own 
heart-beats (Katkin et al., 1982). 

What are the implications if social robots after all 
do not have to be perfect at distinguishing, e.g., 
polite social smiles from genuine smiles? It is 
possible that robots may not even have to excel at 
general inferences about ongoing changes in action 
tendencies (see Frijda et al., 1989) or predict 
perfectly the likely future actions of a human partner 
from physiology alone across a broad range of 
contexts. While improved measurement devices are 
undoubtedly an important piece of the puzzle, we 

argue that an actual understanding of the situation 
may turn out to be equally important. At present, 
more work appears to be needed on the design of 
critical experimental situations where the pattern of 
all available information allows clear predictions on 
the appropriateness of a set of different behavioural 
response options for the robot. For example, an 
increase in physiological arousal coupled with the 
participant’s eye-gaze and a smile directed at the 
robot could be a fairly clear indicator that the 
interaction is going well, and that the robot might 
continue further along the current path. At other 
times, physiological data, including information 
about head orientation or gaze synchronicity, might 
be used successfully to adjust the precise timing of 
certain pre-arranged sets of statements. Finally, yet 
other data might be used in concert with 
physiological and expressive data, e.g., response 
latencies or button presses recorded from an ongoing 
task (e.g., Leite et al., 2013). If we can use 
physiology to improve social robots at certain key 
moments of an interaction, we may already be on a 
good way to improve our understanding of context-
sensitive emotional responding in HRI at a more 
general level. 

Through careful experimental design, the 
context-dependency of emotions in HRI may, at 
least in part, be transformed from a challenge into a 
characteristic that can be systematically employed to 
improve realism and fluency of social robotics. 
However, for this to occur, substantial additional 
basic research is still needed concerning the role of 
social context in physiological and expressive 
measures of emotion in HRI. 
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