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Abstract: Data Mining (DM) aims at the extraction of useful knowledge from raw data. In the last decades, hospitals
have collected large amounts of data through new methods of electronic data storage, thus increasing the
potential value of DM in this domain area, in what is known as medical data mining. This work focuses on
the case study of a Portuguese hospital, based on recent and large dataset that was collected from 2000 to
2013. A data-driven predictive model was obtained for the length of stay (LOS), using as inputs indicators
commonly available at the hospitalization process. Based on a regression approach, several state-of-the-art
DM models were compared. The best result was obtained by a Random Forest (RF), which presents a high
quality coefficient of determination value (0.81). Moreover, a sensitivity analysis approach was used to extract
human understandable knowledge from the RF model, revealing top three influential input attributes: hospital
episode type, the physical service where the patient is hospitalized and the associated medical specialty. Such
predictive and explanatory knowledge is valuable for supporting decisions of hospital managers.

1 INTRODUCTION

In the last few decades, hospitals have been stor-
ing data regarding electronic clinical information sys-
tems. Thus, there is an increasing potential of the use
of Data Mining (DM) (Fayyad et al., 1996), to facili-
tate the creation of knowledge and support clinical de-
cision making, in what is known as medical data min-
ing (Cios and Moore, 2002; Silva et al., 2006; Silva
et al., 2008).

In this work we target the prediction of the length
of stay (LOS), defined in terms of the inpatient days,
which are computed by subtracting the day of admis-
sion from the day of discharge. Extreme LOS values
are known as prolonged LOS and are responsible for a
major share in the hospitalization total days and costs.
The use of data-driven models for predicting LOS is
of value for hospital management (Azari et al., 2012;
Guzman Castillo, 2012): with an accurate estimate
of the patients LOS, the hospital can better plan the
management of available beds, leading to a more ef-
ficient use of resources by providing a higher average
occupancy and less waste of hospital resources.

Given the importance of LOS prediction, a large
number of studies have approached DM techniques
in this area. Instead of predicting LOS in special-

ized medical services, as in UCI (Abelha et al., 2007;
Oliveira et al., 2010; Pena et al., 2010) or internal
medicine (Kalra et al., 2010), in this study we pre-
dict generic LOS, for all hospital services, which is
more challenging task. Also, as a case study, only
one Portuguese hospital is analyzed. Nevertheless,
a large dataset is considered (data collected from
2000 to 2013 with 26462 records from 15253 pa-
tients) when compared with some of the mentioned
works (e.g., (Pena et al., 2010) only considered 110
patients and (Oliveira et al., 2010) analyzed records
from 401 patients). In addition, the attributes that
we adopt (described in Section 2) were defined by
a hospital expert’s medical panel and are commonly
available at the hospitalization process. Most of these
attributes (e.g., sex, age, episode type, medical spe-
cialty) are also adopted by the literature. For instance,
the episode type is proposed in (Guzman Castillo,
2012), while the medical specialty was used in (Azari
et al., 2012). Moreover, in contrast with several liter-
ature works, such as (Pena et al., 2010; Azari et al.,
2012; Guzman Castillo, 2012; Sheikh-Nia, 2012), we
do not perform a classification task, which requires
defining apriori which are the interesting LOS class
intervals. Instead, we adopt the more informative pure
regression approach, which predicts the actual num-
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ber of LOS days and not classes.
DM aims at the extraction of useful knowledge

from raw data (Fayyad et al., 1996). With the
growth of the field of DM, several DM methodologies
were proposed to systematize the discovery of knowl-
edge from data, including the tool neutral and pop-
ular Cross-Industry Standard Process for Data Min-
ing (CRISP-DM) (Clifton and Thuraisingham, 2001),
which is adopted in this work. The methodology is
composed of six stages: business understanding, data
understanding, data preparation, modeling, evaluation
and implementation.

This study describes the adopted DM approach
under the first five stages of CRISP-DM, given that
implementation is left for future work. At the pre-
processing stage, the data were cleaned and attributes
were selected, leading to 14 inputs and the LOS tar-
get. During the modeling stage, six regression tech-
niques were tested and compared: Average Predic-
tion (AP), Multiple Regression (MR), Decision Trees
(DT) and state-of-the-art regression methods (Hastie
et al., 2008), including an Artificial Neural Network
(ANN) ensemble, Support Vector Machines (SVM)
and Random Forests (RF). The predictive models
were compared using a cross-validation procedure
with three regression metrics, including the popular
coefficient of determination. Moreover, the best pre-
dictive model (RF) was opened using a sensitivity
analysis procedure (Cortez and Embrechts, 2013) that
allows ranking the input attributes and also measuring
the average effect of a particular input in the predic-
tive response.

This paper is organized as follows. Firstly, the
adopted DM approach is detailed in terms of the
CRISP-DM methodology first five phases (Section 2).
Then, closing conclusions are drawn (Section 3).

2 CRISP-DM METHODOLOGY

In this section, we describe the main procedures and
decisions performed when following the first five
phases of the CRISP-DM methodology for LOS pre-
diction of a Portuguese hospital.

2.1 Business Understanding

The prediction of LOS is inserted within the wider
problem of hospital admission scheduling, where
there is a pressure to increase the availability of beds
for new patients. In this particular Hospital, most pa-
tients come from the emergency department and from
the region of Lisbon. The goal was set in terms of

predicting LOS using regression models, thus favor-
ing predictions that are closer to the target values. As
a baseline business objective (to determine if there
is success), we defined a coefficient of determination
with a value of 0.6, which often corresponds to a rea-
sonable regression.

In terms of software, we adopted open source
tools, using structured query language (SQL) to ex-
tract data from the hospital database and the R tool
for the data analysis (http://www.r-project-org).
In particular, we adopt the rminer package (Cortez,
2010), for applying the DM regression models (i.e.,
AP, MR, DT, ANN, SVM and RF) and sensitive anal-
ysis methods.

2.2 Data Understanding

The data was collected between October 2000 and
March 2013. During this period, a total of 26462 in-
patient episodes were stored, related with 15253 pa-
tients and associated with the distinct hospital medical
specialties.

The selection of relevant data attributes for LOS
prediction was performed by an expert medical panel.
The panel was composed with 7 physicians from
different medical specialties (e.g., internal medicine,
general surgery, gynecology). The panel presented a
total of 28 attributes that were considered related with
LOS and that were analyzed in the data preparation
phase (Table 1). The first seven rows of Table 1 are
related with the patient’s characteristics while the re-
maining rows are related with the inpatient clinical
process. The description column of the table con-
tains in brackets the attribute type (date, nominal, or-
dinal or numeric), as found in the original hospital
database.

2.3 Data Preparation

In this phase, a substantial effort was performed us-
ing a semi-automated approach to preprocess the data.
In particular, the R tool was adopted to perform an
exploratory data analysis (e.g., histograms and box-
plots) and preprocess the original dataset. The pro-
cessing involved the operations of cleaning, discard-
ing redundant attributes, handling missing values and
attribute transformations.

During the exploratory data analysis step, a few
outliers were first detected and then confirmed by the
Physicians. The respective records were cleaned: one
LOS with 2294, an age of 207 and 29 entries related
with a virtual medical specialty, used only for test-
ing the functionalities of the hospital database. After
cleaning, the database contained 26431 records.
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Table 1: List of attributes related with LOS prediction (attributes used by the regression models are in bold).

Name Description (attribute type)
Sex Patient gender (nominal)
Date of Birth Date of birth (date)
Age Age at the time of admission (numeric)
Country Residence country (nominal)
Residence Place of residence (nominal)
Education Educational attainment (ordinal)
Marital Status Marital status (nominal)
Initial Diagnosis Initial diagnosis description (ordinal)
Episode Type Patient type of episode (nominal)
Inpatient Service Physical inpatient service (nominal)
Medical Specialty Patient medical specialty (nominal)
Origin Episode Type Origin episode type of hospitalization (nominal)
Admission Request Date Date for hospitalization admission request (date)
Admission Date Hospital admission date (date)
Admission Year Hospital admission year (ordinal)
Admission Month Hospital admission month (ordinal)
Admission Day Hospital admission day of week (ordinal)
Admission Hour Hospital admission hour (date)
Main Procedure Main procedure description (nominal)
Main Diagnosis Main diagnosis description (ordinal)
Physician ID Identification of the physician responsible for the internment (nominal)
Discharge Destination Patient destination after hospital discharge (nominal)
Discharge Date Hospital discharge date (date)
Discharge Hour Hospital discharge hour (date)
GDH Homogeneous group diagnosis code (numeric)
Treatment Clinic codification for procedures, treatments and diseases (ordinal)
GCD Great diagnostic category (ordinal)
Previous Admissions Number of previous patient admissions (numeric)

Then, fourteen attributes from Table 1 were dis-
carded in the variable selection analysis step: Date
of Birth (reason: reflected in Age); Country (99%
patients were from Portugal); Residence (30% of
missing values, very large number of nominal lev-
els); Admission Request Date (48% of missing val-
ues, reflected in Admission Date); Admission Date
(reflected in Admission Month, Day, Hour and LOS);
admission year (not considered relevant); Physician
ID (19% of missing values and large number of 156
nominal levels); Initial Diagnosis (63% of missing
values); and attributes not known at the patient’s hos-
pital admission process (i.e., GDH, GDC, Treatment,
Discharge Destination, Date and Hour). The remain-
ing 14 attributes (bold in Table 1) were used as input
variables of the regression models (Section 2.4).

Next, missing values were replaced by using the
hotdeck method (Brown and Kros, 2003), which sub-
stitutes a missing value by the value found in the most
similar case. In particular, the rminer package uses
a 1-nearest neighbor applied over all attributes with
full values to find the closest example (Cortez, 2010).

The following attributes were affected by this opera-
tion: Education (11771 missing values), Marital Sta-
tus (10046 values), Main Procedure (19407 values)
and Main Diagnosis (19268 values).

Finally, several attributes were transformed, to fa-
cilitate the modeling stage. To reduce skewness and
improve symmetry of the underlying variable distri-
bution, the logarithm transform y=ln(x+1) was ap-
plied to the Previous Admissions and LOS variables.
This is a popular transformation that often improves
regression results for right-skewed variables (Menard,
2002). Also, the Admission Hour variable was stan-
dardized to include only 24 levels. Moreover, the val-
ues of nominal attributes with a large number of levels
were recoded/standardized to reduce the number of
levels: Education (transformed from 14 to 6 levels),
Main Procedure (from hundreds of values to 16 lev-
els) and Main Diagnosis (from hundreds to 19 levels).
Finally, using medical knowledge, we transformed
the Age numeric attribute into 5 ordinal classes: A
- lower than 15 years; B - between 15 and 44; C -
between 45 and 64; D - between 65 and 84; and E -
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equal or higher than 85.

2.4 Modeling

In this phase, we tested six regression methods, as
implemented in the rminer package (Cortez, 2010):
AP, MR, DT, ANN, SVM and RF. The AP is a naive
model that consists in predicting the same average
LOS (y, as found in the training set) and is used as
baseline method for the comparison. The DT is a
branching structure that represents a set of rules, dis-
tinguishing values in a hierarchical form. The MR is
a classical statistical model defined by the equation:

ŷ = b0 +
I

å
i=1

bixi (1)

where b0; : : : ;bi are the set of parameters to be ad-
justed, usually by applying a least squares algorithm.
ANN is based in the popular multilayer perceptron,
with one hidden layer of H hidden nodes and logistic
activation functions, while the output node uses the
linear function. Since ANN training is not optimal,
the final solution is dependent of the choice of start-
ing weights. To solve this issue, rminer first trains Nr
different networks and then uses an ensemble of these
networks such that the final output is set in terms of
the average of the distinct Nr individual predictions.
The SVM model performs a nonlinear transformation
to the input space by adopting the popular Gaussian
kernel. SVM regression is achieved under the com-
monly used e-insensitive loss function. Under this
setup, the SVM performance is affected by three pa-
rameters: g – Gaussian kernel parameter; e and C –
a trade-off between fitting the errors and the flatness
of the mapping. Finally, RF is an ensemble of T un-
pruned DT, where each tree is based on a random fea-
ture selection with up to m features from bootstrap
training samples. The RF predictions are built by av-
eraging the outputs of T trees. RF is a substantial
modification of bagging (fit of several models to boot-
strap samples of training data) and on many problems
RF performance is similar to boosting, while being
more simpler to train and tune (Hastie et al., 2008).

The rminer package full implementation details
can be found in (Cortez, 2010). Under this package,
before fitting the MR, ANN and SVM models, the
input data is first standardized to a zero mean and
one standard deviation (Hastie et al., 2008). Except
for the hyperparameters of the most complex meth-
ods (ANN, SVM and RF), rminer adopts the default
parameters of the learning algorithms, such as: MR
and ANN – BFGS algorithm, as implemented in nnet
package; DT - CART algorithm, as implemented in

the rpart package; SVM - sequential minimal opti-
mization algorithm, as implemented in the kernlab
package; and RF - Breiman’s random forest algo-
rithm, as implemented in the randomForest package.

In this work, we set Nr = 3 for the ANN ensemble.
Also, heuristics were adopted to set two of the three
SVM hyperparameters (Cortez, 2010): C = 3 (for
standardized data) and e = 3sy

p
log(N)=N, where

sy denotes the standard deviation of the predictions
given by a 3-nearest neighbor and N is the dataset
size. For RF, we adopted the default T = 500 value.
For the most complex methods, rminer uses grid
search to select the best hyperparameter values: H
for ANN, g for SVM and m for RF. In this paper,
the grid method searches ten values for each hyperpa-
rameter (H 2f0,1,...,9g; g 2 f2�15;2�13; :::;23g; and
m 2 f1;2; :::;10g). During the grid search, the abso-
lute error is measured over a validation set (with 33%
of the training data). The configuration that corre-
sponds to the lowest valiation error is selected. Fi-
nally, the selected model is retrained with all training
data.

The method used for estimating the predictive per-
formance of a model was a 5-fold cross-validation,
which divides the data into 5 partitions of equal size.
In each 5-fold iteration, a given subset is used as test
set (to measure predictive capability) and the remain-
ing data is used for training (to fit the model). To
assure statistical robustness, 20 runs of this 5-fold
procedure were applied to all methods. For demon-
stration purposes, we present here a portion of the
R/rminer code used to test the RF model:

library(rminer) # load the library
# read the data:
d=read.table("data.csv",header=T,sep=",")
# execute 20 runs of 5-fold using RF:
M=mining(LOS˜.,data=d,Runs=20,

method=c("kfold",5),
model="randomforest",
search="heuristic10")

# save the results into a file:
savemining(M,"rf.results")

2.5 Evaluation

To evaluate the predictions, three regression metrics
were selected (Witten et al., 2011): coefficient of de-
termination (R2), Root Mean Squared Error (RMSE)
and Mean Absolute Error (MAE). R2 is a popular re-
gression metric that is scale independent, the higher
the better, with the ideal model presenting a value of
1.0. The lower the RMSE and MAE values, the better
the predictions. When compared with MAE, RMSE
is more sensitive to extreme errors. The Regression
Error Characteristic (REC) curve is useful to compare
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several regression methods in a single graph (Bi and
Bennett, 2003). The REC curve plots the error tol-
erance on the x-axis versus the percentage of points
predicted within the tolerance on the y-axis.

Table 2 presents the regression predictive results,
in terms of the average of the 20 runs of the 5-fold
cross-validation evaluation scheme. From Table 2,
it is clear that the best results were obtained by the
RF model, which outperforms other DM models for
all three error metrics. A pairwise t-student statisti-
cal test, with a 95% confidence level, was applied,
confirming that the differences are significant (i.e., p-
value<0.05) when comparing RF with other methods.
We emphasize that a very good R2 value was achieved
(0.813), much higher than the minimum success value
of 0.6 set in Section 2.1.

Table 2: Predictive results (average of 20 runs, as measured
over test data; best values in bold).

Metrics
Method R2 MAE RMSE

AP 0.000 0.861 1.085
MR 0.641 0.446 0.650
DT 0.622 0.415 0.667

ANN 0.736 0.340 0.558
SVM 0.745 0.296 0.547

RF 0.813? 0.224? 0.469?

? – statistically significant under a pairwise comparison
with other methods.

The REC analysis, shown in Figure 1, also con-
firms the RF as the best predictive model, presenting
always a higher accuracy (y-axis) for any admitted ab-
solute tolerance value (x-axis). For instance, for a tol-
erance of 0.5 (at the logarithm transform scale), the
RF correctly predicts 85.4% of the test set examples.
The quality of the predictions for the RF model can
also be seen on Figure 2, which plots the observed (x-
axis) versus de predicted values (y-axis). In the plot,
values within the 0.5 tolerance are shown with solid
circles (85.4% of the examples), values outside the
tolerance range are plotted with the + symbol and the
diagonal dashed line denotes the performance of the
ideal prediction method. It should be noted that the
observed (target) values do not cover the full space of
LOS values, as shown in Figure 2. This is an inter-
esting property of this problem domain that probably
explains the improved performance of RF when com-
pared with other methods, since ensemble methods
(such as RF) tend to be useful when the sample data
does not cover the tuple space properly. The large di-
versity of learners (i.e., T =500 unpruned trees) can
minimize this issue, since each learner can specialize

into a distinct region of the input space.
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Figure 1: REC curves for all tested models.

0 1 2 3 4 5 6 7

0
1

2
3

4

Observed

P
re

d
ic

te
d

●

●

●

●

●●●

●●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●●●●●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●
●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●●

●

●●

●

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●●●

●

●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●●

●

●

●●●●

●

●

●

●

●●

●

●

●

●●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●●●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●
●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

● ●●
●

●

●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

● ●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

● ●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●●●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●
●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●●

●●

●

●

●
●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

●●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●●

●●

●
●

●

●

●

●

●

●

●●●●●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●●●

●

●●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

A

B

● within 0.5 tolerance
other points
ideal method

Figure 2: Observed versus predicted RF values.

It should be noted that the presented predicted
results were computed over the logarithm transform
scale (see Section 2.3). In Figure 2 and within a 0.5
tolerance (solid circles), the predictions are above the
origin point (point A, x=0) and below the right upper
observed values (point B, x=4.2). This means that at
the normal scale (x0, using the inverse of the logarithm
transform), the RF model error is capable of correctly
predicting 85.4% of the examples with a real maxi-
mum error that ranges from 0.7 days (point A, x0=0)
to 26.0 days (point B, x0=65.7 days).
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When compared with DT and MR, the ANN,
SVM and RF data-driven models are difficult to be in-
terpreted by humans. Yet, sensitivity analysis and vi-
sualization techniques can be used to open these com-
plex models (Cortez and Embrechts, 2013). The pro-
cedure works by analyzing the responses of a model
when a given input is varied though its domain. By
analyzing the sensitivity response changes, it is possi-
ble to measure input relevance (higher changes denote
a more relevant input) and average impact of an input
in the model. The former can be shown using an in-
put importance bar plot and the latter by plotting the
Variable Effect Characteristic (VEC) curve.

To extract explanatory knowledge from the RF
model and open the black-box, we applied the Data-
Based Sensitivity Analysis (DSA) method, as imple-
mented in the Importance function of the rminer
package. DSA has the advantage of being a fast
method that can measure the overall influence of a
particular input, including its iterations with other in-
puts (Cortez and Embrechts, 2013). The DSA algo-
rithm was executed over the RF model fit with all
data. The obtained sensitivity responses were first
used to rank the RF inputs, according to their rele-
vancy in the predictive model (Figure 3). Then, the
average effects of the most relevant inputs were ana-
lyzed using VEC curves (Figures 4, 5 and 6).

The input importance bar plot (Figure 3) ranks
the Episode Type (30.1% impact) as the most rele-
vant attribute, followed by Inpatient Service (12.3%)
and Medical Specialty (10.1%). Overall, the bar plot
shows a much greater influence of the inpatient clin-
ical process attributes (e.g., Episode Type, Medical
Specialty) when compared with the patients’ charac-
teristics (e.g., Education, Sex). This is an interest-
ing outcome for hospital managers. In the next para-
graphs, we detail the particular influence of the top
three inputs by analyzing their VEC curves.

Figure 4 shows the global influence of the most
relevant input (Episode Type), which is a nominal
attribute with two classes. The VEC line segments
clearly confirm that the ambulatory type (scheduled
admission, typically involving a 1 day LOS) is re-
lated with an average lower LOS (0.1 in the logarithm
transform scale, 0.1 days in the normal scale) when
compared with the internment type (1.58 in the loga-
rithm scale, 3.9 days).

Next, we analyze the average influence of the In-
patient service (Figure 5). The greatest LOS is asso-
ciated with five services: medicine, average LOS of
1.45, corresponding to 3.3 days at the normal scale;
orthopedics, average of 1.39, corresponding to 3.0
days; specialties, average of 1.37, corresponding to
2.9 days; surgery, average of 1.36, corresponding to

Admission.Month
Sex
Origin.Episode.Type
Admission.Day
Age
Admission.Hour
Marital.Status
Education
Previous.Admissions
Main.Diagnosis
Main.Procedure
Medical.Specialty
Inpatient.Service
Episode.Type

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.05 0.10 0.15 0.20 0.25 0.30

Figure 3: Input importance bar plot for the RF model.
0.

4
0.

6
0.

8
1.

0
1.

2
1.

4
1.

6

Ambulatory Internment

Figure 4: VEC line segments, showing the average influ-
ence of the Episode type (x-axis) on the RF model output
(y-axis).

2.9 days; and pulmonology, average of 1.32, corre-
sponding to 2.7 days.

Finally, we analyze the third most relevant at-
tribute, the Medical Specialty (Figure 6). The inter-
nal medicine is related with the highest average LOS
(1.64, corresponding to 4.2 days). The second high-
est average LOS (1.50, corresponding to 3.5 days) is
related with orthopedics. Two Medical Specialty val-
ues are ranked third in terms of their average effect on
LOS: general surgery and urology, both related with
an average LOS of 1.40, corresponding to 3.1 days.

These results were shown to hospital specialists
and a positive feedback was obtained, confirming
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Figure 5: VEC line segments, showing the average influ-
ence of the Inpatient service (x-axis) on the RF model out-
put (y-axis).
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Figure 6: VEC line segments, showing the average influ-
ence of the Medical specialty (x-axis) on the RF model out-
put (y-axis).

meaningful and interesting effects between these at-
tributes and the average expected LOS. Moreover,
we would like to stress that the top four relevant at-
tributes were also in agreement with several liter-
ature works. For instance, the Episode Type was
proposed by (Guzman Castillo, 2012; Freitas et al.,
2012), the Inpatient Service was adopted by (Guz-
man Castillo, 2012), the Medical Specialty was used
in (Azari et al., 2012; Sheikh-Nia, 2012), and the
Main Procedure was approached in (Abelha et al.,
2007; Guzman Castillo, 2012).

3 CONCLUSIONS

The development of the Data Mining (DM) field has
created new exciting possibilities for the field of med-
ical data mining. In this paper, a DM approach was
applied to estimate the length of stay (LOS) of pa-
tients at their hospital admission process. As a case
study, we analyzed recent real-world data from a Por-
tuguese hospital, involving a large dataset that in-
cluded 26462 records (from 15253 patients) and an
initial set of 28 attributes (as defined by a medical
panel).

The DM approach was guided by the popular
CRISP-DM methodology, under a regression ap-
proach. After the Data Preparation phase of CRISP-
DM, a cleaned dataset (without outliers and missing
data) was achieved, with a total of 26431 records, 14
input attributes and the LOS target. During the Mod-
eling phase, six distinct regression models were com-
pared and tested, under a robust evaluation scheme
(20 runs of a 5-fold cross-validation). Finally, at
the Evaluation phase of CRISP-DM, the best results
were obtained by the Random Forest (RF) model,
which presents a very good coefficient of determina-
tion value (R2=0.81, 0.21 pp higher than the mini-
mum threshold of 0.6 set in the Business Understand-
ing phase). Such model can correctly predict 85.4%
of the examples under a tolerance that ranges from 0.7
(for observed LOS of 0 days) to 26 days (for observed
LOS of 66 days). Ensemble methods methods, such
as RF, are usually usefull when the sample data does
not cover the tuple space properly and the diversity of
learners can minimize this problem

Moreover, sensitivity analysis and visualization
techniques were used to extract explanatory knowl-
edge from the best predictive model (RF). This anal-
ysis revealed a high impact of inpatient clinical pro-
cess attributes, instead of the patient’s characteristics.
In particular, the top three influential input attributes
were: the hospital episode type, the physical service
where the patient is hospitalized and the associated
medical specialty.

The obtained DM predictive and explanatory
knowledge results are valuable for hospital managers.
By having access to better estimates of what is more
likely to occur in the future and which factors affect
such estimates, hospital managers can make more in-
formed decisions (e.g., better planning of the hospital
resources), in order to accomplish their goals (e.g.,
increase the number of available beds for new admis-
sions and reduce surgical waiting lists).

In future work, we intend to explore more ensem-
ble methods, such as Adaptive Boosting (Freund and
Schapire, 1995). We will also address the Implemen-
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tation phase of CRISP-DM by testing the obtained
data-driven model in a real-environment (e.g., by de-
signing a friendly interface to query the RF model).
After some time, this would allow us to obtain addi-
tional feedback from the hospital managers and also
enrich the datasets by gathering more examples.
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