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Abstract: One of the biggest problems that software organizations encounter is specifying the resources required and
the duration of projects. Organizations that record the number of defects and the effort spent on fixing these
defects are able to correctly predict the latent defects in the product and the effort required to remove these
latent defects. The use of reliability models reported in the literature is typical to achieve this prediction, but
the number of studies that report defect prediction models for iterative software development is scarce. In this
article we present a case study which predicts the defectiveness of new releases in an iterative, civil project
where defect arrival phase data is not recorded. We investigated Linear Regression Model and Rayleigh Model
one of the statistical reliability model that contain time information, to predict the module level and project
level defectiveness of the new releases of an iterative project through the iterations. The models were created
by using 29 successive releases for the project level and 15 successive releases for the module level defect
density data. This article explains the procedures that were applied to generate the defectiveness models and
the lessons learned from the studies.

1 INTRODUCTION

As the need for software products increases day by
day, the number of software projects that address dif-
ferent types of domains also increase. A few of these
projects are developed successfully however; the ma-
jority fails (Standish, 2009). The general reason be-
hind this failure is the lack of the ability to specify and
plan resources effectively (Jones, 2004; Jones, 2006).
If the managers of software projects do not fully en-
visage the future of their projects, they can neither
plan the required resources nor identify the need for
project improvement. Thus, the completion of the
project will be delayed. This will have a negative
impact on customers and the belief in the reliability
of the project will be decreased. To overcome these
problems, organizations need to allocate resources to
estimate and predict some quality measures.

Due to the nature of software development, every
software product has defects and the employees spend
most of their time on fixing the defective code seg-
ments. Estimating and predicting the defectiveness
of a software project will give organization an insight
into the future of the project; allow the redirection of

staff effort to product development and reduce delays
in the completion of project to a minimum.

In the literature, there are many studies that pro-
pose models which analyze the defectiveness of soft-
ware products and undertake defect predictions for
the future releases. The defect prediction models se-
lected or proposed by these studies generally find so-
lutions to the specific project context (Wahyudin et
al., 2011). Finding a general model that fits every
software product is hardly realistic. Every project
has specific cases, such as the domain of the soft-
ware project, the software development methodology
that is used and the experience of the staff working
on the project. These specific cases affect the defect
distribution pattern of projects thus, it was necessary
to choose an appropriate defect prediction model that
best suits our project context (Koru and Liu, 2005).

There are a number of software development
methodologies such as; Waterfall, Agile, and Iter-
ative. Each methodology proposes some develop-
ment methods or techniques. For example, the Wa-
terfall software development methodology contains
these phases; Requirements, Design, Development,
Test and Deployment which are visited in order and
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only once. Thus, it assumes that before passing to the
next phase, all needs of the current phase have to be
fulfilled. For this reason, it does not give the flexibil-
ity to return to solve problems that had occurred in the
previous phases. Therefore, previous phase defects
are assumed not to be contained in the latent defects.

Iterative software development, on the other hand,
consists of some iterations in the development pro-
cess to deliver the successive releases of the software
product in shorter times (Larman and Basili, 2003). In
each iteration, new requirements are identified and for
these requirements, each software development phase
will be revisited from the beginning. Thus, we can
consider each iteration as a mini waterfall (Powell and
Spanguolo, 2003). The requirements for an iteration
can be summarized as; adding a new feature to the
system, updating, changing or removing previously
developed features. Unlike Waterfall, the Iterative de-
velopment methodology gives the flexibility to return
and resolve the problems that occurred at previous it-
erations.

The main goal of this study is to investigate which
prediction models best fit the distributions of defect
densities at module and project level through the re-
leases of an iterative, civil project in which defect ar-
rival phase data is not recorded. Our study details the
experience and the lessons learned from this investi-
gation. As a result of the observations on defect pat-
terns of iterative projects, we decided to use a Linear
Regression Model and Rayleigh Software Reliability
Model for the module level and project level defect
densities through the iterations. For the project level,
70% of all releases0 defect densities were used for
the training and constructing of the model and then,
30% of all releases0 defect densities to check the ac-
curacy of the prediction model. For the module level,
three separate modules were used for the training and
constructing of prediction models and then, the de-
fect density of another module is predicted and the
accuracy of the results of the prediction is checked.
To check the accuracy and performance of each pre-
diction model, the root mean square error (RMSE),
mean absolute error (MAE) and mean magnitude rel-
ative error (MMRE) measures were used.

The framework of our study is based on a guide-
line given by (Runeson and Höst, 2009), and the pa-
per is organized as follows: section 2 presents the
Rayleigh and Linear Regression Models; section 3
outlines related studies from the literature; section
4 gives the context of the project to be investigated
and the process defect density measure selection. Af-
ter the measure selection process, the observations on
defect density distributions and selections of suitable
models that fit best to these distributions are presented

and, the analysis procedures of proposed prediction
models are given. Then, the model construction and
prediction processes are applied and the performances
of prediction models are evaluated. At the end of
this section, the threats to internal and external va-
lidity of this study are presented; section 5 shares the
lessons learned during the investigation and section 6
provides an overall conclusion.

2 BACKGROUND

Defect prediction is a process that forecasts the la-
tent defects of a project using specific techniques and
models that use historical defect distribution patterns
over a time period of the same project or another. In
addition to defect prediction, these same models and
techniques can be used to predict the defect density
and the effort required to remove the defects using
historical data. Defects in a software product follow
a specific pattern throughout the product0s life time
thus, this information helps in the prediction of the
latent defects. This process also helps managers to
envisage the future of project and estimate and plan
the resources effectively. The literature contains sev-
eral models that can predict latent defects of projects.
In this study, the Rayleigh Reliability Model and the
Simple Linear Regression Model were used to predict
an iterative civil project0s latent defect densities. A
description of the models and their functions is given
below.

2.1 Rayleigh Model

This reliability model is based on statistical distribu-
tions. It is a member of Weibull distribution fam-
ily and these types of models are generally used to
analyze the reliability of engineering products (Kan,
2002). The Rayleigh Model is usually employed to
model the distributions of the whole development life
cycle of a product. If the defect distribution pattern
follows a Rayleigh curve, we can predict the latent
defects with using the Rayleigh Model which uses
the following two functions to estimate distributions
of defects:

a) Probability Distribution Function : This
gives an estimation of the defect arrival rate at a spe-
cific time of a software product. The function is given
as;

f (t) = K� (2t=c2)� e�(t=c)2
(1)

b) Cumulative Distribution Function : This
gives estimation about the cumulative defect arrival
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rate at a specific time of a software product. The func-
tion is written as follows;

F(t) = K� (1� e�(t=c)2
) (2)

The parameter c, located in two functions of the
Rayleigh Model, is related to the other parameter
tmax which indicates the time when the Rayleigh
curve reaches its peak. The relation between them
is;

c = tmax�
p

2 (3)
K is the total defect number of software product.

F(t) shows the defect number at time t. The number
of defects found at time tmax is equal to the 40% of
total defects (Laird, 2006). The equation proves that
claim is;

100�F(tmax)=K = 100� (1� e(�0:5)) = 40% (4)

2.2 Linear Regression Model

The regression analysis model is one of the statistical
models that indicate the relations between dependent
and independent variables (Linear regression, n.d.). It
estimates the value of the dependent variable with re-
spect to the changes in the value of the independent
variables. Regression analysis is using one or more
independent variables to create a method and esti-
mate the value of the dependent variable. If there is
only one dependent variable, then the regression anal-
ysis method is called Simple Regression. The Sim-
ple Regression Method indicates the relationship be-
tween X and Y dimensions and the relation between
them is plotted as a straight line. The Linear Regres-
sion Method is created to specify the straight line that
fits most of the given set of points. This straight line
method is estimated by finding the minimum length of
a given set of points to decrease the prediction error
rate. The equation expressing the line of the Linear
Regression is;

y = a+bx (5)
In which x is the explanatory variable; y is the de-

pendent variable; b is the slope of the plotted straight
line; a is the intercept and is equal to the value where
x =0 in the given equation. The a and b values are es-
timated as follows with the given set of x and y values
(Simple linear regression, n.d.);

b =
å

n
i=1 (xi�x)(yi�y)

å
n
i=1 (xi�x)2 (6)

a = y�bx (7)
In this equation, the value of x is the mean of x

value set and the value of y is the mean of y value set.

3 RELATED WORKS

The defect distribution pattern differs in each project
in terms of the different project software development
lifecycles. Each lifecycle applies different techniques
and follows different steps to develop, test and main-
tain the software product. These differences affect
the defect distribution pattern. The aim in the cur-
rent study was to find a suitable model that reflects
the defect distribution pattern of an iteratively devel-
oped software product. In order to do this, it is neces-
sary to understand the nature of the iterative software
development methodology. The defect arrival and re-
moval processes are the processes through a software
product0s lifecycle that help to gain an understand-
ing of that system0s characteristics (Powell and Span-
guolo, 2003). Thus, defects can be employed or in-
jected into a software system to learn how that system
behaves then; we can analyze and estimate the defect
trends in order to also predict latent defect trends.

As every project has specific cases, we need to
find a model that fits the best our projects to predict
defect distribution (Koru and Liu, 2005). The devel-
opers of every project also have specific development
styles. These individual development styles can af-
fect the defect distribution of components, modules
or projects, too. Therefore, a separate defect predic-
tion model can be built for each developer. The study
(Jiang et al., 2013) proposes to personalize each de-
fect prediction process and build prediction models
for every developer in a project.

In the literature, several models are presented that
offer a best fit to defect distributions of software sys-
tems. These include; S-Shaped and Concave Shape
models. The Linear Regression Model is also among
these prediction models. One study (Bäumer et al.,
2008) compares the Linear Model with Concave and
S-Shaped models to show that the Linear Model also
gives as good performance as the other software reli-
ability growth models.

In another study (Abrahamsson et al., 2007), dy-
namic prediction models are constructed at the end
of each iteration to predict the defects of the new it-
eration. The new prediction model is created using
predictor values specific to that iteration and the pre-
vious iterations are given as an additional input. This
feature gives the prediction model a dynamic charac-
teristic. However, we choose to construct a prediction
model using historical defect data belonging to com-
pleted modules of a project to model and observe the
overall project level and module level defect trends.

Software Reliability Growth Models (SRGMs) are
also used to estimate and predict the reliability of soft-
ware products. The Rayleigh Model is one of the
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SRGMs that are generally used to estimate the soft-
ware project quality. This model presents equations
to estimate these reliability measures. In literature,
there are studies that use these equations to predict the
number of defects (Vladu et al., 2011), defect density,
defect removal effort and project release date (Qian et
al., 2010).

COQUALMO is another estimation model that
is presented in the literature (Hong et al., 2008;
Madachy et al., 2010) and it can be used to predict
the defect density of software products. However,
COQUALMO needs information concerning the soft-
ware product development phase and our defect data
do not contain this information. There are few predic-
tion studies in the literature that addresses this kind
of lack of data. In this study, we present a prediction
process that does not use project phase information,
which is an important contribution of this study.

The models explained in this study use the histori-
cal defect density data of an iterative software project.
As in study (Bäumer et al., 2008), we used Linear Re-
gression Model and as in studies (Vladu et al., 2011;
Qian et al., 2010), we used the Rayleigh Model to pre-
dict defect densities of latent defects. In the literature,
there are not many studies that address the defect pre-
diction process of an iterative software product. Fur-
thermore, no study was found that analyzes both the
module level and project level defect densities over it-
erations using the Linear and Rayleigh Models. This
is the main contribution of the current study to the
literature together with the sharing of our experience
and the lessons learned.

4 CASE STUDY

This section describes the current study that analyzes
the defect density distribution over iterations of an it-
erative, civil software project of a CMMI ML3 or-
ganization. Then, the constructed prediction Linear
Regression Models and Rayleigh Models of module
level and project level defect densities are explained.

4.1 Project Context

The project is an iterative, civil project and consisting
of several modules developed over 3 years. There are
several teams (containing 5 to 7 people) which are re-
sponsible for at least one of these modules. The whole
project team consists of about 30 people and turnover
of the team members has been low during the project.

Defects reported by the development team, test
team and the project customers are saved in an issue
tracker program. A reported defect is analyzed by the

relevant team leader and assigned to one of the team
members who will resolve it. The team member re-
solves the defect and then another team member, as-
signed by team leader, verifies that the defect has been
resolved.

The project is developed based on subsequent re-
leases. There are main and sub releases in project.
Each main release developed over 4 to 6 weeks and
follows the methodologies identified by the iterative
software development. Thus, each main release is
considered to be iteration. Main releases consist of
sub releases that are generally developed over 5 to
7 days and released in the following order; after de-
velopment of new requirements, after testing newly
developed features and resolving the found defects
through testing activities, after deploying and resolv-
ing the defects reported by customer. Therefore, with
these activities through the sub releases, the needs of
iterative development phases are fulfilled.

4.2 Measure Usability Assessment

Before generating the defect density prediction mod-
els for project under investigation, we assessed the
usability of essential measures for prediction. We
chose to predict the defect density of the project and
verify that the constructed models generate good re-
sults. The defect density measure is a derived mea-
sure and generated from measures of the defect count
and number of lines of code. To evaluate the usabil-
ity of the defect density measure, we have to deter-
mine the usability of the base measure which are; the
defect count and number of lines of code. To check
the usability of these measures, we used Measure Us-
ability Questionnaire (MUQ) (Tarhan and Demirörs,
2012). There are two kinds of MUQ for base mea-
sures and derived measures. The questionnaire con-
sists of questions to evaluate the data availability and
usability of measures. Due to the space constraint,
the questionnaire cannot be provided here. However
we should note that the information given in the com-
pleted questionnaires for the defect count, number of
lines of code, and defect density indicated that the
data for these measures fulfill the requirements of the
measure usability. In particular, the data availability
part of MUQ assists in the choice of suitable modules
that can be used in the current study.

4.3 Observations on the Defect
Distributions and the Specification
of Research Questions

For the current study, to observe the defect density
distributions, we analyzed defect densities at different
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levels of project, such as the module level and project
level. As every level of project shows a different dis-
tribution pattern, we chose a model that fits best to
each level. For this, we calculated defect densities
and draw distributions over iterations.

At project level, we observed that, because of the
nature of the iterative development, newly arriving re-
quirements for each iteration cause the defect arrival
rate to be stable. In other words, the defects occurring
in any iteration generally stays at the same level. As
a consequence, if we observe the cumulative defects
over iterations, the defect distribution pattern seems
to be a straight line. Hence, we chose to apply Sim-
ple Linear Regression Model to predict the defects for
the new releases of the project. However, we also ob-
served that, the defect density data shows a decrease
in later releases. For this reason, we also analyzed the
defect density of project with the cumulative Rayleigh
distribution. In our study, the defect densities of 29 it-
erations were analyzed to predict the defect densities
at project level.

Before determining the model to be used at mod-
ule level, we analyzed the cumulative defect densi-
ties of 14 modules of the project. 10 of these 14
modules showed Rayleigh-like distribution and the
other 4 modules showed S-shaped distribution. We
did not choose an S-Shape model to predict the de-
fect densities because the 4 modules were not com-
pleted and they have few data points. In other words,
they show this S-Shaped pattern with a small num-
ber of iterations. On the other hand, the modules that
have a Rayleigh-like pattern are generally completed
or close to completion modules and have more data
points. These modules show a Rayleigh distribution
pattern because the modules are developed through
releases and when the requirements for these mod-
ules are fulfilled, the defect arrival rate for each mod-
ule decreases. Thus, the defect distribution of these
modules over the iterations shows a different pat-
tern from the defect distribution pattern of the over-
all project. So, for module level defect prediction, we
chose Rayleigh Model. We also analyzed the module
level defect densities with a Linear Regression Model
to compare with the results from the Rayleigh Model
prediction. The defect distributions of the three mod-
ules used in this study were analyzed through 15 it-
erations. These three modules were selected because
they have same number of data points.

After determining the models that fit best the de-
fect density distributions, we constructed the predic-
tion models and tested the performance of these mod-
els. Our study was based on the following research
questions:

1: What is the performance level of the Linear Re-

gression Model in predicting the overall project de-
fectiveness in iterative software development?

2: What is the performance level of the Rayleigh
Model in predicting the overall project defectiveness
through the iterations?

3: What is the performance level of the Linear Re-
gression Model in predicting the module level defec-
tiveness in iterative software development?

4: What is the performance level of the Rayleigh
Model in predicting the module level defectiveness
through the iterations?

4.4 Analysis Procedure

To construct the defect density prediction model, it
is necessary to analyze the data and undertake various
processes. To explain these processes, we create anal-
ysis procedures as stages. The stages for each model
are given below.

In procedures, we use two parametric values. The
parametric value n, in analysis procedures, is equal
to the number of modules or projects that are used as
training data of the models. In this study, we con-
structed models for 3 modules and a project, so for
this study the value of n for modules is 3 and for the
project is 1.

The value m in the Linear Model procedure is also
parametric and this value is equal to the percentage of
all the release numbers. For our study, the value of
m is 70, which means the 70% of all releases will be
used to train and construct the Linear Model at project
level. The remainder of the defect densities of all re-
leases, that means 30% of all releases, was used to
test the performance of the constructed model.

The Rayleigh Model:
1) Gather the module or project length and defect

data
2) For each release, calculate defect density by di-

viding the number of defects recorded in that period
by module or project length

3) Depict the cumulative defect density against re-
leases as Rayleigh curves

4) Estimate the K and tmax values of the Rayleigh
Cumulative Distribution Function

5) Construct the Rayleigh Models for n number of
modules or projects that are used for training

6) Estimate the mean K and tmax values of
modules0 Rayleigh Models

7) Construct the Rayleigh Prediction Model
8) Predict defect densities and estimate perfor-

mance of prediction results

The Linear Model:
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1) Gather the module or project length and defect
data

2) For project level, use m% of releases for the
module level, use n number of modules to calcu-
late defect density by dividing the number of defects
recorded in that period by module or project length

3) Depict the cumulative defect density against re-
leases; as data points

4) Estimate the a and b values of the Linear Re-
gression Function

5) Construct the Linear Regression Prediction
Model

6) Predict the defect densities and estimate perfor-
mance of prediction results

4.5 Model Construction

4.5.1 Module Level Model Construction

Following the stages given in the analysis procedure,
we constructed the Rayleigh Cumulative Distribution
Function Models for three separate modules labeled
M1;M2 and M3. The defect density distributions of
the modules show patterns like Rayleigh curve. While
constructing the models, we calculated the value of K
(total defect density) using the 40% principle (Laird,
2006). In other words, at time tmax where the defect
density distribution reaches its peak, the found de-
fect density equals 40% of total defect density. Table
1 shows the constructed Rayleigh CDF Model func-
tions.

Table 1: Rayleigh Cumulative Distribution Functions of
M1;M2;M3 modules.

Module Name Rayleigh CDF
M1 F(t) = 18:1� (1� e�(t

2=18))

M2 F(t) = 13:53� (1� e�(t
2=98))

M3 F(t) = 9:25� (1� e�(t
2=72))

After constructing the Rayleigh Models of defect
densities of modules M1;M2 and M3, we also used
these defect densities to construct Linear Models for
these modules. The Linear Models for the M1;M2
and M3 modules are constructed and tested for 15 re-
leases or iterations. We used the Linear Regression
Model equation given in section 2.2 to find the equa-
tion of these three modules0 Linear Model through
15 releases. Table 2 shows the equations of the con-
structed Linear Models of M1;M2 and M3.

Figure 1 shows the distributions of actual and cal-
culated (Rayleigh CDF Model and Linear Model) cu-
mulative values of defect densities of each module
through iterations 1 to 15.

Table 2: Linear Regression Functions of M1;M2;M3 mod-
ules.

Module Name Linear Model Equation
M1 y = 4:437+0:899x
M2 y = 0:057+0:5x
M3 y = 1:593+0:474x

(a) M1 defect density distributions.

(b) M2 defect density distributions.

(c) M3 defect density distributions.
Figure 1: Module level defect density distributions.

4.5.2 Project Level Model Construction

After constructing the module level models, we used
project level defect densities to construct a Linear
Model and a Rayleigh Model. The Linear Model was
constructed and tested for 29 releases or iterations.
We split these releases0 defect density data into train-
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ing and testing sets. 70% of 29 releases (20 releases)
were used to construct the model and 30% of all these
releases (9 releases) were used to test these models0

performances. As we calculated the K value of the
module level Rayleigh Models, we calculated the K
value of the project level Rayleigh Model using the
40% principal.

We also used the Linear Regression Model equa-
tion given in section 2.2 to find the equation for the
Linear Model for the 20 releases. The equation of
the constructed Rayleigh Model and Linear Model is
given in Table 3.

Table 3: Project level model functions.

Model Name Model Function Equation
Rayleigh CDF F(t) = 10:04� (1� e�(t

2=128))
Linear Model y = 0:682+0:319x

Figure 2 shows the distributions of the actual and
calculated (Rayleigh CDF Model and Linear Model)
cumulative values of the defect densities of project
through iterations 1 to 20.

Figure 2: Project level defect density distributions.

4.6 Prediction Results

At the module level, we create Rayleigh CDF Mod-
els and equations of M1;M2 and M3 modules with
given equation in section 2.1. To create a prediction
model and an equation for module level defect den-
sities, we use the M1;M2 and M3 modules0 Rayleigh
CDF Models and equations, and we created another
model by calculating the mean K and tmax values of
Rayleigh CDF function. We used this newly con-
structed Rayleigh CDF Model to estimate and predict
the defect density of another module, Mp and com-
pared the predicted defect density result with actual
defect density of Mp.

We also created a Linear Prediction Model using
the linear functions of modules M1;M2 and M3. For
this, with using the linear function constants of mod-
ules M1;M2 and M3, we calculated the mean a and b

values of linear functions given in section 2.2. Table 4
presents information about Rayleigh CDF Prediction
Model and Linear Prediction Model of module Mp.

Table 4: Model functions of Mp module.

Model Name Model Function Equation
Rayleigh CDF F(t) = 13:63� (1� e�(t

2=56))
Linear Model y = 2:027+0:624x

After constructing the Linear and Rayleigh Pre-
diction Models of module Mp, we calculated the cu-
mulative defect densities of each iteration for mod-
ule Mp using this prediction models. Figure 3 shows
the actual and predicted defect density distributions
through iterations 1-15.

Figure 3: Module level defect density prediction model dis-
tributions.

After this stage, at project level, we created a Lin-
ear Model using defect densities of 20 releases (70%
of 29 releases). We predicted the other defect densi-
ties of the 9 releases (30% of 29 releases) using the
constructed Linear Model. We also predicted the de-
fect densities of the 9 releases using the constructed
Rayleigh Model for the project level defect densities
as shown in Table 3. Figure 4 shows the additional
defect density data points of the predicted and actual
defect densities of the 9 releases.

Figure 4: Project level defect density prediction model dis-
tributions.
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The results show that the prediction models gen-
erally overestimate the defect densities. From this ob-
servation, it can be understood that the development
team may work effectively in developing code with
a low defect occurrence or they may remove defects
without recording them; or the testing team does not
test the projects effectively.

4.7 Prediction Performance Evaluation

Having constructed the Rayleigh and Linear Models
to predict defect densities at module level and project
level it was necessary to assess the prediction per-
formance of the models to determine how well the
models work. In literature, there are several measures
that assess the performance of prediction models. We
selected three measures to determine the goodness-
of-fit; root mean square error (RMSE), mean abso-
lute error (MAE) and mean magnitude relative error
(MMRE). The RMSE measures the accuracy of the
prediction model by measuring the average magni-
tude of the error (Eumetcal, 2011). It calculates the
difference, in other word the residual, between the ac-
tual and predicted values and then, squares the differ-
ence. The square root of the residuals0 mean value
gives the RMSE. The equation of RMSE is;

RMSE =

r
å

n
i=1 (yi� fi)2

n
(8)

The MAE also measures the accuracy of predic-
tion model by measuring the average magnitude of the
errors (Eumetcal, 2011). The direction of errors is not
important for the MAE. The result of the MAE shows
how close the actual and predicted values are. We
expected to see little difference between the RMSE
and MAE values. This small difference between the
RMSE and the MAE means that the variation of errors
is also small. The equation of MAE is given as;

MAE =
1

n

n

å
i=1
jyi� fij (9)

The MMRE also helps us to assess the perfor-
mance of prediction models by evaluating how much
the actual and predicted values differ relative to the
actual values. The value of MMRE � 0:25 shows
that the prediction models0 performances are good
(Kitchenham et al., 2001) and the models fit well. The
equation of MMRE is;

MMRE =
å

n
i=1
jyi� fij

yi

n
(10)

Table 5 shows the RMSE, MAE and MMRE val-
ues of the module level Rayleigh and Linear Models.

Table 5: Performance values of module level prediction
models.

Rayleigh Model Linear Model
RMSE 1.777 0.969
MAE 1.515 0.664

MMRE 0.239 0.375

As shown in Table 5 the RMSE and MAE val-
ues of the Linear Model are lower than the values of
Rayleigh Model. The difference between the RMSE
and MAE values of both models are also small and
this difference shows that how much the variations
of errors are also small. However, although the Lin-
ear Model seems to have a better performance, the
MMRE value of Linear Model is greater than the ac-
ceptable result of 0.25. For this reason, it is appro-
priate to use Rayleigh Model for module level defect
density prediction.

Table 6 shows the RMSE, MAE and MMRE val-
ues of project level Rayleigh and Linear Models.

Table 6: Performance values of project level prediction
models.

Rayleigh Model Linear Model
RMSE 2.707 1.592
MAE 2.413 1.434

MMRE 0.375 0.197

As shown in Table 6, at project level, the RMSE,
MAE and MMRE values of the Linear Model are bet-
ter than Rayleigh Model. The difference between the
MAE and RMSE values of both Rayleigh and Lin-
ear Model is low which shows that the variations
of errors are small. However, at project level, the
MMRE value of the Rayleigh Model is greater than
the MMRE value of the Linear Model and this value is
also greater than the acceptable result of 0.25. For this
reason, for defect density prediction at project level,
the Linear Model is more suitable.

As we observe the results in both Table 5 and Ta-
ble 6, the performance measure values for module
level related to the RMSE and MAE values of both
Linear and Rayleigh Models are lower than the val-
ues at project level.

At module level, with respect to the RMSE and
MAE values, the Linear Model seems to have a bet-
ter performance, but the MMRE value shows that the
Rayleigh Model has more acceptable results. For this
reason, the Rayleigh Model at module level is more
usable. Modules are developed through releases and
when the requirements for these modules fulfilled, the
defect arrival rate for each module decreases. For this
reason, the defect density distribution of these mod-
ules over the iterations shows a Rayleigh curve like
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pattern. To increase the performance of the Rayleigh
Model at module level, we could use defect density
data from more than three modules.

At project level, the reason why the Linear Model
is better than Rayleigh Model is that the newly arriv-
ing requirements for each iteration result in a stable
defect arrival rate and the defects occurring in any it-
eration generally remain at the same level. Thus, the
distributions of cumulative defect densities over iter-
ations converge to the Linear Model pattern.

4.8 Threats to Validity

It is important to examine the threats to the internal
and external validity of any study.

Internal validity is one of the quality test criteria
for a case study and it checks for the replicability of
the proposed analyses (Yin, 2009). It also tests the
situations that contain biases. The threats to internal
validity of this study are as follows:

- Only the defect density data of one project was
used, so we did not know whether the properties of the
projects would affect our study therefore, we could
analyze data from more projects.

- For prediction process of the module level de-
fect densities, we used three modules however; we do
not know the effect of other module properties on the
proposed model. Thus, more modules could be ana-
lyzed, possibly with other types of prediction models
to remove this threat.

- The MUQ was used to assess the usability of
measures. The questionnaire helped us to decrease
the subjectivity of this study and ensure that usable
measures and data existed before constructing statis-
tical prediction models. However, this assessment of
usability requires a particular level of expertise about
measurement, and still includes a degree of subjectiv-
ity.

- We specified the analysis procedures for both
prediction models to ensure that our study had repli-
cability. However, in order to use these procedures
at organization level it is necessary to undertake more
studies and improve our method.

Another quality test criteria is external validity
which tests the generalizability of case studies (Yin,
2009). For the current study, we cannot ensure that
these methods can be used in other contexts. There-
fore, as a future work we can analyze the defect den-
sities in relation to the properties of modules and
projects. This data can also be analyzed using other
prediction models.

5 LESSONS LEARNED

During our research, we encountered some challenges
and we feel that the lessons we learned when resolv-
ing these problems can help researchers in their work
concerning defect prediction process. First, to under-
stand the nature of development and defect removal
process of project, we spent much time considering
the defect data. We drew the defect distributions of
component level defects, release level defects, mod-
ule level defects and project level defects. We dis-
tributed these defects over the development weeks or
equally divided times such as periods of 5, 10, or
20 days. The component level and release level de-
fect distributions generally had few data points if di-
vided these defects over time into more data points,
for some of the data points there are no defects and
the actual nature of the defect distribution is lost. In
our study, the components constitute modules and the
modules constitute the project. To increase the data
points and the number of defects correspond to these
data points, we decided to use defect distributions of
the modules and the project.

We discovered that in attempting to observe the
defect distribution of development processes, how-
ever, the software development phase information
(analyze, design, development, test or maintenance)
of the defect, did not exist. This prevented us from
analyzing the defect data according to the develop-
ment phases. We cannot observe the influence of
lower life-cycle phases0 quality onto the reached qual-
ity in upper-life cycle phases in software development
process. Therefore, we learned that it is necessary to
record the development phase data of that defect in
iterative development as much as in waterfall devel-
opment.

Then, we observed the defect removal effort distri-
bution over time or releases. However, while assess-
ing the measure usability of the defect removal effort,
we observed that the majority of development teams
do not enter the work log data of the defect removal
effort. For this reason, we did not use effort data
to construct a prediction model. The MUQ helped
us to determine which measure was usable in predic-
tion process. From the results of the questionnaire,
we see that a number of defects and size of product
were available, so it was decided to use defect density
(number of defects / KLOC) to construct and analyze
a prediction model. Difficulties were incurred when
checking the release codes and counting the lines of
module codes. Measuring the module sizes of final re-
leases was easy but in previous releases, the code had
not been grouped by modules or components. The
classes of the components or modules in previous re-

ENASE�2014�-�9th�International�Conference�on�Evaluation�of�Novel�Software�Approaches�to�Software�Engineering

56



leases were located in different packages. This re-
sulted in time being spent to find the classes of mod-
ules for the whole project. We found that the packag-
ing of classes helps any member of staff to work more
effectively. On the other hand, the project level prod-
uct size was easily achieved, because at this level, the
code size can be found by counting the lines of whole
code.

Finally, the most significant step was deciding the
most suitable prediction model. To determine which
models that best fit our situation, we used defect den-
sity distributions and we observe that the module
level defect density distribution curves converge to
the Rayleigh curves and the project level defect den-
sity distribution curve converge to a straight line that
shows a Simple Linear Regression.

6 CONCLUSIONS

In this study, we examined a defect prediction pro-
cess of an iterative, civil project in which defect ar-
rival phase data is not recorded. We analyzed the
defect density data at module level and project level
to predict the latent defect densities. By analyzing
module level distributions; we were able to analyze
defects in smaller code segments and by analyzing
the project level distributions; we analyzed the de-
fects in general. We used a software reliability growth
model (SRGM), the Rayleigh Model and the Simple
Linear Regression Model which need basic statistical
and mathematical information. To predict the defect
density of a module, we used the mean of three sep-
arate modules from the function coefficients from the
Rayleigh Model and the Linear Model to create pre-
diction model functions.

The results for the project level prediction show
that the performance of the Linear Model is better
than the performance of the Rayleigh Model. From
these results, since the MMRE value of Linear Model
was under 0.25, it can be seen that the Linear Model
had a more acceptable performance. The result for the
module level shows that performance of the Linear
Model is better than the Rayleigh Model with respect
to RMSE and MAE values. However, the MMRE
value of the Linear Model does not have an accept-
able performance value (it should be less than 0.25).
The MMRE value of Rayleigh Model has a suitable
value which is smaller than the acceptable result of
0.25.

The modules used to construct a prediction model
have different complexities. So, we can increase the
performance of module level prediction results by in-
creasing the number of modules that are investigated.

At project level, due the nature of iterative develop-
ment, the defect arrival rate generally remains at the
same level and the distribution of the defect densities
converge to a Linear Model. Therefore, the Linear
Model has a higher performance than the Rayleigh
Model.

The most important lessons learned from this
study are observing the nature of defect distributions,
identifying and overcoming the lack of data, and de-
ciding the most suitable prediction model that fits best
to the situation. Defect arrival and removal data col-
lection is important to model defect arrival and re-
moval patterns in relation to project phases. Due to
the nature of iterative development, a defect found
in an iteration can be fixed in another iteration. It is
very important to specify in which release the defect
is found and in which release the defect is fixed. An-
other important issue is the consistency and integrity
of project planning data with project defect data. De-
fect tracking tool should be capable of accessing and
working integrated with project management tool.

For future work, we are planning to include data
from more modules and projects in the models and
examine the prediction of the project schedule using
the defect removal effort spent by the project staff.
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