
Automatic Removal of Buffer Overflow Vulnerabilities in C/C++
Programs

Sun Ding1, Hee Beng Kuan Tan1 and Hongyu Zhang2
1School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, Singapore

2School of Software, Tsinghua University, Beijing, China

Keywords: Buffer Overflow, Static Analysis, Automatic Bug Fixing, Security Vulnerability.

Abstract: Buffer overflow vulnerability is one of the commonly found significant security vulnerabilities. This
vulnerability may occur if a program does not sufficiently prevent input from exceeding intended size or
accessing unintended memory locations. Researchers have put effort in different directions to address this
vulnerability, including creating a run-time defence mechanism, proposing effective detection methods or
automatically modifying the original program to remove the vulnerabilities. These techniques share many
commonalities and also have differences. In this paper, we characterize buffer overflow vulnerability in the
form of four patterns and propose ABOR--a framework that integrates, extends and generalizes existing
techniques to remove buffer overflow vulnerability more effectively and accurately. ABOR only patches
identified code segments; thus it is an optimized solution that can eliminate buffer overflows while keeping
a minimum runtime overhead. We have implemented the proposed approach and evaluated it through
experiments on a set of benchmarks and three industrial C/C++ applications. The experiment result proves
ABOR’s effectiveness in practice.

1 INTRODUCTION

Buffer overflow in C/C++ is still ranked as one of
the major security vulnerabilities (Abstract syntax
tree, 2014), though it has been 20 years since this
vulnerability was first exploited. This problem has
never been fully resolved and has caused enormous
losses due to information leakage or customer
dissatisfaction (US-CERT, 2014).

A number of approaches have been proposed to
mitigate the threats of buffer overflow attacks.
Existing approaches and tools focus mainly on three
directions (Younan et al., 2012):
1) Prevent buffer overflow attacks by creating a

run-time environment, like a sandbox, so that
taint input could not directly affect certain key
memory locations;

2) Detect buffer overflows in programs by applying
program analysis techniques to analyze source
code;

3) Transform the original program by adding
additional verification code or external
annotations.

For approaches in the first direction, as modern
programs are becoming more complex, it is difficult

to develop a universal run-time defense (Younan et
al., 2012). For approaches in the second direction,
even if buffer overflow vulnerabilities are detected,
the vulnerable programs are still being used until
new patches are released. For the third direction,
though it is well-motivated to add extra validation to
guard critical variables and operations, the existing
approaches will add considerable runtime overhead.
For example, a recent novel approach that adds extra
bounds checking for every pointer may increase the
runtime overhead by 67% on average (Nagarakatte
et al., 2009).

We noticed that though none of the existing
methods can resolve the problem fully, they share
many commonalities and also have differences. In
this paper, we first integrate existing methods and
characterize buffer overflow vulnerability in the
form of four patterns. We then propose a
framework—ABOR that combines detection and
removal techniques together to improve the state-of-
the-art. ABOR iteratively detects and removes buffer
overflows in a path-sensitive manner, until all the
detected vulnerabilities are eliminated. Unlike the
related methods (Nagarakatte et al., 2009, Criswell
et al., 2007, Dhurjati and Adve, 2006, Hafiz and

49Ding S., Tan H. and Zhang H..
Automatic Removal of Buffer Overflow Vulnerabilities in C/C++ Programs.
DOI: 10.5220/0004888000490059
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 49-59
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Johnson, 2009), ABOR only patches identified code
segments in a path-sensitive way; thus it can
eliminate buffer overflows while keeping a
minimum runtime overhead.

We have evaluated the proposed approach on a
set of benchmarks and three industrial C/C++
applications. The results show that the proposed
approach is effective. First it can remove all the
detected buffer overflow vulnerabilities in the
studied subjects. Second we also compare ABOR
with methods that focus on buffer overflow removal.
On average, it removes 58.28% more vulnerabilities
than methods that apply a straight-forward “search
& replace” strategy; it inserted 72.06% fewer
predicates than a customized bounds checker.

The contribution of the paper is as following:
1) The proposed approach integrates and extends

existing techniques to remove buffer overflows
automatically in a path-sensitive manner.

2) The proposed approach guarantees a high
removal accuracy while could keep a low
runtime overhead.

3) The proposed approach contains an exhaustive
lookup table that covers most of the common
buffer overflow vulnerabilities.

The paper is organized as follows. Section 2
provides background on buffer overflows
vulnerability. Section 3 covers the proposed
approach that detects buffer overflows and removes
detected vulnerability automatically. Section 4
evaluates the proposed approach and section 5
reviews the related techniques that mitigate buffer
overflow attacks. Section 6 concludes the paper.

2 BACKGROUND

Buffer overflow based attacks usually share a lot in
common: they occur anytime when a program fails
to prevent input from exceeding intended buffer
size(s) and accessing critical memory locations. The
attacker usually starts with the following attempts
(US-CERT, 2014; Vallentin, 2007): they first exploit
a memory location in the code segment that stores
operations accessing memory without proper
boundary protection. For example, a piece of code
allows writing arbitrary length of user input to
memory. Then they locate a desired memory
location in data segment that stores (a) an important
local variable or (b) an address that is about to be
loaded into the CPU’s Extended instruction Counter
(EIP register).

Attackers attempt to calculate the distance
between the above two memory locations. Once

such locations and distance are discovered, attackers
construct a piece of data of length (x1+x2). The first
x1 bytes of data can be any characters and is used to
fill in the gap between the exploited location and the
desired location. The second x2 bytes of data is the
attacking code which could be (a) an operation
overwriting a local variable, (b) a piece of shell
script hijacking the system or (c) a handle
redirecting to a malicious procedure.

Therefore, to prevent buffer overflow attack, it is
necessary to ensure buffer writing operations are
accessible only after proper validations.

3 THE PROPOSED APPROACH

In this paper, we propose Automatic Buffer
Overflow Repairing (ABOR), a framework which
integrates and extends existing techniques to resolve
the buffer overflow vulnerabilities in a given
program automatically. Figure 1 demonstrates the
overall structure of the framework. ABOR consists
of two modules: vulnerability detection and
vulnerability removal. ABOR works in an iterative
way: once the vulnerability detection module
captures a vulnerable code segment, the segment is
fed to the removal module; the fixed segment will be
patched back to the original program. ABOR repeats
the above procedure until the program is buffer-
overflow-free. In this section, we introduce the two
modules of ABOR in detail.

Figure 1: Overview of ABOR.

3.1 Buffer Overflow Patterns

We first review some basic definitions of static
analysis (Sinha et al., 2001, Abstract syntax tree,
2014). A control flow graph (CFG) for a procedure
is a graph that visually presents the control flow

Are all the sinks checked?

Vulnerabl

e Program

CFG Vulnerability
Detection

Vulnerability
Removal

Safe

Program
En
d

Source code ABOR

Yes No

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

50

among program statements. A path is one single
trace of executing a sequential of program
statements. A variable in a program is called an
input variable if it is not defined in the program
solely from constants and variables. An abstract
syntax tree (AST) is a tree structure that represents
the abstract syntax of source code written in a
particular programming language. We call a program
operation that may cause potential buffer overflows
as a buffer overflow sensitive sink (bo-sensitive
sink). In this paper, we shorten the name “bo-
sensitive sink” to sink. The node that contains a sink
is called a sink node.

There are many methods to protect sinks from
being exploited (Lei et al., 2008, Lin et al., 2007,
Lhee and Chapin, 2003, Necula et al., 2005, Kundu
and Bertino, 2011). One general way is to add extra
protection constraints to protect sinks (Younan et al.,
2012). After a careful review, we collect a list of
common sinks and their corresponding protection
constraints. We characterize them in a form of four
patterns:
Pattern#1: A statement is a bo-sensitive sink when it
defines or updates a destination buffer with an input
from either (1) a C stream input function which is
declared in <stdio.h>, or (2) a C++ input function
inherited from the base class istream. The protection
constraint shall ensure the length of the destination
buffer is not smaller than the input data.
Pattern#2: A statement that copies/moves the
content of a block of memory to another block of
memory is a bo-sensitive sink. The protection
constraint shall ensure that the copied/moved data is
not larger than the length of the destination memory
block.
Pattern#3: A statement is a bo-sensitive sink when it
calls a C stream output function when (1) this
function is declared in <stdio.h>; or (2) this
function contains a format string that mismatches its
corresponding output data; or (3) the function’s
output is data dependent on its parameters (Lhee and
Chapin, 2003). The protection constraint shall ensure
that:
 the output data should not contain any string

derived from the prototype (C++Reference,
2014):
%[flags][width][.precision][length]specifier;

 or all the character “%” in the output data has
been encoded in a backslash escape style, such
as “\%”.

Pattern#4: A statement other than the above cases
but referencing a pointer or array is a bo-sensitive
sink. Before accessing this statement, there should
be a protection constraint to do boundary checking

for this pointer or array.
We use the above four patterns as a guideline to

construct the buffer overflow detection and removal
modules of ABOR. In order to specify these cases
clearly, we use metadata to describe them
exhaustively at the AST level. The metadata is
maintained in Table 1 (Space lacks for a full table
here, so we only show a fraction of Table 1. The full
table is presented on our website (Ding, 2014)).
Each row in Table 1 stands for a concrete buffer
overflow case. The column Sink lists the AST
structure of sinks. The column Protection Constraint
specifies the AST structure of the constraint which
could prevent the sinks being exploited.
Additionally, in order to concrete the protection
constraints ABOR needs to substitute in constants,
local variables, expressions, and also two more
critical data structures: the length of a buffer and the
index of a buffer.

In C/C++, there is no universal way to retrieve a
buffer’s length and index easily. To solve this,
ABOR creates intermediate variables to represent
them. In Table 1, the last column Required
Intermediate Variable records the required
intermediate variables for each constraint.

Table 1: ABOR pattern lookup table.

Patter
n

Sink
Protection
Constraint

Required

Intermediate
Variable

1 gets(dst) dst_length ≥
SIZE_MAX

1

dst_length

/*The destination
buffer dst’s length

(bytes).*/

2 memcpy(d
st, src, t)

dst_length ≥ t ;

src_length ≥ t;

dst_length,

//The destination
buffer dst’s length, in

terms of bytes.

src_length

//The source buffer
src’s length, in terms

of bytes.

……

4 array[i]
sizeof(array)/si
zeof(array[0])

≥ i
N.A.

……

1 SIZE_MAX stands for the max value of unsigned long

Automatic�Removal�of�Buffer�Overflow�Vulnerabilities�in�C/C++�Programs

51

3.2 Buffer Overflow Detection

Among the existing detection methods, approaches
working in a path sensitive manner offer higher
accuracy because they target at modeling the
runtime behavior for each execution path:
1) For each path, path sensitive approaches

eventually generate a path constraint to reflect
the relationship between the external input and
target buffer.

2) The path’s vulnerability is verified through
validating the generated path constraint.

In the current implementation of ABOR, we
modified a recent buffer overflow detection method
called Marple (Le and Soffa, 2008) and integrated it
into ABOR. We chose Marple mainly because it
detects buffer overflows in a path sensitive manner,
which offers high precision.

Marple maintained a lookup table to store the
common bo-sensitive sinks’ syntax structure. For
each recognized bo-sensitive sink node and the path
passing through the sink node, Marple generates an
initial constraint, called query and backward
propagates the query along the path. The constraint
will be updated through symbolic execution when
encountering nodes that could affect the data flow
information related to the constraint. Once the
constraint is updated, Marple tries to validate it by
invoking its theorem prover. If it is proved the
constraint is unsatisfiable, Marple concludes this
path buffer-overflow-vulnerable. Figure 2
demonstrates how ABOR integrates and extends
Marple:
1) ABOR replaces Marple’s lookup table with Table

1. We enforce Marple to search for the syntax
structures listed in the column Sink of Table 1.
Additionally, Marple will raise a query based on
the column Protection Constraint.

2) ABOR uses a depth-first search to traverse a
given procedure’s control flow graph: each
branch will be traversed once. If a bo-sensitive
sink is found, the segment starting from the sink
back to the procedure entry will be constructed to
be a set of paths and each path will be fed to
Marple for processing.

3) ABOR replaces Marple’s constraint solver with
Z3 (Z3, 2014), a latest SMT solver from
Microsoft with strong solvability.

4) If one path is identified vulnerable, ABOR
records the sub-path that causes the vulnerability
or infeasibility (Le and Soffa, 2008). Later, paths
containing any of such sub-paths will not be
examined.

5) We follow the way Marple handles loop

structures: we treat a loop structure as a unit and
try to compute each loop’s impact on the
propagating constraint, if and only if such impact
is linear.

Figure 2: Vulnerability detection in ABOR.

We illustrate the above procedure with an
example. In Table 4, s1 is a sink node. Therefore,
Marple raises a constraint as pvpbuf_length ≥
req_bytes_length. It propagates backward along the
paths that pass through s1 and tries to evaluate the
constraint.

For example, along the path (n1, n2, n3, n4, n5,
n6, n7, n9, n10, n11, n12, n9, n13, n14, n15, n16,
s1), the constraint is updated at node n13 and
becomes c2 ≥ 1024. The variable c2 is affected by
the loop [n9, n10, n11, n12, n9]. The variable c2 is
used in the loop, and it is data dependent on the
input--ADDRSIZE. There exists a counterexample to
violate the constraint c2 ≥ 1024. So this path is
identified as being vulnerable. The method
introduced in section 3.3 will be used to remove this
vulnerability.

3.3 Buffer Overflow Removal

The removal module takes an identified vulnerable
path, analyzes the sink’s AST and picks the
corresponding constraint to protect the sink. The
main challenge is to concrete the selected protection
constraint into valid C++ code.

3.3.1 Intermediate Variable

It is important to trace the semantics of certain key
operations along a path, including: buffer definition,
buffer referencing, array indexing, pointer arithmetic
and freeing memory. ABOR propagates backward
along the given path to enable the intermediate
variables simulating these semantics. Table 2 is used

A path with sink

Constraint propagation

Constraint solving

Vulnerability Confirmation

Symbolic Execution

Constraint Solving: Z3

Next
path

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

52

to assist this propagation. In Table 2, the column
Syntax Structure stands for the AST structure ABOR
searches for during the propagation. The column
Update Operation stands for how ABOR updates the
corresponding intermediate variables. (Space lacks
for a full table here, so we only show a fraction of
Table 2. The full table is presented on our website
(Ding, 2014)).

3.3.2 Program Transformation for
Vulnerability Removal

Table 3 shows the algorithm removeVul that
describes ABOR’s removal module. This algorithm
takes an identified vulnerable path pth and a control
flow graph G as parameters. It outputs a repaired
control flow graph G’ that is no longer vulnerable.

Table 2: Update intermediate variable during propagation.

Syntax Structure Update Operation
Buffer definition

 buffer = new wildcard T [n];
 T buffer[n];

buffer_length = n * sizeof(T);

Buffer referencing
 T * p=buffer; p_length=buffer_length;

p_index=buffer_index;
Array index subscription

 buffer[i] = wildcard buffer_index=i;
Pointer arithmetic

 p++; p--; p_index ++; p_index--;
 p=p+n; p_index = p_index +n;

Free memory
 free (p);
 delete [] p;

p_length=0;
p_index=NULL;

The algorithm removeVul first identifies the sink
along pth and then concretes the corresponding
protection constraint by substituting required local
variables, expressions, constants and intermediate
variables. The concrete protection constraint is used
to wrap the sink node to provide protections and,
therefore, remove the vulnerability caused by the
sink.

A full example of using ABOR is presented in
Table 4. The vulnerable program is in the left side
column, and the repaired program is in the right side
column.

ABOR’s buffer overflow detection module finds
that the path (n1, n2, n3, n4, n5, n6, n7, n8, n14,
n15, n16, s1) is vulnerable. The path will be passed
to removeVul.
removeVul traverses the sink node s1’s AST and
determines that the first pattern shall be applied. The
constraint is to validate that the length of pvpbuf is
larger than or equal to the length of req_bytes.

ABOR inserts one node p1 into the CFG and
creates two intermediate variables with an initial

value of 0: pvpbuf_temp0_size for the length of
pvpbuf and req_bytes_temp0_size for the length of
req_bytes. ABOR inserts another three nodes p2, p3,
and p4 into CFG, to manipulate the two intermediate
variables to track the lengths of pvpbuf and
req_bytes.

Table 3: Vulnerability removal in ABOR.

Input:

Global

Variables:
Output:

G: the CFG of a procedure;

pth: the identified vulnerable path
δ: the protection constraint for the sink
{v}: the set of required intermediate variables

G’: the CFG with the inserted defensive code

Algorithm removeVul (G , pth , s)

begin
1. δ =NULL; {v}=; G’=G;
2. CFGNode cur_node = NULL; //the current node

traversed
3. <δ, {v}> = LookupT1(sink); /*this sub‐procedure

lookups in Table 1 and gets the metadata*/
4. for (cur_node := From sink To pth’s entry node) do

// update intermediate variables

5. for each v in {v} do
6. Insert a CFGNode into G’ as the its Entry

Node’s immediate post‐dominator, to
declare v and initialize v=0;

7. if (LookupT2(cur_node , v) ==TRUE) then
8. /*this sub‐procedure lookups in Table

2 to check whether the current CFG Node
contains AST matching the Syntax
Structures in Table 2*/

9. Insert a CFGNode into G’ as
cur_node’s immediate post‐ dominator, to
perform the corresponding update
operation in Table 2;

10. endIf
11. endFor
12. endFor
13. Concrete δ with required local variables, expressions,

constants and intermediate variables in {v};
14. Use δ as condition to construct a predicate and insert

this predicate node into G’ as sink’s immediate
dominator’s immediate post‐dominator;

15. Place sink and the rest part of G’ on the predicate’s
TRUE branch;

16. Add an exception‐handling node on the predicate’s
FALSE branch and link this FALSE branch to G’s exit
node.

17. G’ SrcFile’ // convert G’ back to source code
End

ABOR constructs the protection constraint as
pvpbuf_temp0_size ≥ req_bytes_temp0_size and
transforms the original program by wrapping
statement s1 with statements p5, and p6.

At last, ABOR converts the modified CFG back
to source code, which is listed in the right side
column of Table 4. Therefore, the vulnerability has
been removed. (Interested readers could refer to our
website (Ding, 2014) for more examples of the

Automatic�Removal�of�Buffer�Overflow�Vulnerabilities�in�C/C++�Programs

53

Table 4: An example of applying ABOR.

Vulnerable path Sink Pattern Protection Constraint

(n1,n2,n3,n4,n5,n6,n7,n8,n14,n15, n16,s1)
/*s1*/

strcpy(pvpbuf, req_bytes)
Pattern 1 length(pvpbuf)≥length(req_bytes)

Vulnerable Program Repaired Program
#define min_size 10;
#define max_size 1024;
/*addr is an existing array with the size of
ADDRSIZE,
n2 and n16 are two basic blocks that are not related to
pvpbuf and req_bytes*/
int _encode (bool bslashmode, char *addr, int

ADDRSIZE){

/*n1*/ do{
/*n2*/ BLOCK1;
/*n3*/ }while(…);

/*n4*/ int c1=0; int c2=0;
/*n5*/ int PSBUFSIZE= max_size;
/*n6*/ int *pvpbuf;
/*n7*/ if (bslashmode == TRUE){
/*n8*/ pvpbuf = new int [PSBUFSIZE];
 }else{

/*n9*/ while(c1<ADDRSIZE){
/*n10*/ if(addr[c1]!='#')
/*n11*/ c2++;
/*n12*/ c1++;
 }
/*n13*/ pvpbuf = new int [c2];
 }

/*n14*/ char req_bytes[1024];

/*n15*/ scanf("%1024s", req_bytes);
/*n16*/ BLOCK2;

/*s1*/ strcpy(pvpbuf,req_bytes);

}//END _encode

#define min_size 10;
#define max_size 1024;
/*addr is an existing array with the size of ADDRSIZE,
n2 and n16 are two basic blocks that are not related to pvpbuf and
req_bytes*/

int _encode (bool bslashmode, char *addr, int ADDRSIZE){
/*p1*/ int pvpbuf_temp0_size=0;

 int req_bytes0_size=0;
/*n1*/ do{
/*n2*/ BLOCK1;
/*n3*/ }while(…);
/*n4*/ int c1=0; int c2=0;
/*n5*/ int PSBUFSIZE= max_size;
/*n6*/ int *pvpbuf;
/*n7*/ if (bslashmode == TRUE){
/*n8*/ pvpbuf = new int [PSBUFSIZE];
/*p2*/ pvpbuf_temp0_size=PSBUFSIZE;
 }else{
/*n9*/ while(c1<ADDRSIZE){
/*n10*/ if(addr[c1]!='#')
/*n11*/ c2++;
/*n12*/ c1++;
 }
/*n13*/ pvpbuf = new int [c2];
/*p3*/ pvpbuf_temp0_size=c2;
 }
/*n14*/ char req_bytes[1024];
/*p4*/ req_bytes_temp0_size=1024;
/*n15*/ scanf("%1024s", req_bytes);
/*n16*/ BLOCK2;
/*p5* if(pvpbuf_temp0_size >= req_bytes_temp0_size)
/*s1*/ strcpy(pvpbuf,req_bytes);
 else
/*p6*/ cerr<<“Attempt to cause buffer overflow reject”;
}//END _encode

program transformation).

4 EVALUATION

4.1 Experiment Design

We implemented the proposed approach as a
prototype system. The prototype has two parts:
Program Analyzer and ABOR. The Program
Analyzer receives C/C++ programs as input and
utilizes CodeSurfer (CodeSurfer, 2012) to build an
inline inter-procedural CFG. This CFG is then sent
to the ABOR for the vulnerability detection and
removal.

Nine systems are selected to evaluate ABOR’s
performance. Six of them are benchmark programs
from Buffer Overflow Benchmark (Zitser et al.,
2004) and BugBench (Lu et al., 2005), namely

Polymorph, Ncompress, Gzip, Bc, Wu-ftdp and
Sendmail. The rest three are industrial C/C++
applications, namely RouterCore, PathFinder, and
RFIDScan (Celestvision, 2014).

For each system, we first run ABOR and then
manually validate the results. The experiments are
carried out on a desktop computer with Intel Duo
E6750 2-core processor, 2.66 GHz, 4 GB memory
and Windows XP system.

4.2 Experimental Results

4.2.1 System Performance

We evaluate ABOR’s performance in terms of
removal accuracy and time cost.
Removal Accuracy: For benchmark systems, the
experimental results are shown in Table 5(a). A false
negative case occurs if we manually find that the
proposed method failed to remove one buffer

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

54

overflow vulnerability. A false positive case occurs
if we manually find the proposed method patched a
piece of code that is actually buffer overflow free.
We calculate the error rate of the proposed method
by dividing the total number of vulnerabilities by the
sum of the number of false positives and false
negatives. The column KLOC stands for thousands
of lines of code. The column #Reported records the
real reported number of vulnerabilities while column
#Repaired records the number of vulnerabilities
removed by ABOR. The columns #FP and #FN
stand for the numbers of false positives and false
negatives respectively. For all the systems, the total
number of reported buffer overflow vulnerabilities is
370. Therefore, ABOR can correctly remove all the
vulnerabilities reported in previous work (Zitser et
al., 2004, Lu et al., 2005).

For industrial programs, the results are shown in
Table 5(b). The columns KLOC, #Repaired, #FN
and #FP have the same meaning with Table 5(a).
Additionally, the column #Detected stands for the
number of detected vulnerabilities; and the column
#Manual stands for the number of vulnerabilities
discovered from manual investigations. The manual
investigation double checked the detection result and
analyzed the reason behind the cases that ABOR
failed to proceed. As shown in Table 5(b), our
approach detects 608 buffer overflow vulnerabilities
and can successfully remove all of them. The results
confirm the effectiveness of the proposed approach
in removing buffer overflow vulnerabilities.
However, due to implementation limitations,
ABOR’s detection modules didn’t capture all the
buffer overflow vulnerabilities in the industrial
programs. On average, the error rate of our proposed
method is 20.53%, which consists of 19.80% false
negative cases and 0.73% false positive cases. The
details of the error cases are discussed in section
4.2.3.

Table 5 (a): Vulnerabilities removed in benchmarks.

System KLOC #Reported #Repaired #FP #FN
Polymorph-0.4.0 1.7 15 15 0 0
Ncompress-4.2.4 2.0 38 38 0 0

Gzip-1.2.4 8.2 38 38 0 0
Bc-1.06 17.7 245 245 0 0

Wu- ftdp-2.6.2 0.4 13 13 0 0
Sendmail-8.7.5 0.7 21 21 0 0

Total 30.7 370 370 0 0

Time Cost: We measured the time performance of
the proposed approach on both benchmarks and
industrial programs. Table 6 records the time spent
on processing each program individually. ABOR is
scalable to process large programs. The time cost

over the entire nine systems is 4480 second, which is
nearly 75 minutes. It is also discovered that a large
amount of time is spent on vulnerability detection,
which is 77.77% of the total time. The vulnerability
removal process is relatively lightweight, which
costs only 22.23% of the total time.

Table 5 (b): Vulnerabilities removed in industry programs.

System KLOC #Detected #Repaired #Manual #FP #FN ErrorRate(%)

RouterC~ 137.15 217 217 309 3 41 14.23
PathFinder 104.23 79 79 103 1 25 25.24
RFIDScan 219.36 312 312 406 2 96 24.13

Total 460.74 608 608 818 6 162 20.53

Table 6: The time performance of ABOR.

System
Total Time

(ms)

Detection Time Removal Time

Time (ms) %
Time
(ms)

%

Polymorph 95.25 81.91 85.99 13.34 14.01

Ncompress 214.32 160.81 75.03 53.51 24.98

Gzip 3698.16 2388.71 64.59 1309.45 35.41

Bc 149469.60 132026.90 88.33 17442.66 11.67

Wu- ftdp 221.13 185.33 83.81 35.80 16.19

Sendmail 134.82 103.76 76.96 31.06 23.04

RouterCore 2446656.17 1781649.13 72.82 665007.07 27.18

PathFinder 654987.43 564359.17 86.16 90628.22 13.84

RFIDScan 1224366.67 1003880.72 81.99 220485.98 18.01

Total 4479843.55 3484836.44 77.77 995007.09 22.23

4.2.2 Comparison

There are another two types of commonly used
removal methods (Younan et al., 2012), which are
“search & replace” and “bounds checker”.
Search & Replace: The first category of methods
replaces those common vulnerable C string
functions with safe versions. If a program contains a
large number of C string functions, this category of
methods can achieve a good effect. Additionally,
they are straight-forward for implementation (Miller
and Raadt, 1999). But as the fast development of
attacking techniques based on buffer overflows
(Younan et al., 2012), the "search & replace",
methods will miss many buffer overflows in real
code.
Bounds Checker: The second category of methods
chases high precision by inserting effective
validation before every memory access. In practice,
they are usually used by mission-critical systems
(Younan et al., 2012) (Nagarakatte et al., 2009).
However, they normally bring in high runtime
overhead as a number of inserted validations are
redundant.

ABOR is the method that only patches identified
detected vulnerable code segment in a path-sensitive
way. So it guarantees the removal precision while it

Automatic�Removal�of�Buffer�Overflow�Vulnerabilities�in�C/C++�Programs

55

can keep a low runtime overhead. Using the same
benchmarks and industrial programs, we compare
ABOR with the other two main categories of
removal methods.

First, we compare ABOR with the “search &
replace” category. In Figure 4, we compare ABOR
with a recent “search & replace” method from Hafiz
and Johnson (2009). It maintains a static database
that stores common C/C++ vulnerable functions
with their safe versions.

Figure 4 represents the histograms on the number
of removed buffer overflows. It contains a pair of
bars for each test case. The shadowed ones are for
ABOR while the while bars are for the applied
“search & replace” method. The Longer bars are
better as they represent the higher removal precision.
For the entire nine systems, in total, the “search &
replace” method removes 570 vulnerabilities while
ABOR removes 978 vulnerabilities (41.72% more).
This is mainly because (1) many vulnerable codes
are not covered by the static database of the “search
& replace” method; (2) even after using a safe
version of certain C/C++ functions, the
vulnerabilities are not removed due to improper
function parameters.

Figure 4: Comparison with a “Search & Replace” method.

Second, we compare ABOR with the bounds
checker” category. At the current stage, we
implemented a customized bounds checker
following a novel approach from Nagarakatte et al.,
(2009). It will insert predicates to protect every
suspicious sink.

Figure 5 represents the histograms on the number
of inserted predicates. As with more inserted
predicates, runtime overhead will increase. Figure 5
contains a pair of bars for each test case. The
shadowed ones are for ABOR while the white ones
are for the applied bounds checker. Shorter bars are
better as they represent the fewer number of inserted
predicates. For the entire nine systems, in total, the
applied bounds checker inserts 3500 predicates.
ABOR only patches confirmed sinks, so it only

inserts 978 predicates, which are 72.05% less than
the applied bounds checker.

Last but not least, though detection of buffer
overflow is not a new research, till now, no
approaches can detect buffer overflow with full
coverage and precision. As the proposed approach
uses these approaches, it is also limited by the
accuracy of these approaches.

Figure 5: Comparison with a “Bounds Checker” method.

4.2.3 Discussion

It is also found that ABOR caused some false
positive and false negative cases when processing
the industrial programs. We further investigate these
error cases and found the errors are mainly caused
by implementation limitations. We categorize them
into three types:
Error 1 - inaccuracy from alias analysis: it is
difficult to implement a comprehensive alias
analysis (CodeSurfer, (2012a)). Table 7(a) shows a
false-negative example from RouterCore that is
caused by inaccurate pointer analysis. In the loop,
pointer ptr is incremented by one in each iteration
until it equals to the address of pointer slt. So after
the loop, ptr and slt are actually aliased. However,
currently we cannot detect such alias relationship.
The node n2 could overwrite the value of *ptr.
Though node n1 does the boundary checking, it no
longer protects node n3.
Error 2- inaccuracy from loop structure. So far only
variables that are linearly updated within an iteration
are handled by ABOR. Table 7(b) shows an example
found in RouterCore. The variable x is non-linearly
updated by using a bitwise operation. Therefore the
corresponding constraint, which compares the size
between buff and input, is beyond the solvability of
our current implementation.
Error 3- platform-based data types: the industrial
programs PathFinder and RFIDScan both involve
external data types of Microsoft Windows SDK
(e.g., WORD, DWORD, DWORD_PTR, etc.). This
requires extra implementations to interpret them.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

56

Additionally the value ranges of these data types
specify implicit constraints. Table 7(c) shows a
false-positive case from PathFinder. In this example,
although accessing the buffer element via index at
node n2 has no protection, there will be no buffer
overflow vulnerability because index ranges only
from 0 to 65535.

We summarize the error analysis in Table 8. In
the future, further engineering effort is required to
address these implementation difficulties.

Table 7: Examples of errors from processing the industrial
programs.

(a) false-negative due to aliased
pointer

(b) false-negative due
to loop

void send(char mode){
// ptr and slt are two pointers
while(ptr < slt){
 ptr++;
}

/*n1*/ if(*ptr<sizeof(worduser)){
/*n2*/ cin.get(slt,80) ;
/*n3*/ worduser[*ptr] =mode; }
}

……
for(……){

……
 x= x & y;
}
……
char * buff = new
char[x];
……
strcpy(buff, input);

(c) false-positive due to plat-based data type
/*n1*/ WORD index=0;

……
char buff[65536];
while(……){

……
/*n2*/ buff[index] = cin.get();

 index++;}

Table 8: Accuracy and error analysis.

System
Total
Error

E1 E2 E3
% # % # %

RouterCore 44 23 52.27 10 22.73 11 25.00
PathFinder 26 16 61.54 0 0 10 38.47
RFIDScan 98 31 31.63 22 22.45 45 45.92
Total 168 70 41.67 32 19.05 66 39.29

5 RELATED WORK

We reviewed the recent techniques in addressing the
buffer overflow vulnerability. We categorize them
into three types: buffer overflow detection, runtime
defense and vulnerability removal.

5.1 Buffer Overflow Detection

Buffer overflow vulnerability could be effectively
detected by well-organized program analysis. The
analysis could be performed either on source code or
binary code. The current detection methods can be

classified into path-sensitive approaches and non-
path-sensitive approaches.

Path-sensitive approaches analyze given paths
and generate path constraints according to the
properties that ensure the paths are not exploitable
for any buffer overflow attack. The path constraints
are extracted using symbolic evaluation through
either forward or backward propagation. A theorem
prover or customized constraint solver is
instrumented to evaluate the constraints. If a
constraint is determined as unsolvable, the path is
concluded as vulnerable. These methods pursue
soundness and precision but usually include heavy
overhead due to the use of symbolic evaluation.
Typical examples include ARCHER (Xie et al.,
2003), Marple (Le and Soffa, 2008), etc.

Non-path-sensitive approaches try to avoid
complex analysis. They usually rely on general data
flow analysis. These methods compute the
environment, which is a mapping of program
variables to values at those suspected locations. The
environment captures all the possible values at a
location L. Therefore, if any values are found to
violate the buffer boundary at L; a buffer overflow
vulnerability is detected. Choosing proper locations
and making safe approximation requires heuristics
and sacrifices precision. However, such a design
gains more scalable performance, which is highly
essential when dealing with large-scale applications.
Typical examples include the work from Larochelle
and Evans (2001) and CSSV (Dor et al., 2003).

5.2 Run-time Defence

This type of approaches adopt run-time defense to
prevent exploiting potential vulnerabilities of any
installed programs. These approaches aim to provide
extra protection regardless of what the source
program is. Normally such protections are
implemented using three different kinds of
techniques: code instrumentation, infrastructure
modification, and network assistance.

The first aspect is to simulate a run-time
environment partially, execute the suspicious
program in a virtual environment and check whether
malicious actions have taken place. Examples
include StakeGuard and RAD (Wilander and
Kamkar, 2003), which are tools that create virtual
variables to simulate function’s return address.
Suspicious code will be redirected to act over the
virtual variables first.

The second aspect is to modify the underlying
mechanism to eliminate the root of attacks: Xu et al.
(2002) proposed a method to split stack and store

Automatic�Removal�of�Buffer�Overflow�Vulnerabilities�in�C/C++�Programs

57

data and control information separately;
Ozdoganoglu et al., (2006) proposed to implement a
non-executable stack. More details and
corresponding tools of run-time defense could be
found in recent surveys (Younan et al., 2012,
Padmanabhuni and Tan, 2011).

The third aspect is to do a taint analysis for the
input data from any the untrusted network source.
This analysis compares network data with
vulnerability signatures of the recorded attacks, or
inspects payload for shell code for detecting and
preventing exploitation. TaintCheck (Newsome and
Song, 2005), proposed by Newsome and Song,
tracks the propagation of tainted data that comes
from un-trusted network sources. If a vulnerability
signature is found, the attack is detected.

5.3 Attack Prevention through Auto
Patching

The last category aims to removal the vulnerability
from the source code. The objective is to add
defensive code to wrap sink nodes so that no taint
data could access the sinks directly. There are three
strategies to design defensive code and insert them:
search & replace, bounds checker, and detect &
transform (Younan et al., 2012).

The first strategy is to search common vulnerable
C string functions and I/O operations and replaces
the found operations with a safe version. For
example, vulnerable functions strcpy and strcat
could be replaced as strncpy and strncat or strlcpy
and strlcat (Miller and Raadt, 1999), or even with a
customized version. Munawar and Ralph (Hafiz and
Johnson, 2009) proposed a reliable approach to
replace strcpy and strcat with a customized version
based on heuristics. This strategy is straight-forward
and easy to implement. However, it misses many
complex situations.

The second strategy is aiming to insert effective
validation before each memory access to perform an
extra bounds checking. A typical design is to add
validation before each pointer operation, named
“pointer-based approach”. These approaches track
the base and bound information for every pointer
and validate each pointer manipulation operation
against the tracked information. Examples include
CCured, MSCC, SafeC, and Softbound (Nagarakatte
et al., 2009). These approaches are designed to
provide high precision. However, as nearly every
pointer operation will be wrapped with additional
checking, the code may grow largely and the
runtime performance could be downgraded.

The third strategy is to locate the vulnerability

first and then transform the vulnerable code segment
into a safe version. Comparing with the second
strategy, this helps reduce the size of added code
without compromising the removal precision.
Relatively few efforts have been put in this
direction. For example, Wang et al. (Lei et al., 2008)
proposed a method to add extra protection
constraints to protect sink nodes. The method called
model checker to verify the satisfiability of the
inserted protection constraints. If the constraint fails
to hold, that sink node will be recorded vulnerable,
and the corresponding constraints will be left to
protect the sink node. A similar example is from Lin
et al., (2007) However, these methods are path-
insensitive.

ABOR follows the third strategy and pushes the
state-of-the-art one step ahead. It first detects the
buffer overflows based on path sensitive information
and then only add defensive code to repair the
vulnerable code segment. Therefore, it adds limited
code and has a low runtime overhead.

6 CONCLUSIONS

In this paper, we have presented an approach to
remove buffer overflow vulnerabilities in C/C++
programs automatically. We first characterize buffer
overflow vulnerability in the form of four patterns.
We then integrate and extend existing techniques to
propose a framework—ABOR that removes buffer
overflow vulnerability automatically: ABOR
iteratively detects and removes buffer overflows in a
path-sensitive manner, until all the detected
vulnerabilities are eliminated. Additionally, ABOR
only patches vulnerable code segment. Therefore, it
keeps a lightweight runtime overhead. Using a set of
benchmark programs and three industrial programs
written in C/C++, we experimentally show that the
proposed approach is effective and scalable for
removing all the detected buffer overflow
vulnerabilities.

In the future, we will improve our approach and
tool to minimize the number of wrongly detected
cases. We will also integrate ABOR into existing
testing frameworks, such as CUnit, GoogleTest, to
further demonstrate its practicality.

ACKNOWLEDGEMENTS

The authors thank the JiangSu Celestvision from
China for assisting this study and providing their
internal programs for our experiment.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

58

REFERENCES

Abstract syntax tree en.wikipedia.org/wiki/Abstract_
syntax_tree, 2014.

CodeSurfer, http://www.grammatech.com/, 2012.
C++Reference, http://www.cplusplus.com/reference/, 2014.
Celestvision, http://www.celestvision.com, 2014.
DingS-Buffer overflow detection. http://sunshine-nanyang.

com/index.html, 2014.
US-CERT, http://www.us-cert.gov/, 2014.
Z3: SMT solver, http://z3.codeplex.com/, 2014.
Criswell, J., Lenharth, A., Dhurjati, D. and Adve, V. 2007.

Secure virtual architecture: a safe execution
environment for commodity operating systems.
SIGOPS Oper. Syst. Rev., 41, 351-366.

Dhurjati, D. and Aave, V. 2006. Backwards-compatible
array bounds checking for C with very low overhead.
Proceedings of the 28th international conference on
Software engineering. Shanghai, China: ACM.

Dor, N., Rodeh, M. and Sagiv, M. CSSV: towards a
realistic tool for statically detecting all buffer
overflows in C. PLDI '03: Proceedings of the ACM
SIGPLAN 2003 conference on Programming language
design and implementation, 2003 San Diego,
California, USA. ACM, 155-167.

Hafiz, M. and Johnson, R. E. 2009. Security-oriented
program transformations. Proceedings of the 5th
Annual Workshop on Cyber Security and Information
Intelligence Research: Cyber Security and Information
Intelligence Challenges and Strategies. Oak Ridge,
Tennessee: ACM.

Kundu, A. and Bertino, E. 2011. A New Class of Buffer
Overflow Attacks. Proceedings of the 2011 31st
International Conference on Distributed Computing
Systems. IEEE Computer Society.

Larochelle, D. and Evans, D. 2001. Statically detecting
likely buffer overflow vulnerabilities. Proceedings of
the 10th conference on USENIX Security Symposium -
Volume 10. Washington, D.C.: USENIX Association.

Le, W. and Soffa, M. L. 2008. Marple: a demand-driven
path-sensitive buffer overflow detector. Proceedings
of the 16th ACM SIGSOFT International Symposium
on Foundations of software engineering. Atlanta,
Georgia: ACM.

Lei, W., Qiang, Z. and Pengchao, Z. Automated Detection
of Code Vulnerabilities Based on Program Analysis
and Model Checking. Source Code Analysis and
Manipulation, 2008 Eighth IEEE International
Working Conference on, 28-29 Sept. 2008. 165-173.

Lhee, K.-S. and Chapin, S. J. 2003. Buffer overflow and
format string overflow vulnerabilities. Softw. Pract.
Exper., 33, 423-460.

Lin, Z., Jiang, X., Xu, D., Mao, B. & Xie, L. 2007.
AutoPaG: towards automated software patch
generation with source code root cause identification
and repair. Proceedings of the 2nd ACM symposium
on Information, computer and communications
security. Singapore: ACM.

Lu, S., Li, Z., Qin, F., Tan, L., Zhou, P. and Zhou, Y.
Bugbench: Benchmarks for evaluating bug detection

tools. In Workshop on the Evaluation of Software
Defect Detection Tools, 2005.

Miller, T. C. and Raadt, T. D. 1999. strlcpy and strlcat:
consistent, safe, string copy and concatenation.
Proceedings of the annual conference on USENIX
Annual Technical Conference. Monterey, California:
USENIX Association.

Nagarakatte, S., Zhao, J., Martin, M. M. K. and
Zdancewic, S. 2009. SoftBound: highly compatible
and complete spatial memory safety for c. Proceedings
of the 2009 ACM SIGPLAN conference on
Programming language design and implementation.
Dublin, Ireland: ACM.

Necula, G. C., Condit, J., Harren, M., Mcpeak, S. and
Weimer, W. 2005. CCured: type-safe retrofitting of
legacy software. ACM Trans. Program. Lang. Syst.,
27, 477-526.

Newsome, J. and Song, D. Dynamic Taint Analysis for
Automatic Detection, Analysis, and Signature
Generation of Exploits on Commodity Software.
Proceedings of the Network and Distributed System
Security Symposium (NDSS), 2005.

Ozdoganoglu, H., Vijaykumar, T. N., Brodley, C. E.,
Kuperman, B. A. and Jalote, A. 2006. SmashGuard: A
Hardware Solution to Prevent Security Attacks on the
Function Return Address. Computers, IEEE
Transactions on, 55, 1271-1285.

Padmanabhuni, B. and Tan, H. 2011. Techniques for
Defending from Buffer Overflow Vulnerability
Security Exploits. Internet Computing, IEEE, PP, 1-1.

Sinha, S., Harrold, M. J. and Rothermel, G. 2001.
Interprocedural control dependence. ACM Trans.
Softw. Eng. Methodol., 10, 209-254.

Vallentin, M. On the Evolution of Buffer Overflows.
http://matthias.vallentin.net/course-work/buffer_
overflows .pdf, 2007.

Wilander, J. and Kamkar, M. A Comparison of Publicly
Available Tools for Dynamic Buffer Overflow
Prevention. Network and Distributed System Security
Symposium(NDSS), 2003. 149-162.

Xie, Y., Chou, A. and Engler, D. ARCHER: using
symbolic, path-sensitive analysis to detect memory
access errors. ESEC/FSE-11: Proceedings of the 9th
European software engineering conference held
jointly with 11th ACM SIGSOFT international
symposium on Foundations of software engineering,
2003 Helsinki, Finland. ACM, 327-336.

Xu, J., Kalbarczyk, Z., Patel, S. and Ravishankar, I.
Architecture Support for Defending Against Buffer
Overflow Attacks. Second Workshop on Evaluating
and Architecting System dependabilitY, 2002. 55-62.

Younan, Y., Joosen, W. and Piessens, F. 2012. Runtime
countermeasures for code injection attacks against C
and C++ programs. ACM Comput. Surv., 44, 1-28.

Zitser, M., Lippmann, R. and Leek, T. 2004. Testing static
analysis tools using exploitable buffer overflows from
open source code. SIGSOFT Softw. Eng. Notes, 29,
97-106.

Automatic�Removal�of�Buffer�Overflow�Vulnerabilities�in�C/C++�Programs

59

