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Abstract: Buffer overflow vulnerability is one of the commonly found significant security vulnerabilities. This 
vulnerability may occur if a program does not sufficiently prevent input from exceeding intended size or 
accessing unintended memory locations. Researchers have put effort in different directions to address this 
vulnerability, including creating a run-time defence mechanism, proposing effective detection methods or 
automatically modifying the original program to remove the vulnerabilities. These techniques share many 
commonalities and also have differences. In this paper, we characterize buffer overflow vulnerability in the 
form of four patterns and propose ABOR--a framework that integrates, extends and generalizes existing 
techniques to remove buffer overflow vulnerability more effectively and accurately. ABOR only patches 
identified code segments; thus it is an optimized solution that can eliminate buffer overflows while keeping 
a minimum runtime overhead. We have implemented the proposed approach and evaluated it through 
experiments on a set of benchmarks and three industrial C/C++ applications. The experiment result proves 
ABOR’s effectiveness in practice. 

1 INTRODUCTION 

Buffer overflow in C/C++ is still ranked as one of 
the major security vulnerabilities (Abstract syntax 
tree, 2014), though it has been 20 years since this 
vulnerability was first exploited. This problem has 
never been fully resolved and has caused enormous 
losses due to information leakage or customer 
dissatisfaction (US-CERT, 2014).  

A number of approaches have been proposed to 
mitigate the threats of buffer overflow attacks. 
Existing approaches and tools focus mainly on three 
directions (Younan et al., 2012):  
1) Prevent buffer overflow attacks by creating a 

run-time environment, like a sandbox, so that 
taint input could not directly affect certain key 
memory locations; 

2) Detect buffer overflows in programs by applying 
program analysis techniques to analyze source 
code;  

3) Transform the original program by adding 
additional verification code or external 
annotations.  

For approaches in the first direction, as modern 
programs are becoming more complex, it is difficult 

to develop a universal run-time defense (Younan et 
al., 2012). For approaches in the second direction, 
even if buffer overflow vulnerabilities are detected, 
the vulnerable programs are still being used until 
new patches are released. For the third direction, 
though it is well-motivated to add extra validation to 
guard critical variables and operations, the existing 
approaches will add considerable runtime overhead. 
For example, a recent novel approach that adds extra 
bounds checking for every pointer may increase the 
runtime overhead by 67% on average (Nagarakatte 
et al., 2009).  

We noticed that though none of the existing 
methods can resolve the problem fully, they share 
many commonalities and also have differences. In 
this paper, we first integrate existing methods and 
characterize buffer overflow vulnerability in the 
form of four patterns. We then propose a 
framework—ABOR that combines detection and 
removal techniques together to improve the state-of-
the-art. ABOR iteratively detects and removes buffer 
overflows in a path-sensitive manner, until all the 
detected vulnerabilities are eliminated. Unlike the 
related methods (Nagarakatte et al., 2009, Criswell 
et al., 2007, Dhurjati and Adve, 2006, Hafiz and 
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Johnson, 2009), ABOR only patches identified code 
segments in a path-sensitive way; thus it can 
eliminate buffer overflows while keeping a 
minimum runtime overhead. 

We have evaluated the proposed approach on a 
set of benchmarks and three industrial C/C++ 
applications. The results show that the proposed 
approach is effective. First it can remove all the 
detected buffer overflow vulnerabilities in the 
studied subjects. Second we also compare ABOR 
with methods that focus on buffer overflow removal. 
On average, it removes 58.28% more vulnerabilities 
than methods that apply a straight-forward “search 
& replace” strategy; it inserted 72.06% fewer 
predicates than a customized bounds checker.  

The contribution of the paper is as following: 
1) The proposed approach integrates and extends 

existing techniques to remove buffer overflows 
automatically in a path-sensitive manner. 

2) The proposed approach guarantees a high 
removal accuracy while could keep a low 
runtime overhead. 

3) The proposed approach contains an exhaustive 
lookup table that covers most of the common 
buffer overflow vulnerabilities.    

The paper is organized as follows. Section 2 
provides background on buffer overflows 
vulnerability. Section 3 covers the proposed 
approach that detects buffer overflows and removes 
detected vulnerability automatically. Section 4 
evaluates the proposed approach and section 5 
reviews the related techniques that mitigate buffer 
overflow attacks. Section 6 concludes the paper. 

2 BACKGROUND 

Buffer overflow based attacks usually share a lot in 
common: they occur anytime when a program fails 
to prevent input from exceeding intended buffer 
size(s) and accessing critical memory locations. The 
attacker usually starts with the following attempts 
(US-CERT, 2014; Vallentin, 2007): they first exploit 
a memory location in the code segment that stores 
operations accessing memory without proper 
boundary protection. For example, a piece of code 
allows writing arbitrary length of user input to 
memory.  Then they locate a desired memory 
location in data segment that stores (a) an important 
local variable or (b) an address that is about to be 
loaded into the CPU’s Extended instruction Counter 
(EIP register). 

Attackers attempt to calculate the distance 
between the above two memory locations. Once 

such locations and distance are discovered, attackers 
construct a piece of data of length (x1+x2). The first 
x1 bytes of data can be any characters and is used to 
fill in the gap between the exploited location and the 
desired location. The second x2 bytes of data is the 
attacking code which could be (a) an operation 
overwriting a local variable, (b) a piece of shell 
script hijacking the system or (c) a handle 
redirecting to a malicious procedure.  

Therefore, to prevent buffer overflow attack, it is 
necessary to ensure buffer writing operations are 
accessible only after proper validations.  

3 THE PROPOSED APPROACH 

In this paper, we propose Automatic Buffer 
Overflow Repairing (ABOR), a framework which 
integrates and extends existing techniques to resolve 
the buffer overflow vulnerabilities in a given 
program automatically. Figure 1 demonstrates the 
overall structure of the framework. ABOR consists 
of two modules: vulnerability detection and 
vulnerability removal. ABOR works in an iterative 
way: once the vulnerability detection module 
captures a vulnerable code segment, the segment is 
fed to the removal module; the fixed segment will be 
patched back to the original program. ABOR repeats 
the above procedure until the program is buffer-
overflow-free. In this section, we introduce the two 
modules of ABOR in detail. 

 

Figure 1: Overview of ABOR. 

3.1 Buffer Overflow Patterns 

We first review some basic definitions of static 
analysis (Sinha et al., 2001, Abstract syntax tree, 
2014). A control flow graph (CFG) for a procedure 
is a graph that visually presents the control flow 
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among program statements. A path is one single 
trace of executing a sequential of program 
statements. A variable in a program is called an 
input variable if it is not defined in the program 
solely from constants and variables. An abstract 
syntax tree (AST) is a tree structure that represents 
the abstract syntax of source code written in a 
particular programming language. We call a program 
operation that may cause potential buffer overflows 
as a buffer overflow sensitive sink (bo-sensitive 
sink). In this paper, we shorten the name “bo-
sensitive sink” to sink. The node that contains a sink 
is called a sink node.  

There are many methods to protect sinks from 
being exploited (Lei et al., 2008, Lin et al., 2007, 
Lhee and Chapin, 2003, Necula et al., 2005, Kundu 
and Bertino, 2011). One general way is to add extra 
protection constraints to protect sinks (Younan et al., 
2012). After a careful review, we collect a list of 
common sinks and their corresponding protection 
constraints. We characterize them in a form of four 
patterns:  
Pattern#1: A statement is a bo-sensitive sink when it 
defines or updates a destination buffer with an input 
from either (1) a C stream input function which is 
declared in <stdio.h>, or (2) a C++ input function 
inherited from the base class istream. The protection 
constraint shall ensure the length of the destination 
buffer is not smaller than the input data.  
Pattern#2: A statement that copies/moves the 
content of a block of memory to another block of 
memory is a bo-sensitive sink. The protection 
constraint shall ensure that the copied/moved data is 
not larger than the length of the destination memory 
block.  
Pattern#3: A statement is a bo-sensitive sink when it 
calls a C stream output function when (1) this 
function is declared in <stdio.h>; or (2) this 
function contains a format string that mismatches its 
corresponding output data; or (3) the function’s 
output is data dependent on its parameters (Lhee and 
Chapin, 2003). The protection constraint shall ensure 
that: 
 the output data should not contain any string 

derived from the prototype (C++Reference, 
2014):  
%[flags][width][.precision][length]specifier;  

 or all the character “%” in the output data has 
been encoded in a backslash escape style, such 
as “\%”. 

Pattern#4: A statement other than the above cases 
but referencing a pointer or array is a bo-sensitive 
sink. Before accessing this statement, there should 
be a protection constraint to do boundary checking 

for this pointer or array.  
We use the above four patterns as a guideline to 

construct the buffer overflow detection and removal 
modules of ABOR. In order to specify these cases 
clearly, we use metadata to describe them 
exhaustively at the AST level. The metadata is 
maintained in Table 1 (Space lacks for a full table 
here, so we only show a fraction of Table 1. The full 
table is presented on our website (Ding, 2014)). 
Each row in Table 1 stands for a concrete buffer 
overflow case. The column Sink lists the AST 
structure of sinks. The column Protection Constraint 
specifies the AST structure of the constraint which 
could prevent the sinks being exploited. 
Additionally, in order to concrete the protection 
constraints ABOR needs to substitute in constants, 
local variables, expressions, and also two more 
critical data structures: the length of a buffer and the 
index of a buffer. 

In C/C++, there is no universal way to retrieve a 
buffer’s length and index easily. To solve this, 
ABOR creates intermediate variables to represent 
them. In Table 1, the last column Required 
Intermediate Variable records the required 
intermediate variables for each constraint.  

Table 1: ABOR pattern lookup table. 

Patter
n 

Sink 
Protection 
Constraint 

Required

Intermediate 
Variable 

1  gets(dst)  dst_length ≥ 
SIZE_MAX

1 

dst_length

/*The destination 
buffer  dst’s length 

(bytes).*/ 

2  memcpy(d
st, src, t) 

dst_length ≥ t ; 

src_length ≥ t; 

dst_length, 

//The destination 
buffer dst’s length, in 

terms of bytes. 

src_length 

//The source buffer 
src’s length, in terms 

of bytes. 

…… 

4  array[i] 
sizeof(array)/si
zeof(array[0]) 

≥ i 
N.A. 

…… 

                                                            
1 SIZE_MAX stands for the max value of unsigned long 
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3.2 Buffer Overflow Detection 

Among the existing detection methods, approaches 
working in a path sensitive manner offer higher 
accuracy because they target at modeling the 
runtime behavior for each execution path: 
1) For each path, path sensitive approaches 

eventually generate a path constraint to reflect 
the relationship between the external input and 
target buffer.   

2) The path’s vulnerability is verified through 
validating the generated path constraint. 

In the current implementation of ABOR, we 
modified a recent buffer overflow detection method 
called Marple (Le and Soffa, 2008) and integrated it 
into ABOR. We chose Marple mainly because it 
detects buffer overflows in a path sensitive manner, 
which offers high precision. 

Marple maintained a lookup table to store the 
common bo-sensitive sinks’ syntax structure. For 
each recognized bo-sensitive sink node and the path 
passing through the sink node, Marple generates an 
initial constraint, called query and backward 
propagates the query along the path. The constraint 
will be updated through symbolic execution when 
encountering nodes that could affect the data flow 
information related to the constraint. Once the 
constraint is updated, Marple tries to validate it by 
invoking its theorem prover. If it is proved the 
constraint is unsatisfiable, Marple concludes this 
path buffer-overflow-vulnerable. Figure 2 
demonstrates how ABOR integrates and extends 
Marple: 
1) ABOR replaces Marple’s lookup table with Table 

1. We enforce Marple to search for the syntax 
structures listed in the column Sink of Table 1. 
Additionally, Marple will raise a query based on 
the column Protection Constraint. 

2) ABOR uses a depth-first search to traverse a 
given procedure’s control flow graph: each 
branch will be traversed once. If a bo-sensitive 
sink is found, the segment starting from the sink 
back to the procedure entry will be constructed to 
be a set of paths and each path will be fed to 
Marple for processing.  

3) ABOR replaces Marple’s constraint solver with 
Z3 (Z3, 2014), a latest SMT solver from 
Microsoft with strong solvability. 

4) If one path is identified vulnerable, ABOR 
records the sub-path that causes the vulnerability 
or infeasibility (Le and Soffa, 2008). Later, paths 
containing any of such sub-paths will not be 
examined.  

5) We follow the way Marple handles loop 

structures: we treat a loop structure as a unit and 
try to compute each loop’s impact on the 
propagating constraint, if and only if such impact 
is linear.  

 

Figure 2: Vulnerability detection in ABOR. 

We illustrate the above procedure with an 
example. In Table 4, s1 is a sink node. Therefore, 
Marple raises a constraint as pvpbuf_length ≥ 
req_bytes_length. It propagates backward along the 
paths that pass through s1 and tries to evaluate the 
constraint.  

For example, along the path (n1, n2, n3, n4, n5, 
n6, n7, n9, n10, n11, n12, n9, n13, n14, n15, n16, 
s1), the constraint is updated at node n13 and 
becomes c2 ≥ 1024. The variable c2 is affected by 
the loop [n9, n10, n11, n12, n9]. The variable c2 is 
used in the loop, and it is data dependent on the 
input--ADDRSIZE. There exists a counterexample to 
violate the constraint c2 ≥ 1024. So this path is 
identified as being vulnerable. The method 
introduced in section 3.3 will be used to remove this 
vulnerability. 

3.3 Buffer Overflow Removal 

The removal module takes an identified vulnerable 
path, analyzes the sink’s AST and picks the 
corresponding constraint to protect the sink. The 
main challenge is to concrete the selected protection 
constraint into valid C++ code.  

3.3.1 Intermediate Variable 

It is important to trace the semantics of certain key 
operations along a path, including: buffer definition, 
buffer referencing, array indexing, pointer arithmetic 
and freeing memory. ABOR propagates backward 
along the given path to enable the intermediate 
variables simulating these semantics. Table 2 is used 
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to assist this propagation. In Table 2, the column 
Syntax Structure stands for the AST structure ABOR 
searches for during the propagation. The column 
Update Operation stands for how ABOR updates the 
corresponding intermediate variables. (Space lacks 
for a full table here, so we only show a fraction of 
Table 2. The full table is presented on our website 
(Ding, 2014)). 

3.3.2 Program Transformation for 
Vulnerability Removal 

Table 3 shows the algorithm removeVul that 
describes ABOR’s removal module. This algorithm 
takes an identified vulnerable path pth and a control 
flow graph G as parameters. It outputs a repaired 
control flow graph G’ that is no longer vulnerable.  

Table 2: Update intermediate variable during propagation. 

Syntax Structure Update Operation 
Buffer definition 

 buffer = new wildcard T [n]; 
 T buffer[n]; 

buffer_length = n * sizeof(T);  

Buffer referencing 
 T * p=buffer; p_length=buffer_length; 

p_index=buffer_index; 
Array index subscription 

 buffer[i] = wildcard buffer_index=i; 
Pointer arithmetic 

 p++; p--;  p_index ++; p_index--; 
 p=p+n;  p_index = p_index +n; 

Free memory 
 free (p); 
 delete [] p; 

p_length=0; 
p_index=NULL; 

The algorithm removeVul first identifies the sink 
along pth and then concretes the corresponding 
protection constraint by substituting required local 
variables, expressions, constants and intermediate 
variables. The concrete protection constraint is used 
to wrap the sink node to provide protections and, 
therefore, remove the vulnerability caused by the 
sink.  

A full example of using ABOR is presented in 
Table 4. The vulnerable program is in the left side 
column, and the repaired program is in the right side 
column.  

ABOR’s buffer overflow detection module finds 
that the path (n1, n2, n3, n4, n5, n6, n7, n8, n14, 
n15, n16, s1) is vulnerable. The path will be passed 
to removeVul.  
removeVul traverses the sink node s1’s AST and 
determines that the first pattern shall be applied. The 
constraint is to validate that the length of pvpbuf is 
larger than or equal to the length of req_bytes. 

ABOR inserts one node p1 into the CFG and 
creates two intermediate variables with an initial 

value of 0: pvpbuf_temp0_size for the length of 
pvpbuf and req_bytes_temp0_size for the length of 
req_bytes. ABOR inserts another three nodes p2, p3, 
and p4 into CFG, to manipulate the two intermediate 
variables to track the lengths of pvpbuf and 
req_bytes. 

Table 3: Vulnerability removal in ABOR. 

Input:

 
 
Global 

Variables: 
Output: 

G:   the CFG of a procedure; 

pth:  the identified vulnerable path 
δ:    the protection constraint for the sink  
{v}:  the set of required intermediate variables
 
G’:   the CFG with the inserted defensive code 

Algorithm removeVul (G , pth , s) 

begin 
1. δ =NULL; {v}=; G’=G; 
2. CFGNode cur_node = NULL; //the current node 

traversed  
3. <δ, {v}> = LookupT1(sink ); /*this sub‐procedure 

lookups in Table 1 and gets the metadata*/ 
4. for (cur_node := From sink To pth’s entry node) do   

// update intermediate variables 

5.    for each v in {v} do 
6.        Insert a CFGNode  into G’ as the  its Entry 

Node’s      immediate  post‐dominator,  to 
declare v and initialize v=0;  

7.        if ( LookupT2(cur_node , v ) ==TRUE) then  
8.          /*this sub‐procedure  lookups  in Table 

2 to check   whether the current CFG Node  
contains  AST  matching  the  Syntax 
Structures in Table 2*/ 

9.           Insert  a  CFGNode  into  G’  as 
cur_node’s immediate post‐ dominator, to 
perform  the  corresponding  update 
operation in Table 2; 

10.       endIf 
11.     endFor 
12. endFor 
13. Concrete δ with  required  local variables, expressions, 

constants and intermediate variables in {v}; 
14. Use δ as condition to construct a predicate and insert 

this  predicate  node  into  G’  as  sink’s  immediate 
dominator’s immediate post‐dominator; 

15. Place  sink  and  the  rest part of G’ on  the predicate’s 
TRUE branch; 

16. Add  an  exception‐handling  node  on  the  predicate’s 
FALSE  branch  and  link  this  FALSE  branch  to G’s  exit 
node. 

17. G’  SrcFile’ // convert G’ back to source code 
End

 

ABOR constructs the protection constraint as 
pvpbuf_temp0_size ≥ req_bytes_temp0_size and 
transforms the original program by wrapping 
statement s1 with statements p5, and p6. 

At last, ABOR converts the modified CFG back 
to source code, which is listed in the right side 
column of Table 4. Therefore, the vulnerability has 
been removed. (Interested readers could refer to our 
website (Ding, 2014) for more examples of the
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Table 4: An example of applying ABOR. 

Vulnerable path Sink Pattern Protection Constraint 

(n1,n2,n3,n4,n5,n6,n7,n8,n14,n15, n16,s1) 
/*s1*/ 

strcpy(pvpbuf, req_bytes)
Pattern 1 length(pvpbuf)≥length(req_bytes) 

Vulnerable Program Repaired Program 
#define min_size 10; 
#define max_size 1024; 
/*addr is an existing array with the size of 
ADDRSIZE,  
n2 and n16 are two basic blocks that are not related to 
pvpbuf and req_bytes*/ 
int _encode (bool bslashmode, char *addr, int 

ADDRSIZE){ 
 
/*n1*/   do{ 
/*n2*/      BLOCK1; 
/*n3*/   }while(…); 
 
/*n4*/   int c1=0; int c2=0; 
/*n5*/   int PSBUFSIZE= max_size; 
/*n6*/   int *pvpbuf;  
/*n7*/   if (bslashmode == TRUE){ 
/*n8*/     pvpbuf = new int [PSBUFSIZE]; 
        }else{   
 
/*n9*/     while(c1<ADDRSIZE){ 
/*n10*/   if(addr[c1]!='#') 
/*n11*/   c2++; 
/*n12*/   c1++; 
          } 
/*n13*/    pvpbuf = new int [c2]; 
        } 
 
/*n14*/  char  req_bytes[1024]; 
 
/*n15*/  scanf("%1024s", req_bytes); 
/*n16*/  BLOCK2; 
 
/*s1*/   strcpy(pvpbuf,req_bytes); 
 
}//END _encode 

#define min_size 10; 
#define max_size 1024; 
/*addr is an existing array with the size of ADDRSIZE, 
n2 and n16 are two basic blocks that are not related to pvpbuf and 
req_bytes*/ 
 
int _encode (bool bslashmode, char *addr, int ADDRSIZE){ 
/*p1*/   int pvpbuf_temp0_size=0; 

   int req_bytes0_size=0; 
/*n1*/   do{ 
/*n2*/      BLOCK1; 
/*n3*/   }while(…); 
/*n4*/   int c1=0; int c2=0; 
/*n5*/   int PSBUFSIZE= max_size; 
/*n6*/   int *pvpbuf;  
/*n7*/   if (bslashmode == TRUE){ 
/*n8*/     pvpbuf = new int [PSBUFSIZE]; 
/*p2*/     pvpbuf_temp0_size=PSBUFSIZE; 
        }else{   
/*n9*/      while(c1<ADDRSIZE){ 
/*n10*/   if(addr[c1]!='#') 
/*n11*/   c2++; 
/*n12*/   c1++; 
           } 
/*n13*/     pvpbuf = new int [c2]; 
/*p3*/      pvpbuf_temp0_size=c2; 
        } 
/*n14*/  char req_bytes[1024]; 
/*p4*/   req_bytes_temp0_size=1024; 
/*n15*/  scanf("%1024s", req_bytes); 
/*n16*/  BLOCK2; 
/*p5*    if(pvpbuf_temp0_size >= req_bytes_temp0_size) 
/*s1*/     strcpy(pvpbuf,req_bytes); 
        else 
/*p6*/     cerr<<“Attempt to cause buffer overflow reject”;  
}//END _encode 

 
program transformation). 

4 EVALUATION 

4.1 Experiment Design  

We implemented the proposed approach as a 
prototype system. The prototype has two parts: 
Program Analyzer and ABOR. The Program 
Analyzer receives C/C++ programs as input and 
utilizes CodeSurfer (CodeSurfer, 2012) to build an 
inline inter-procedural CFG. This CFG is then sent 
to the ABOR for the vulnerability detection and 
removal.  

Nine systems are selected to evaluate ABOR’s 
performance. Six of them are benchmark programs 
from Buffer Overflow Benchmark (Zitser et al., 
2004) and BugBench (Lu et al., 2005), namely 

Polymorph, Ncompress, Gzip, Bc, Wu-ftdp and 
Sendmail. The rest three are industrial C/C++ 
applications, namely RouterCore, PathFinder, and 
RFIDScan (Celestvision, 2014).  

For each system, we first run ABOR and then 
manually validate the results. The experiments are 
carried out on a desktop computer with Intel Duo 
E6750 2-core processor, 2.66 GHz, 4 GB memory 
and Windows XP system.  

4.2 Experimental Results 

4.2.1 System Performance 

We evaluate ABOR’s performance in terms of 
removal accuracy and time cost. 
Removal Accuracy: For benchmark systems, the 
experimental results are shown in Table 5(a). A false 
negative case occurs if we manually find that the 
proposed method failed to remove one buffer 
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overflow vulnerability. A false positive case occurs 
if we manually find the proposed method patched a 
piece of code that is actually buffer overflow free. 
We calculate the error rate of the proposed method 
by dividing the total number of vulnerabilities by the 
sum of the number of false positives and false 
negatives. The column KLOC stands for thousands 
of lines of code. The column #Reported records the 
real reported number of vulnerabilities while column 
#Repaired records the number of vulnerabilities 
removed by ABOR. The columns #FP and #FN 
stand for the numbers of false positives and false 
negatives respectively. For all the systems, the total 
number of reported buffer overflow vulnerabilities is 
370. Therefore, ABOR can correctly remove all the 
vulnerabilities reported in previous work (Zitser et 
al., 2004, Lu et al., 2005). 

For industrial programs, the results are shown in 
Table 5(b). The columns KLOC, #Repaired, #FN 
and #FP have the same meaning with Table 5(a). 
Additionally, the column #Detected stands for the 
number of detected vulnerabilities; and the column 
#Manual stands for the number of vulnerabilities 
discovered from manual investigations. The manual 
investigation double checked the detection result and 
analyzed the reason behind the cases that ABOR 
failed to proceed. As shown in Table 5(b), our 
approach detects 608 buffer overflow vulnerabilities 
and can successfully remove all of them. The results 
confirm the effectiveness of the proposed approach 
in removing buffer overflow vulnerabilities. 
However, due to implementation limitations, 
ABOR’s detection modules didn’t capture all the 
buffer overflow vulnerabilities in the industrial 
programs. On average, the error rate of our proposed 
method is 20.53%, which consists of 19.80% false 
negative cases and 0.73% false positive cases. The 
details of the error cases are discussed in section 
4.2.3. 

Table 5 (a): Vulnerabilities removed in benchmarks. 

System KLOC #Reported #Repaired #FP #FN 
Polymorph-0.4.0 1.7 15 15 0 0 
Ncompress-4.2.4 2.0 38 38 0 0 

Gzip-1.2.4 8.2 38 38 0 0 
Bc-1.06 17.7 245 245 0 0 

Wu- ftdp-2.6.2 0.4 13 13 0 0 
Sendmail-8.7.5 0.7 21 21 0 0 

Total 30.7 370 370 0 0 

 
Time Cost: We measured the time performance of 
the proposed approach on both benchmarks and 
industrial programs. Table 6 records the time spent 
on processing each program individually. ABOR is 
scalable to process large programs. The time cost 

over the entire nine systems is 4480 second, which is 
nearly 75 minutes. It is also discovered that a large 
amount of time is spent on vulnerability detection, 
which is 77.77% of the total time. The vulnerability 
removal process is relatively lightweight, which 
costs only 22.23% of the total time. 

Table 5 (b): Vulnerabilities removed in industry programs. 

System KLOC #Detected #Repaired #Manual #FP #FN ErrorRate(%)

RouterC~ 137.15 217 217 309 3 41 14.23 
PathFinder 104.23 79 79 103 1 25 25.24 
RFIDScan 219.36 312 312 406 2 96 24.13 

Total 460.74 608 608 818 6 162 20.53 

Table 6: The time performance of ABOR. 

System 
Total Time 

(ms) 

Detection Time Removal Time 

Time (ms) % 
Time 
(ms) 

% 

Polymorph 95.25 81.91 85.99 13.34 14.01

Ncompress 214.32 160.81 75.03 53.51 24.98

Gzip 3698.16 2388.71 64.59 1309.45 35.41

Bc 149469.60 132026.90 88.33 17442.66 11.67

Wu- ftdp 221.13 185.33 83.81 35.80 16.19

Sendmail 134.82 103.76 76.96 31.06 23.04

RouterCore 2446656.17 1781649.13 72.82 665007.07 27.18

PathFinder 654987.43 564359.17 86.16 90628.22 13.84

RFIDScan 1224366.67 1003880.72 81.99 220485.98 18.01

Total 4479843.55 3484836.44 77.77 995007.09 22.23

4.2.2 Comparison 

There are another two types of commonly used 
removal methods (Younan et al., 2012), which are 
“search & replace” and “bounds checker”. 
Search & Replace: The first category of methods 
replaces those common vulnerable C string 
functions with safe versions. If a program contains a 
large number of C string functions, this category of 
methods can achieve a good effect. Additionally, 
they are straight-forward for implementation (Miller 
and Raadt, 1999). But as the fast development of 
attacking techniques based on buffer overflows 
(Younan et al., 2012), the "search & replace", 
methods will miss many buffer overflows in real 
code.  
Bounds Checker: The second category of methods 
chases high precision by inserting effective 
validation before every memory access. In practice, 
they are usually used by mission-critical systems 
(Younan et al., 2012) (Nagarakatte et al., 2009). 
However, they normally bring in high runtime 
overhead as a number of inserted validations are 
redundant. 

ABOR is the method that only patches identified 
detected vulnerable code segment in a path-sensitive 
way. So it guarantees the removal precision while it 
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can keep a low runtime overhead. Using the same 
benchmarks and industrial programs, we compare 
ABOR with the other two main categories of 
removal methods. 

First, we compare ABOR with the “search & 
replace” category. In Figure 4, we compare ABOR 
with a recent “search & replace” method from Hafiz 
and Johnson (2009). It maintains a static database 
that stores common C/C++ vulnerable functions 
with their safe versions. 

Figure 4 represents the histograms on the number 
of removed buffer overflows. It contains a pair of 
bars for each test case. The shadowed ones are for 
ABOR while the while bars are for the applied 
“search & replace” method. The Longer bars are 
better as they represent the higher removal precision. 
For the entire nine systems, in total, the “search & 
replace” method removes 570 vulnerabilities while 
ABOR removes 978 vulnerabilities (41.72% more). 
This is mainly because (1) many vulnerable codes 
are not covered by the static database of the “search 
& replace” method; (2) even after using a safe 
version of certain C/C++ functions, the 
vulnerabilities are not removed due to improper 
function parameters.  

 
Figure 4: Comparison with a “Search & Replace” method. 

Second, we compare ABOR with the bounds 
checker” category. At the current stage, we 
implemented a customized bounds checker 
following a novel approach from Nagarakatte et al., 
(2009). It will insert predicates to protect every 
suspicious sink.  

Figure 5 represents the histograms on the number 
of inserted predicates. As with more inserted 
predicates, runtime overhead will increase. Figure 5 
contains a pair of bars for each test case. The 
shadowed ones are for ABOR while the white ones 
are for the applied bounds checker. Shorter bars are 
better as they represent the fewer number of inserted 
predicates. For the entire nine systems, in total, the 
applied bounds checker inserts 3500 predicates. 
ABOR only patches confirmed sinks, so it only 

inserts 978 predicates, which are 72.05% less than 
the applied bounds checker. 

Last but not least, though detection of buffer 
overflow is not a new research, till now, no 
approaches can detect buffer overflow with full 
coverage and precision. As the proposed approach 
uses these approaches, it is also limited by the 
accuracy of these approaches. 

 

 

Figure 5: Comparison with a “Bounds Checker” method. 

4.2.3 Discussion 

It is also found that ABOR caused some false 
positive and false negative cases when processing 
the industrial programs. We further investigate these 
error cases and found the errors are mainly caused 
by implementation limitations. We categorize them 
into three types: 
Error 1 - inaccuracy from alias analysis: it is 
difficult to implement a comprehensive alias 
analysis (CodeSurfer, (2012a)). Table 7(a) shows a 
false-negative example from RouterCore that is 
caused by inaccurate pointer analysis. In the loop, 
pointer ptr is incremented by one in each iteration 
until it equals to the address of pointer slt. So after 
the loop, ptr and slt are actually aliased. However, 
currently we cannot detect such alias relationship. 
The node n2 could overwrite the value of *ptr. 
Though node n1 does the boundary checking, it no 
longer protects node n3. 
Error 2- inaccuracy from loop structure. So far only 
variables that are linearly updated within an iteration 
are handled by ABOR. Table 7(b) shows an example 
found in RouterCore. The variable x is non-linearly 
updated by using a bitwise operation. Therefore the 
corresponding constraint, which compares the size 
between buff and input, is beyond the solvability of 
our current implementation.     
Error 3- platform-based data types: the industrial 
programs PathFinder and RFIDScan both involve 
external data types of Microsoft Windows SDK 
(e.g., WORD, DWORD, DWORD_PTR, etc.). This 
requires extra implementations to interpret them. 
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Additionally the value ranges of these data types 
specify implicit constraints. Table 7(c) shows a 
false-positive case from PathFinder. In this example, 
although accessing the buffer element via index at 
node n2 has no protection, there will be no buffer 
overflow vulnerability because index ranges only 
from 0 to 65535. 

We summarize the error analysis in Table 8. In 
the future, further engineering effort is required to 
address these implementation difficulties.  

Table 7: Examples of errors from processing the industrial 
programs. 

(a) false-negative due to aliased 
pointer 

(b) false-negative due 
to loop 

void send(char mode){ 
// ptr and slt are two pointers 
while(ptr < slt){ 
    ptr++; 
} 

 
/*n1*/ if(*ptr<sizeof(worduser)){ 
/*n2*/    cin.get(slt,80) ; 
/*n3*/    worduser[*ptr] =mode; } 
} 

…… 
for(……){ 

…… 
  x= x & y; 
} 
…… 
char * buff = new 
char[x]; 
…… 
strcpy( buff, input); 

(c) false-positive due to plat-based data type 
/*n1*/  WORD index=0; 

…… 
char buff[65536]; 
while(……){ 

…… 
/*n2*/      buff[index] = cin.get(); 

       index++;} 

Table 8: Accuracy and error analysis. 

System 
Total 
Error 

E1 E2 E3 
# % # % # % 

RouterCore 44 23 52.27 10 22.73 11 25.00 
PathFinder 26 16 61.54 0 0 10 38.47 
RFIDScan 98 31 31.63 22 22.45 45 45.92 
Total 168 70 41.67 32 19.05 66 39.29 

5 RELATED WORK 

We reviewed the recent techniques in addressing the 
buffer overflow vulnerability. We categorize them 
into three types: buffer overflow detection, runtime 
defense and vulnerability removal. 

5.1 Buffer Overflow Detection  

Buffer overflow vulnerability could be effectively 
detected by well-organized program analysis. The 
analysis could be performed either on source code or 
binary code. The current detection methods can be 

classified into path-sensitive approaches and non-
path-sensitive approaches. 

Path-sensitive approaches analyze given paths 
and generate path constraints according to the 
properties that ensure the paths are not exploitable 
for any buffer overflow attack. The path constraints 
are extracted using symbolic evaluation through 
either forward or backward propagation. A theorem 
prover or customized constraint solver is 
instrumented to evaluate the constraints. If a 
constraint is determined as unsolvable, the path is 
concluded as vulnerable. These methods pursue 
soundness and precision but usually include heavy 
overhead due to the use of symbolic evaluation. 
Typical examples include ARCHER (Xie et al., 
2003), Marple (Le and Soffa, 2008), etc.  

Non-path-sensitive approaches try to avoid 
complex analysis. They usually rely on general data 
flow analysis. These methods compute the 
environment, which is a mapping of program 
variables to values at those suspected locations. The 
environment captures all the possible values at a 
location L. Therefore, if any values are found to 
violate the buffer boundary at L; a buffer overflow 
vulnerability is detected. Choosing proper locations 
and making safe approximation requires heuristics 
and sacrifices precision. However, such a design 
gains more scalable performance, which is highly 
essential when dealing with large-scale applications. 
Typical examples include the work from Larochelle 
and Evans (2001) and CSSV (Dor et al., 2003).  

5.2 Run-time Defence  

This type of approaches adopt run-time defense to 
prevent exploiting potential vulnerabilities of any 
installed programs. These approaches aim to provide 
extra protection regardless of what the source 
program is. Normally such protections are 
implemented using three different kinds of 
techniques: code instrumentation, infrastructure 
modification, and network assistance.  

The first aspect is to simulate a run-time 
environment partially, execute the suspicious 
program in a virtual environment and check whether 
malicious actions have taken place. Examples 
include StakeGuard and RAD (Wilander and 
Kamkar, 2003), which are tools that create virtual 
variables to simulate function’s return address. 
Suspicious code will be redirected to act over the 
virtual variables first.  

The second aspect is to modify the underlying 
mechanism to eliminate the root of attacks: Xu et al. 
(2002) proposed a method to split stack and store 
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data and control information separately; 
Ozdoganoglu et al., (2006) proposed to implement a 
non-executable stack. More details and 
corresponding tools of run-time defense could be 
found in recent surveys (Younan et al., 2012, 
Padmanabhuni and Tan, 2011). 

The third aspect is to do a taint analysis for the 
input data from any the untrusted network source. 
This analysis compares network data with 
vulnerability signatures of the recorded attacks, or 
inspects payload for shell code for detecting and 
preventing exploitation. TaintCheck (Newsome and 
Song, 2005), proposed by Newsome and Song, 
tracks the propagation of tainted data that comes 
from un-trusted network sources. If a vulnerability 
signature is found, the attack is detected.  

5.3 Attack Prevention through Auto 
Patching 

The last category aims to removal the vulnerability 
from the source code. The objective is to add 
defensive code to wrap sink nodes so that no taint 
data could access the sinks directly. There are three 
strategies to design defensive code and insert them: 
search & replace, bounds checker, and detect & 
transform (Younan et al., 2012). 

The first strategy is to search common vulnerable 
C string functions and I/O operations and replaces 
the found operations with a safe version. For 
example, vulnerable functions strcpy and strcat 
could be replaced as strncpy and strncat or strlcpy 
and strlcat (Miller and Raadt, 1999), or even with a 
customized version. Munawar and Ralph (Hafiz and 
Johnson, 2009) proposed a reliable approach to 
replace strcpy and strcat with a customized version 
based on heuristics. This strategy is straight-forward 
and easy to implement. However, it misses many 
complex situations.  

The second strategy is aiming to insert effective 
validation before each memory access to perform an 
extra bounds checking. A typical design is to add 
validation before each pointer operation, named 
“pointer-based approach”. These approaches track 
the base and bound information for every pointer 
and validate each pointer manipulation operation 
against the tracked information. Examples include 
CCured, MSCC, SafeC, and Softbound (Nagarakatte 
et al., 2009). These approaches are designed to 
provide high precision. However, as nearly every 
pointer operation will be wrapped with additional 
checking, the code may grow largely and the 
runtime performance could be downgraded.  

The third strategy is to locate the vulnerability 

first and then transform the vulnerable code segment 
into a safe version. Comparing with the second 
strategy, this helps reduce the size of added code 
without compromising the removal precision. 
Relatively few efforts have been put in this 
direction. For example, Wang et al. (Lei et al., 2008) 
proposed a method to add extra protection 
constraints to protect sink nodes. The method called 
model checker to verify the satisfiability of the 
inserted protection constraints. If the constraint fails 
to hold, that sink node will be recorded vulnerable, 
and the corresponding constraints will be left to 
protect the sink node. A similar example is from Lin 
et al., (2007) However, these methods are path-
insensitive.  

ABOR follows the third strategy and pushes the 
state-of-the-art one step ahead. It first detects the 
buffer overflows based on path sensitive information 
and then only add defensive code to repair the 
vulnerable code segment. Therefore, it adds limited 
code and has a low runtime overhead.  

6 CONCLUSIONS 

In this paper, we have presented an approach to 
remove buffer overflow vulnerabilities in C/C++ 
programs automatically. We first characterize buffer 
overflow vulnerability in the form of four patterns. 
We then integrate and extend existing techniques to 
propose a framework—ABOR that removes buffer 
overflow vulnerability automatically: ABOR 
iteratively detects and removes buffer overflows in a 
path-sensitive manner, until all the detected 
vulnerabilities are eliminated. Additionally, ABOR 
only patches vulnerable code segment. Therefore, it 
keeps a lightweight runtime overhead. Using a set of 
benchmark programs and three industrial programs 
written in C/C++, we experimentally show that the 
proposed approach is effective and scalable for 
removing all the detected buffer overflow 
vulnerabilities. 

In the future, we will improve our approach and 
tool to minimize the number of wrongly detected 
cases. We will also integrate ABOR into existing 
testing frameworks, such as CUnit, GoogleTest, to 
further demonstrate its practicality. 
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