
Performance Tuning of Object-Oriented Applications in Distributed
Information Systems

Zahra Davar and Janusz R. Getta
School of Computer Science and Software Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia

Keywords: Global Information System, Data Integration, Object-Oriented Application, Transformation Rule.

Abstract: Majority of the global information systems are constructed from a number of heterogeneous distributed
database systems that provide a global object-oriented view of the data stored at the remote systems. Such
global information systems have two sides: the source side which consists of heterogeneous distributed
databases and the global side which provides an integrated view of the database systems from the source
side. User applications access data through the iterations over the classes of objects included in a global
object-oriented view. The iterations over the classes of objects are implemented as iterations over the data
items such as the rows in the relational tables on the source side of the system creating serious performance
problems.
This paper addresses the performance problem of object-oriented applications accessing data on the source
side of global information system through an object-oriented view on a global side. We propose a number
of transformation rules which allow for more efficient processing of object-oriented application on the source
side. The rules can eliminate the iterations of classes of objects on the global schema side. We prove the
correctness of the rules and show how to systematically apply the rule to object-oriented applications. The
paper proposes a number of templates for programming of object-oriented applications that allow for easier
and more efficient performance tuning transformations.

1 INTRODUCTION

Distributed information systems are becoming in-
creasingly important and gaining a great deal of
attention in commercial and business applications.
Global information systems used by the large organi-
sations have heterogeneous and distributed structures
(Lopatenko, 2004).

In this paper, we consider a class of distributed
information systems which consist of the distributed
and homogeneous database systems on a source side
and the global object-oriented view of data on the
client side. The source database side includes re-
lational database systems and the applications on a
client side access data from a global object-oriented
view of all distributed databases. Figure 1 illustrates
the model of the distributed system. On the server
side, there is some relational databases, e.g A and
B. The arrows show that the relational databases will
transfer from the source database side to the client
side as classes of objects and then object-oriented de-
velopers can access data.

An object-oriented view of data on a global side

of the system allows application programmers to ac-
cess data through iterations over the classes of ob-
jects. Such approach to implementation of user ap-
plications reduces the amounts of nonprocedural code
when accessing data , e.g. joins of relational tables in
SELECT statements of SQL into nested loops iterat-
ing of the objects. It means that all of the data must
be transferred from the source database side to an ap-
plication accessing the global view. Therefore, the
filtering conditions of the application will apply to all
transferred data in the global view side. This leads to
iterations over a large number of objects on the global
view side, a procedure which is inefficient for large
databases. In addition, to process data on the client
side, the application uses some algorithms which are
not as efficient as the algorithms which can process
the same data on the server side. For instance, the im-
plementation ofJOIN operation on the server side is
more efficient than implementation of the sameJOIN
operation on the client side by two nested loops.

Implementing efficient object relational applica-
tions for such systems is a serious challenge. There
are different ways to solve this problem. One solu-

201Davar Z. and R. Getta J..
Performance Tuning of Object-Oriented Applications in Distributed Information Systems.
DOI: 10.5220/0004887402010208
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 201-208
ISBN: 978-989-758-027-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: Model of the distributed system

tion is based on changing the object relational map-
ping. By default, object relational mapping shifts the
data processing to the client side to be consistent with
the virtual object database. This can be changed so
that data processing shifts to the source database side.
As a result, less data will transfer from the source
database side to the client side. The other solution is
to reduce the transmisison of a large number of data
from the source database side to the global view side.
This can be done by changing the configuration of
the application with more non-procedural code. This
means that, only the objects needed to satisfy the fil-
tering conditions of the application will be transferred
from the source database side to the global database.

This paper presents a number of transformation
rules which can eliminate iteration over a large
number of objects by changing the configuration of
the application. To do this, we used more OQL in the
body of the application. As a result faster and more
efficient performance of the application is achieved.

In the remainder of this paper, first the motivation
experiment is presented. Section 2, examine the cur-
rent research. Input patterns of the rules for different
styles of programs is presented in section 3. Section
4 presents the transformation rules. Verification and
logical proof of the rules is in section 5. Section 6
contains the conclusion and suggested future work.

1.1 Motivation Experiments

In this section, motivation experiments are pre-
sented. These experiments were conducted on the
TPC Benchmark website which has 300 MB rela-
tional data. All the experiments were run on a Dell
system with 3.33GHz intel(R), Core(TM)2, Duo CPU
by Ubuntu 10.04 LTS, the Lucid Lynx. The system
had 3.25GB RAM. The examples were run in Java
Persistence API (JPA) programming language format
and in the NetBeans 7 environment. The netbeans 7
clock were used to monitor execution time by sec-
onds.

Application 1, is theloop part of an original ap-
plication based on JPA, written by an object-oriented
programmer. Application 1 is an example of a
program that iterates over two relational databases,

calledLineitem andSupplier. This algorithm retrieves
all values froml.partsupp in theLineitem class which
has equal value to thes.suppkey in the Supplier class.
We managed various experiments for different sized
databases, and measured the response time before
and after transformation. In all examples,Supplier
includes 3000 objects but size of theLineitem class
varied between 100,000 objects to 2,000,000 objects.

Application 1:

{
Query query1 = em.createQuery
("SELECT s FROM Supplier s
ORDER BY s.sSuppkey", Supplier.class);
List list1 = query1.getResultList();
Iterator iterator1= list1.iterator();

while(iterator1.hasNext()){
Supplier s= (Supplier)iterator1.next();
Long ps_suppkey = s.getSSuppkey();

Query query2 = em.createQuery
("SELECT l FROM Lineitem l
WHERE l.partsupp.supplier.sSuppkey= "
+ ps_suppkey,Lineitem.class);

List list2 = query2.getResultList();
Iterator iterator2= list2.iterator();
}

By changing the configuration of application 1,
we were able to write application 2 which has exactly
same output as application 1. In application 2, we
obtained twoSELECT statements together and used
oneSELECT statement. By using application 2 and
changing the balance of the data processing, the un-
necessary iteration is eliminated. Also, configuration
of application 2 is such, that not all of the objects
will transfer from the server side to the client side.
As a result, the time needed for execution of the
application was reduced.

Application 2:

{
Query query = (Query) em.createQuery
("SELECT l.partsupp.partsuppPK.psSuppkey,
COUNT(l.partsupp.partsuppPK)
FROM Lineitem l JOIN l.partsupp ps
GROUP BY l.partsupp.partsuppPK.psSuppkey
ORDER BY l.partsupp.partsuppPK.psSuppkey",
Lineitem.class);

List<Object[]> list = query.getResultList();
Iterator iterator1= list.iterator();

}

Figure 2, illustrates the execution time which was
needed to run application 1 with different sizes of
the Lineitem class. We started running application 1
with 100,000 objects in relational databaseLineitem
and increased the objects up to 2,000,000. The re-
sults made an exponentially chart shown as Figure

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

202

Figure 2: Execution time for application 1.

Figure 3: Execution time for application 2.

2. The response time starts from approximately 1.5
hours and increase to almost 15 hours.

Figure 3, illustrates the execution time of applica-
tion 2 with same the data as we explained earlier. The
runtime of application 2 varied between 2 to 4 sec-
onds as shown on the linear graph in Figure 3. These
results show that if we transmit 300MB instead of
3GB to the client side the output will be at least 100
times faster.

2 EXISTING WORKS

The existing works are divided into two categories.
One is related to integrating data models into dis-
tributed database applications and the other is focused
on performance evaluation of relational database ap-
plications. Regarding integrating data, (Mansuri and
Sarawagi, 2006) proposed a system for integrating un-
structured data into relational databases. The main
context of their research in (Mansuri and Sarawagi,
2006) addresses the integration of unstructured text
records into existing multi-relational databases. An-
other work focused on increasing automated inte-
gration using standardisation (Lawrence and Barker,
2001). A different approach based on the existence of
virtual mining views was proposed to integrate pat-
terns in relational databases (Calders et al., 2006).

An approach to the process of integration of com-
plex database using IIS*Case is proposed by (Lukovi
et al., 2006). In all the above research, the perfor-
mance problem of distibuted information systems in
global schema side was not considered as a challenge
in integrating the data models.

Regarding the performance problem of relational
applications, (Agarwal, 1995) proposed the idea of
using a client-side object cache to increase database
application performance. Other works, e.g. (Van Zyl
et al., 2006)(Kalantari and Bryant, 2012), focus on
comparison of performance in relational applications.
(Van Zyl et al., 2006) compared the performance of
object-relational mapping and object database man-
agement system. In (Van Zyl et al., 2006), object-
relational mapping in the open source applications
were discussed. Based on the object’s elaboration, ob-
ject and object-relational database applications were
compared in (Kalantari and Bryant, 2012). Similar
views to ours has been done by other research (Rum-
baugh et al., 1991), (Kroenke, 2001) and (Rahayu
et al., 2001). In the research paper by Rahaya et
al.(Rahayu et al., 2001), the performance of object-
relational transformation methodology was compared
with that of the ordinary relational method. In that
research, object-relational transformation methodol-
ogy is used to prove the efficiency of the operations
on the relational tables. In the other works (Rum-
baugh et al., 1991), (Kroenke, 2001), some rules were
developed to transfer object-oriented design to rela-
tional tables. The gap in these studies (Rumbaugh
et al., 1991), (Kroenke, 2001), (Rahayu et al., 2001)
is that only the conceptual parts of object-orientation
are considered and dynamic parts are not involved.

All this research is based on shifting the data-
process to the client side rather than the server side.
This means that the problem of the need for multi-
ple unnecessary iterations remains in all of these ap-
proaches. What is needed is an approach which can
eliminate these and thus provide much greater effi-
ciency and much higher speed.

3 TRANSFORMATION RULES

By using the transformation rules presented in this
paper, non-optimised versions of object-relational
database applications can be optimised to provide the
necessary efficiency and high speed. They replace
fragments of procedural code with non-procedural
statements which leave most of the data process-
ing on the server side and this improves the perfor-
mance of an application by eliminating inessential
data processing. In our approach, the filtering con-

Performance�Tuning�of�Object-Oriented�Applications�in�Distributed�Information�Systems

203

ditions are evaluated on the source schemas side (the
server side) and as a result, there is no need to trans-
mit many data to the client side. This can elimi-
nate iterations over unnecessary classes of objects.
Through our experimental results based on large scale
relational databases, we show that our transforma-
tion rules eliminate inessential interaction between
the server and the client side.

We now provide the transformation rules. In this
paper we limit ourselves to the rules applicable only
to the most widely used programs, although others
have already been designed.

Based on our approach, relational applications are
divided into the following categories:

• Iteration over two classes of objects/Join

• Anti-Join

• Aggregation

These rules can convert most of the applications
because large applications are a mixture of the above
applications. The rules are based on two parts: in-
put and output components. Input component is an
original object oriented program or part of that. The
output components are transformed version of the in-
put components which can run much faster that the
input component. The design of the output compo-
nents are based on using more OQL.The input com-
ponents should be compatible with one or more of the
templates in section 4.

3.1 Iterations over Two Classes of
Objects

Algorithm 1 is the input component for rule 1. This
algorithm includes two nestedSELECT statements
which perfomesJOIN operation. Algorithm 2, is the
transformation rule which transforms the input com-
ponent to the optimise version. This rule merges two
SELECT statements in the body of the original pro-
gram into oneSELECT statement by using aJOIN
clause. Based on the proposed approach, this rule
changes the configuration of the original program by
using more non-procedural code.
For an example of the application of this rule, see
section1.1. Concatenation is used between non-
relational conditions to put together all the results
from both classes. By using this rule, only the ob-
jects which satisfy theJOIN condition will transfer
from the source schema side to the global schema
side. Therefore, for big databases it can save runtime
as unneeded objects will remain on the source schema
side.

Algorithm 1: Input component
Iterations over two classes of objects

for each t in (SELECT * FROM Class11

WHERE ϕ [t1, ..., tn]) do

for each s in (SELECT * FROM Class22

WHERE γ [s,s2, ...,sn] + γ’

[< s1, t1 >,...,< sn, tn >]) do

Write t3

Write s4

end5

end6

.

.

Algorithm 2: Output component
Rule 1/ Iterations over two classes of objects

for each p in (SELECT * FROM Class1 JOIN1

Class2 on

γ’ [< t1,s1 >,< t1,s2 >,...,< tn,sn >]2

Where3

ϕ [t1, ..., tn] ‖ γ [s1,s2, ...,sn] do4

Write p5

end6

.
.

3.2 Anti-join

Algorithm 3 is the input component foranti-join
which is one of the possible implementation ofanti-
join for object-oriented developers. The output com-
ponent, includes only oneSELECT statement. In al-
gorithm 4, theleft-outer-join is used to select the ness-
esary data and transfer them to the client side.

Algorithm 3: Intput component
Anti-Join

for each t in (SELECT * FROM Class1) do1

for each s in (SELECT count(*) FROM2

Class2 WHERE

Class2.Memberj=t.Memberi) do

if Count=0 then3

Write t4

end5

end6

end7

.

.

The following algorithm is considered as trans-
ferred version of the input components ofanti-join
applications.

3.3 Aggregation

Algorithm 6 is the rule for counting representative ob-
jects from a class of objects. The input component
of this rule is presented as algorithm 5. The Group
by clause is used to group the necessary objects and
transfer them to the global schema side.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

204

Algorithm 4: Output component
Rule 2/Anti-Join by Outer join

for each p in (SELECT * FROM Class1 LEFT1

OUTER join Class2 on Class2.Memberj =

Class1.Memberi) do

if Class2.Memberj is Null then2

Write p3

end4

end5

.
.

Algorithm 5: Input component
Counting objects

ArrayList Memberi = new array list()1

int counter= new int[]2

for each t in (SELECT Memberi FROM Class13

) do

counter[getInt(”t.Memberi”)]++;4

end5

for i=0 ; i<t.Memberi.length; i++ do6

if counter[i]>t.Memberi.length then7

Write counter[i]8

Write i9

end10

end11

.

.

Algorithm 6: Output component
Rule 3/ Counting objects

for each t in (SELECT Memberi,COUNT(*)1

FROM Class1 GROUP BY Memberi) do

x = getInt(Memberi)2

y = resultset(COUNT(*))3

Write x4

Write y5

end6

.
.

4 TEMPLATES FOR USING THE
RULES

In this section, we present the styles which individual
JPA programmers can use to write a relational appli-
cation. The application developers can design appli-
cations in different ways and in this case we would
need many different rules to cover all possible cases.
To analyse the source code easier, we proposed cer-
tain patterns for input components of the rules. The
transformation rules which are presented in section 3
can only apply to original programs which are con-
sistent with the following styles. The styles are de-
signed to match the most current object-oriented pro-
grams. Because the majority of relational database
applications are combinations of the following styles,

our transformation rules are applicable to them. The
following styles are designed based on JPA program-
ming language and are similar to most of the other
object-oriented languages. Depending on the original
program, the names of the objects and classes, the re-
lational conditions and the non-relational conditions
will change.

4.1 Style 1

• Iterations over two classes of objects Join

’ t ’ is set of objects from class1 and ’ s ’ is set of
objects from class2.

Non relational conditions of class1 : ϕ
[t.t1, t.t2, ..., t.tn]. Example: Class1.Objecti=
X

Relational conditions : γ’
[< s1, t1>,...,< sn, tn >]. Example:
Class2.Objectj=Class1.Objecti

Non relational condition of class2 :γ [s,s2, ...,sn].
Example: Class2.Objectj=Y

{
ResultSet rset1 = stmt1.executeQuery
("SELECT t FROM CLASS1");
GET VARIABLE ;
"NON RELATIONAL CONDITIONS of CLASS1";
While (rset1.next())
{

VARIABLE = rset1.getInt(1);
ResultSet rset2 = stmt2.executeQuery
("SELECT s FROM CLASS2
WHERE
"RELATIONAL CONDITIONS");
While (rset2.next())
{

"NON RELATIONAL CONDITIONS of CLASS2";
}
System.out.println(VARIABLE);

}
}

If the input component matches this style, Rule 1
which is presented in 3.2 can modify the configuration
of the application.

4.2 Style 2

• Anti-Join

For anti-join, there are two styles which are most
commonly used by programmers.

{
ResultSet rset1 = stmt1.executeQuery
("SELECT * FROM CLASS1");

Performance�Tuning�of�Object-Oriented�Applications�in�Distributed�Information�Systems

205

GET VARIABLE = FALSE ;
While (rset1.next())
{
ResultSet rset2 = stmt2.executeQuery
("SELECT * FROM CLASS2
WHERE
"Class2.OBJECTj = Class1.OBJECTi");
While (rset2.next())
{

VARIABLE = True;
Exit;
}
If VARIABLE=FALSE
{
System.out.println(OBJECTi);
}

}
}

Another style for anti-join with counter:

{
ResultSet rset1 = stmt1.executeQuery
("SELECT * FROM CLASS1");
While (rset1.next())
{
ResultSet rset2 = stmt2.executeQuery
("SELECT Count(*) FROM CLASS2
WHERE
"Class2.OBJECTj = Class1.OBJECTi");
While (rset2.next())
{
If Count=0

{
System.out.println(OBJECTi);

}
}
}
}

If the input component matches one of the anti-
join styles presented here, then it can be modified ac-
cording to Rule 2 which is presented in 3.2 .

4.3 Style 3

• Aggregation

For aggregation queries, the style for counting objects
from a class and grouping the similar objects is pre-
sented. The styles for the rest of the aggregations are
much the same as the following style so we do not
mention them here.
If the original application be consistant with the fol-
lowing style, then it can be optimise by Rule 3 which
is presented in 3.3.

{
ArrayList Memberi = new array list();
int counter= new int[];
ResultSet rset1 = stmt1.executeQuery
("SELECT * FROM CLASS1);
{

While {ArrayList.next}
{
counter[getInt("t.Memberi")]++;
}

For i=0;i<t.Memberi.length;i++
{
System.out.println(MyCounter[i]+ i);

}
}
}

There are more styles used by object-oriented ap-
plications, especially for anti-join and aggregations,
but not all styles can be presented in this paper. The
templates do however, cover most of the possible in-
put components.

5 VERIFICATION OF THE RULES

The Floyd Hoare logic formula (Alagic and Arbib,
1978) is used to show the correctness of each rule by
itself and also to show that each rule and its pattern
can achieve the same output. Writing the same in-
variant for each rule and its pattern allows us to prove
each rule. The algorithms under analysis were rewrit-
ten with WHILE in order to be consistent with the
Floyd Hoare logic format (Alagic and Arbib, 1978).
By writing an invariant for each algorithm, the cor-
rectness of each individual algorithm is proved and
by verifying the same invariant for the pattern of the
rules, the equality of both components is proved. In
this section we describe the proof for one of the group
of applications (iterating over a class of objects) along
with the method of verification of the rule.

Algorithm 7, is an input component which is
rewritten withpseudo-code by WHILE and includes
the invariant. This pattern is designed for iterating
over one class of object. As this is the simplest pattern
in object-oriented applications, we describe the cor-
rectness of this pattern and its rule to show the method
that used to prove the other patterns and their rules. In
line 3, before entering theWHILE loop, there is a con-
dition and an invariant that are true at that stage of the
algorithm. The condition is ’t<> Nil’ which means
there should be at least one object in class 1 before en-
tering theWHILE loop. This condition is true before
entering theWHILE loop. The invariant before and
after theWHILE loop is the same: ’∀ t ∈ R : ϕ [t]’.
This means only objects that satisfy the condition of
ϕ [t] will go into the output. This invariant is true be-
fore entering theWHILE loop and also after exiting
or skipping theWHILE loop. In the body of the pro-
gram, each object which satisfy conditionϕ [t], will
add to the result set R.

Assume that R is the results set

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

206

Algorithm 7: Input component
Iterating over a class of object

R:= Ø1

Get (t,C)2

(t <> Nil) ∧ ∀ t ∈ R : ϕ [t]3

while t <> Nil do4

if ϕ [t] then5

R:= R∪ t6

Get (t,C)7

end8

end9

∀ t ∈ R : ϕ [t]10

.

.

Algorithm 8: Output component
Rule for iteration over a class of object

R:= 01

Get (t,C′)2

(t <> Nil) ∧ ∀ x ∈C′ : ϕ [x] ∧ ∀ t ∈ R : ϕ [t]3

while t <> Nil do4

R:= R∪t5

Get (t,C′)6

end7

∀ t ∈ R : ϕ [t]8

.

.

Assume that C is the: SELECT * FROM class 1
Assume that t is a set of objects from class 1
Assume thatϕ [t.t1, t.t2, ..., t.tn] = ϕ [t]

In the Floyd Hoare logic formula which is presented
as equation (1):

P is the loop invariant which is to be preserved
by the loop body S. B is conditions of the applica-
tion. After the loop is finished, this invariant P still
holds, and moreover¬ B must have caused the loop
to end (Alagic and Arbib, 1978). The logic includes
two separate parts and by proving the first part, the
second part is automatically proved. The following
line is applied to the application as equation (2).

{Condition} ∧ {Invariant} [Body] {Invariant}
The equation 2 is always true as ex-

plained earlier. Therefore the second
part of the logic is automaticaly true:
{Invariant}while(Condition)body{¬Condition ∧
Invariant}. This is presented as equation (3).

In this stage, the pattern is proved. The next stage
is to prove that the rule is correct by applying the
Floyd Hoare logic formula to the rule. Also, to make
the assumption that each pattern and its rule are doing
the same thing, we should achieve the same invariant
from both patterns and their rules. Algorithm 8, is the
rule for itterating over a class of object.

Assume that C’ is : SELECT * FROM class 1
WHEREϕ [t1, t2, ..., tn]

We apply theFloyd Hoare logic formula to the

rule as equation (4).
This is always true. Before entering theWHILE

loop, both the condition and the invariant are true be-
cause there must be at least one object to enter the
WHILE loop and then each object t can satisfy the
condition ofϕ [t1, t2, ..., tn]. After exit or skipping the
loop, all the objects in set R can still satisfy the con-
dition of ϕ [t1, t2, ..., tn]. Therefore, based onFloyd
Hoare logic, this rule is proved (Alagic and Arbib,
1978). In addition, both the pattern and its rule in-
clude the same invariant, so this can prove the equal-
ity of both algorithms. The same method is used to
show the correctness of the other patterns and their
rules.

{P∧B}S{P}
{P}while(B)do(S){¬B∧P}

(1)

{(t <> Nil) ∧ ∀ t ∈ R : ϕ [t] }[If ϕ [t] Then R:=

R∪ t , Get (t,C)] {∀ t ∈ R : ϕ [t]}
(2)

{∀ t ∈ R : ϕ [t]} while (t <> Nil) [If ϕ [t] Then

R:= R∪ t , Get (t,C)] { (t : Nil) ∧ ∀ t ∈ R : ϕ [t] }
(3)

{(t <> Nil) ∧ ∀ x ∈ C′
: ϕ [x] ∧ ∀ t ∈ R : ϕ [t] }

R:= R∪ t, Get (t,C′) {∀ x ∈C′
: ϕ [x] ∧ ∀ t ∈ R : ϕ [t]

}
(4)

6 CONCLUSION AND FUTURE
WORK

In this paper we attempt to solve the performance
problem of object-oriented applications within a dis-
tributed information system. We introduced some
transformation rules that can shift more data process-
ing to the source schema side. Using this approach,
increases the amount of non-procedural code as op-
posed to procedural code in the body of object- ori-
ented applications. Our approach reduces iterations
over classes of objects because only the necessary ob-
jects will transfer from the source schema side to the
global schema side. Therefore, the proposed transfor-
mation rules lead to high performance relational ap-
plications. We considered three categories of styles
for our transformation rules and prove the correctness
of each rule based on Floyd Hoare logic. Templates of
the rules were also presented. Designing more input
patterns for the rules and also designing machinery to
optimise object relational applications automatically
remain for future work.

Performance�Tuning�of�Object-Oriented�Applications�in�Distributed�Information�Systems

207

REFERENCES

Agarwal, S. (1995). Architecting object applications for
high performance with relational databases. InIn
OOPSLA Workshop on Object Database Behavior,
Benchmarks, and Performance.

Alagic, S. and Arbib, M. A. (1978).The Design of Well-
Structured and Correct Programs. Springer.

Calders, T., Goethals, B., and Prado, A. B. (2006). Integrat-
ing pattern mining in relational databases. Springer.

Kalantari, R. and Bryant, C. H. (2012). Comparing the per-
formance of object and object relational database sys-
tems on objects of varying complexity. InProceed-
ings of the 27th British national conference on Data
Security and Security Data, pages 72–83, Berlin, Hei-
delberg. Springer-Verlag.

Kroenke, D. M. (2001).Database Processing: Fundamen-
tals, Design and Implementation. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 8th edition.

Lawrence, R. and Barker, K. (2001). Integrating relational
database schemas using a standardized dictionary. In
Proceedings of the 2001 ACM symposium on Applied
computing, SAC ’01, New York, NY, USA. ACM.

Lopatenko, A. (2004). Query answering under exact view
assumption in local as view data integration system. In
McIlraith, S. and Morgenstern, L., editors,Proceed-
ings of the Doctorial Consortium 9th International
Conference on Principles of Knowledge Representa-
tion and Reasoning.

Lukovi, I., Risti, S., Mogin, P., and Pavievi, J. (2006).
Database schema integration process a methodology
and aspects of its applying. InSad Journal of Mathe-
matics (Formerly Review of Research, Faculty of Sci-
ence, Mathematic Series), Novi Sad, 2006, Accepted
for publishing.

Mansuri, I. R. and Sarawagi, S. (2006). Integrating un-
structured data into relational databases. In Liu, L.,
Reuter, A., Whang, K.-Y., and Zhang, J., editors,
ICDE, page 29. IEEE Computer Society.

Rahayu, J. W., Chang, E., Dillon, T. S., and Taniar,
D. (2001). Performance evaluation of the object-
relational transformation methodology.Data Knowl.
Eng., 38:265–300.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and
Lorensen, W. (1991).Object-oriented Modeling and
Design. Prentice-Hall, Englewood Cliffs, NJ, USA.

Van Zyl, P., Kourie, D. G., and Boake, A. (2006). Compar-
ing the performance of object databases and orm tools.
In Proceedings of the 2006 annual research confer-
ence of the South African institute of computer sci-
entists and information technologists on IT research
in developing countries. South African Institute for
Computer Scientists and Information Technologists.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

208

