
Code Inspection Supported by Stepwise Abstraction and
Visualization

An Experimental Study

Anderson Belgamo1,2, Elis Montoro Hernandes1,3, Augusto Zamboni1,
 Rafael Rovina3 and Sandra Fabbri1

1LaPES - Software Engineering Research Lab, Federal University of São Carlos, UFSCar, São Carlos, SP, Brazil
2IFSP - São Paulo Federal Institute of Education, Science and Technology, Piracicaba, SP, Brazil
3IFSP - São Paulo Federal Institute of Education, Science and Technology, São Carlos, SP, Brazil

Keywords: Code Reading, Reading Technique, Software Inspection, Experiments, Empirical Software Engineering,
Experimental Software Engineering.

Abstract: Background: In order to inspect source code effectively and efficiently, in a previous work the use of
visualization for supporting the reading technique Stepwise Abstraction was proposed and implemented in
the CRISTA tool. Visualization aids code comprehension, which is an essential task for a successful
inspection. Goal: The objective of this paper is to evaluate the effectiveness and efficiency of using stepwise
abstraction supported by visualization for defects detection, in comparison to an ad-hoc approach. Method:
A controlled experiment was conducted with two groups of undergraduate students. One group inspected
the Java source code of the Paint software using the approach implemented in CRISTA and the other group
inspected the code using an ad-hoc approach. Results: The general performance of the subjects who used
Stepwise Abstraction supported by visualization was better than that of the subjects who used the ad-hoc
approach. Besides, the subjects’ experience in inspection and Java did not influence the identification of
defects. Conclusion: the results reveal that the use of Stepwise Abstraction and visualization promotes better
performance in detecting defects than the ad-hoc approach. In future work, other approaches are being
investigated as well as the support of the approaches for different types of defects.

1 INTRODUCTION

The software inspection process was created in 1972
by Fagan, for IBM, with the objective of improving
software quality and increasing programmers’
productivity. It is a static analysis method used for
verifying whether products generated during the
software development process satisfy users (Fagan,
1976, 1986).

The premise of inspection is that as soon as
defects are detected, less time is spent in reworking,
ensuring that the software can answer the user’s
requirements and be delivered on time and in
accordance with the budget.

The inspection process can be used for
inspecting every kind of artifact, for example,
requirements, documentation, and test case plans,
with the objective of improving the final product

quality. Inspection does not replace testing; they are
processes that must be combined (Russel, 1991;
Elberzhager et al., 2012).

In addition, inspection is a way of improving the
software maintainability that allows the detection of
types of defects that are not detectable by other
techniques (Siy and Votta, 2001). Examples are the
evolvability defects, which are related to functional
defects that would never be detected if inspection
were not applied (Mantyla and Lassenius, 2009).

Aiming to evaluate the software inspection
activity, some experimental studies have been
executed and the artifacts most frequently inspected
are the requirement document (Basili et al., 1996a;
Travassos et al., 2002; Marucci et al., 2002;
Belgamo et al., 2005) and source code (Dunsmore et
al., 2003; Laitenberger and DeBaud, 1997; Kelly
and Sheppard, 2000, 2002; Almeida et al., 2003).

In general, the inspection activity is supported by

39Belgamo A., Hernandes E., Zamboni A., Rovina R. and Fabbri S..
Code Inspection Supported by Stepwise Abstraction and Visualization - An Experimental Study.
DOI: 10.5220/0004886000390048
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 39-48
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

reading techniques, which aim to facilitate the task
and guide inspectors in finding defects. Particularly,
taking into account the source code, there are studies
highlighting the need for a systematic way to
comprehend it such that all type of defects can be
found. Besides, the systematic comprehension of
code can be aided by visualization techniques, which
were classified by Caserta and Zendra (2011).

The objectives of this paper are (a) to present an
inspection approach implemented through the
reading technique Stepwise Abstraction with the
support of visualization and (b) to present the results
of an experimental study that evaluated the
effectiveness and efficiency for defect identification
in source code, comparing the use of Stepwise
Abstraction supported by visualization, implemented
in the CRISTA (Code Reading Implemented with
STepwise Abstraction) tool (Porto et al., 2009b),
with the ad-hoc approach.

The results of the experiment give insights that
Stepwise Abstraction supported by visualization
helps the inspector to identify defects and makes the
activity shorter compared with the ad-hoc approach.

This paper is organized as follows: Section 2
presents concepts related to code inspection
supported by visualization and Stepwise
Abstraction. Section 3 presents the experiment
carried out and the results obtained. Finally, Section
4 presents our conclusions and future work.

2 CODE INSPECTION
SUPPORTED BY STEPWISE
ABSTRACTION AND
VISUALIZATION

Code comprehension is the starting point of code
inspection. In relation to code comprehension, a
usual approach for systematically comprehending
code is to analyze its structure and to construct a
high level representation for it. Some techniques
attempt to standardize abstractions derived from
program comments and variable names. Other
methods attempt to understand the program by
applying transformation rules for deriving abstract
concepts which represent parts of the code (Vinz and
Etzlorn, 2006). However, these approaches are not
used for code inspection, which is conducted
through reading techniques.

Aiming to identify the reading techniques used
for code inspection, a systematic mapping was
conducted and it was found that the following
techniques were used: ad-hoc (Aurum et al.,

2002),checklist (Gilb and Graham, 1993; Humphrey,
1989; Laitenberger and DeBaud, 1997; Dunsmore et
al., 2003), Stepwise Abstraction (Linger et al., 1979;
McMeekin et al., 2009), use case (Dunsmore, 2003),
Perspective-Based Reading, PBR (Basili et al.,
1996a; Basili et al., 1996b; Basili et al., 1998;
Laitenberger and DeBaud, 1997), Task-Directed
Inspection, TDI (Kelly and Sheppard, 2000; Kelly
and Sheppard, 2002), and the comparison-based
approach (Li, 1995).

The Stepwise Abstraction technique (Linger et
al., 1979) helps to comprehend the program
functionality through the functional abstraction
generated from the source code. The inspector must
read the code from the internal to the external
structures and write a specification for the software
according to his or her comprehension.

As the inspector should read and abstract all
parts of the code, he or she obtains a good
knowledge of the whole code. On one hand this is a
positive point, but on the other hand this technique
requires great effort and time, since even the
simplest parts of code, as a variable increment, must
be abstracted. Hence, the use of an ad-hoc technique
(nonsystematic) can be most productive.

Hence, Porto et al. (2009b) developed the
CRISTA tool to help in code comprehension and
code inspection, adopting the Stepwise Abstraction
technique supported by visualization. According to
Knight and Munro (1999, 2001) and Mayrhauser
(1998), visualization aims to acquire enough
knowledge about software through the
comprehension of the artifacts produced along the
software development process and the relationship
among them.

Code visualization is a kind of software
visualization that is frequently used for
comprehension purposes. In the context of this work
code visualization is used for comprehending the
code and also to support the application of the
Stepwise Abstraction technique.

The next section presents the CRISTA tool and
the visualization support implemented with the
treemap technique.

2.1 The CRISTA Tool

The motivation for implementing the tool CRISTA
was to support code inspection through the reading
technique Stepwise Abstraction and the visual
metaphor named treemap (Johnson and
Shneiderman, 1991). It provides support for the
whole process (reading the code, registering
discrepancies, joining discrepancy lists, etc.), unlike

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

40

other tools that just support some activities.
The visual metaphor treemap visually represents

the hierarchical blocks of the code, offering a simple
way to look at the code structure. Code blocks are
separated and represented as nested rectangles,
according to the code hierarchy. Initially, the
rectangles start in red to indicate that no block was
abstracted. In addition, by changing the rectangle
colors from red to green, the reader obtains a visual
feedback of the code analysis process according to
the evolution of the blocks abstraction.

Figure 1 presents the main screen of the tool,
which has three main areas: 1) the visual metaphor
that corresponds to the hierarchical structure of the
code being analyzed; 2) the code being analyzed,
which is logically linked to the visual metaphor; any
rectangle clicked on the metaphor highlights the
corresponding source code and vice-versa; and 3)
the documentation area, where the reader can enter a
comment, as a free text, explaining what the selected
code block executes. This comment can have a later
use to produce code documentation or pseudo-code,
since it will be physically associated to the selected
block. Once a comment has been inserted, the
rectangle corresponding to this code block changes
from red to green. Thus, the reader can easily follow
the progress of the code abstraction process.

CRISTA provides two options for abstracting
code: (i) following Stepwise Abstraction strictly, in
which the inspector can document an outer block
only if all the internal blocks were already
documented; and (ii) disabling the use of Stepwise
Abstraction, allowing any code block can be
abstracted without any constraint.

Besides, considering the diversity of program
languages, CRISTA was designed to be easily
instantiated for different languages (Porto et al.,
2009b). Currently, it accepts Java, C, C++, and
Cobol85 codes.

Some experimental studies were already carried
out to evaluate the use of visualization and the
support of CRISTA for conducting coding
inspection. In these studies (Porto et al., 2009a),
CRISTA was evaluated with a group of students (41
students in total). The studies indicate that the tool is
easy to use and can systematize code comprehension
and documentation.

Currently there are some tools for inspection,
particularly for supporting the software inspection
process, as mentioned by Hernandes et al. (2013).

For code inspection the following tools were
identified by the authors through a systematic
literature mapping: Team Tracks (DeLine et al.,
2005), ReviewClipse – RC (Bernhart et al., 2010),

SCRUB (Holzmann, 2009), ICICLE (Brothers et al.,
1990), Codestriker and ReviewPro (Remillard,
2005).

Although these tools can be used for code
inspection, they do not use visualization and they
accept only one programming language: C or Java.
They do not allow legacy code as Cobol programs to
be visualized through a visual metaphor.

3 EXPERIMENTAL STUDY

The objective of the experimental study was to
evaluate the effectiveness and efficiency for
detecting source code defects through two
approaches: Stepwise Abstraction supported by
visualization and Ad-hoc.

The Ad-hoc technique was selected for the
control group for two reasons: firstly, the authors
intend to identify code inspection patterns by
evaluating the way the participants have conducted
the inspection, since their actions were recorded.
Secondly, in general, checklists are adjusted for a
specific environment, such that they can abstract the
characteristics of the team for producing better
results.

The participants inspected an object-oriented
application with four known defects. The defect
descriptions were previously disclosed for the
participants to them so that they could mark the
necessary time to identify each of the defects.

Below, the sections describe the main topics of
the experiment, according to Wohlin et al. (2000).

3.1 Experiment Definition

The goal of the experiment was defined as shown in
the following template:

Analyze
The use of Stepwise Abstraction
supported by visualization

for the purpose of evaluation

with respect to effectiveness and efficiency

from the point of
view of the

researchers of the code inspection
area

in the context of

students of the Bachelor of
Computing Science and
Computing Engineering courses of
the Federal University of São
Carlos

Code�Inspection�Supported�by�Stepwise�Abstraction�and�Visualization�-�An�Experimental�Study

41

 1

2
3

Figure 1: CRISTA tool.

3.2 Context Selection

The experiment was a task during a Software
Engineering module in the context of the Bachelor
of Computing Science and Computing Engineering
courses at the University of São Carlos. The
participants received a grade only for their
participation and not for their performance. They
were aware of collaboration in the research and were
willing to participate

The context of the experiment can be
characterized according to four dimensions (Wohlin
et al., 2000): i) off-line: the software was not
developed by industry; ii) student: the subjects were
undergraduate students; iii) toy: the problem to be
solved was not a real problem, although the selected
application has all the features of the object-oriented
paradigm; iv) specific: the results cannot be
generalized to other contexts.

3.3 Variables Selection

For this experiment we considered the independent
variable, called “UsedTechnique”, which represents
the use or non-use of the reading technique Stepwise
Abstraction supported by visualization and
implemented in the CRISTA tool (Porto et al.,
2009b). This independent variable has two
treatments which characterize the way the code
inspection activity was done:
 StepVis: represents the use of Stepwise

Abstraction and visualization, that is, the use of
the CRISTA tool.

 Ad-Hoc: represents the use of an ad-hoc
approach.
Besides, there were also the following

independent variables:
 Experience in Java: this variable was used to

investigate whether experience in Java language
would have any influence on the results.

 Experience in code inspection: this variable was
used to investigate whether experience in code
inspection would have an influence on the
results.
Two dependent variables were considered:

 Effectiveness: defined as the amount of real
defects identified by the code inspector. It was
measured as the sum of discrepancies that were
correspondent to the list of four known defects;

 Efficiency: defined as the time spent by the
inspector. It was measured as “the number of real
defects identified/time”.
It is important to notice that the inspector can

identify discrepancies which cannot be classified as
“real defects”. These discrepancies are called false
positives and are not used to calculate the
effectiveness and efficiency variables.

3.4 Selection of Participants

The selection of participants was based on
convenience since the Software Engineering

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

42

program was offered by one of the authors. The
topic “Software Inspection” was part of this program
and most of the students (experiment participants)
had no previous knowledge of this topic.

3.5 Experimental Design

The experimental design was based on the
independent variable “UsedTechnique” such that
two reading techniques were compared: StepVis and
Ad-Hoc. Each subject used one of the techniques
and the subjects were divided into two groups (G1,
which used the StepVis alternative, and G2, which
used the Ad-Hoc alternative), consisting of 30 and
29 subjects, respectively. It is important to notice
that the participants were divided into two groups
according the characteristics collected by the profile
questionnaire.

3.6 Instrumentation

The materials used during the experiment execution
were the consent form, defect and time report,
feedback report, training material, source code of the
Paint software, and CRISTA tool to support the
Stepwise Abstraction technique and visualization.

The Paint software is a simple figure editor
written in Java language. It allows users to draw,
erase, clear, and undo colored strokes (using RGB
pattern) on a white canvas. This software has been
used in other studies (Ko et al., 2006; Robbilard et
al., 2004).

There is no documentation about Paint and the
code has no comment. Paint was implemented with
nine Java classes through nine source files that have
an average of 73 lines of code. The four defects
reported were not artificial, but emerged during the
creation of Paint (Ko et al., 2006):
 Defect 1: Users cannot select yellow color.
 Defect 2: The button “undo my last stroke” does

not work properly.
 Defect 3: The button “undo my last stroke” is

enabled without any action being taken.
 Defect 4: There is an option to draw a line but it

does not work.

3.7 Hypotheses Formulation

The following hypotheses were formulated:
 Hypothesis 1:

H0,1: There is no difference in the number of
defects (effectiveness) identified when using the
StepVis or the Ad-Hoc technique.

H1,1: There is a difference in the number of
defects (effectiveness) identified when using the
StepVis or the Ad-Hoc technique.
 Hypothesis 2:

H0,2: There is no difference in the time spent
(efficiency) when using the StepVis or the Ad-Hoc
technique.

H1,2: There is a difference in the time spent
(efficiency) when using the StepVis or the Ad-Hoc
technique.
 Hypothesis 3:

H0,3: The subject’s experience in code inspection
does not affect the number of defects identified
when using the StepVis or the Ad-Hoc technique.

H1,3: The subject’s experience in code inspection
affects the number of defects identified when using
the StepVis or the Ad-Hoc technique.
 Hypothesis 4:

H0,4: The subject’s experience in the Java
programming language does not affect the number
of defects identified when using the StepVis or the
Ad-Hoc technique.

H1,4: The subject’s experience in the Java
programming language affects the number of defects
identified when using the StepVis or the Ad-Hoc
technique.

3.8 Threats to Validity

There are some levels of validity to consider, which
are explained below:
 Internal validity: concerns external factors that

could affect the dependent variable.
a) Interference in subjects’ performance due to

the grade associated with the task. However,
as the grade was assigned just for
participation, it is considered that the
performance risk was mitigated.

b) Mistake when recording the final time of
technique application: this risk could not be
mitigated because each subject was
responsible for marking his or her time.

 External validity: concerns the degree to which
the results of the study can be generalized to a
broader context.
a) The results cannot be generalized to a

professional context. This threat was not
mitigated because only students participated
in the experimental study.

b) The Paint software, although used in other
experimental studies (Ko et al., 2006;
Robbilard et al., 2004), is not representative
of industrial products in terms of either size
or complexity.

Code�Inspection�Supported�by�Stepwise�Abstraction�and�Visualization�-�An�Experimental�Study

43

 Conclusion validity: concerns the relationship
between the treatment and the outcome.
a) When data normality could not be assumed,

we performed a statistical analysis using non-
parametric tests. The data normality was
evaluated using the Kolmogorov-Smirnov
test. Thus, this kind of risk was mitigated.

b) The subjects of both groups (StepVis and Ad-
Hoc) were trained on and applied just one
technique, mitigating possible interference by
treatment combination.

3.9 Preparation and Execution

Each subject received the necessary material to
execute the following tasks:
 Task 1: filling out a profile questionnaire, which

included personal and technical details.
 Task 2: the subjects were trained as follows:

G1was trained in code inspection using
“stepwise abstraction + visualization”, that is,
using the CRISTA tool, and G2 was trained only
in code inspection, that is, the Ad-Hoc technique.
The training was performed using a sample
application. This task was performed one week
before the execution of the experiment.

 Task 3: inspection of the Paint software
according to the assigned technique. The subjects
worked under examination conditions and were
not allowed to talk to each other or to ask the
supervisor.

3.10 Data Collection

Data collection occurred through questionnaires that
should be completed by each subject. The group that
used the CRISTA tool also answered questions
related to the use of the tool.

3.11 Analysis and Interpretation

The analyses were carried out by means of the
MiniTab statistical tool and the results are shown in
the next sections.

3.11.1 Descriptive Statistics

Figure 2 shows the percentages of subjects who
found the defects mentioned previously.

From Figure 2, it can be seen that all subjects
who applied StepVis found Defect 1. Almost 100%
of these subjects also found Defect 2. The greatest
difference occurred for Defect 4, which was found
by approximately 93% of subjects who applied

StepVis and about 41% those who applied Ad-Hoc.
In addition, in relation to Defect 3, subjects who
applied StepVis performed slightly worse than those
who applied Ad-Hoc. Therefore, the kind of defect,
its complexity, and its localization are being
investigated in another experiment. Nevertheless
some comments can be made:
 Defect 1: This defect is easy to locate in the

source code since it involves a single class where
it can be observed that only two colors of the
RGB pattern are mentioned (red and green).
Apparently, the influence of the technique on
finding this defect only affected the time spent
for its identification, as shown in Figure 3(a).

 Defect 2: This defect is considered complex
because its identification is not trivial through
static analysis. Regardless of this characteristic,
both techniques reached good effectiveness, as
shown in Figure 2.

 Defect 3: This defect depends on a deeper
comprehension of the source code because it is
necessary to comprehend and inspect two
different Java classes. The identification of
defects that involve more than one class is
probably more complex.

 Defect 4: To identify this defect it is necessary to
comprehend and inspect three Java classes that
are associated through inheritance and
dependency. According to Figure 2, the use of
StepVis provided better effectiveness than Ad-
Hoc.
Thus, the technique probably influenced the

identification of this defect.
Figure 3 presents the box-plots for each defect.

They present the time spent to identify the defect
and the technique applied.

The box-plot analysis reveals that the subjects
who applied StepVis identified defects in almost the
same time interval.

This fact can be observed, for example, in Figure
3(a), where the variability related to StepVis is less
than that related to Ad-Hoc. Although it is easy to
find Defect 1, with StepVis, 100% of the subjects
found it in a short time interval. Almost all subjects
who applied Ad-Hoc also identified Defect 1, but
they spent more time. Hence, it is interesting to
investigate whether there is some relationship
between the defect identification and the
effectiveness of the technique.

3.11.2 Hypothesis Test

Based on the hypotheses previously presented, the
data analysis used for answering them is presented.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

44

Figure 2: Percentage of participants who found defects.

The null hypothesis is written again to facilitate
reading.

H0,1: There is no difference in the number of
defects (effectiveness) identified when using the
StepVis or the Ad-Hoc technique.

For this hypothesis the chi-square test was
applied using all defects found by all subjects. The
p-value was 0.239, meaning that the null hypothesis
cannot be rejected; that is, the technique used does
not interfere with the number of defects found.
However, Defect 4 was found by 93.33% of subjects
who used StepVis and by 41.38% of those who used
Ad-Hoc. In another experiment, whose data are
under analysis, we are investigating different types
of defects. Hence, different types of defects were
injected in the source code in order to explore the
effectiveness of the StepVis technique. This
procedure is suggested by some authors whenever
the effectiveness of a technique is to be investigated
(Mäntylä and Lassenius, 2009; Ko et al., 2006).

H0,2: There is no difference in the time spent
(efficiency) when using the StepVis or the Ad-
Hoc technique.

As the data did not present a normal distribution,
the non-parametric Mann-Whitney test was used.
Considering a significance level of 95%, the p-value
was equal to 0.0247, meaning that the null
hypothesis can be rejected. This means that the time
spent detecting defects depends on the technique
used. Hence, using StepVis through CRISTA
impacts on the time spent.

H0,3: The subject’s experience of code inspection
does not affect the number of defects identified

when using the StepVis or the Ad-Hoc
technique.

For this hypothesis the statistical analysis was
done using the Pearson correlation. The result shows
that experience of inspection did not impact on the
number of defects found for either technique. The p-
value for the group which applied StepVis was equal
to 0.073 and that for the group which applied Ad-
Hoc was 0.0935.

Figure 4 shows the software inspection
experience for both groups of subjects.

H0,4: The subject’s experience in the Java
programming language does not affect the
number of defects identified when using the
StepVis or the Ad-Hoc technique.

In order to evaluate this hypothesis the statistical
analysis was done using the Pearson correlation.
Irrespective of the technique used, the null
hypothesis could not be rejected. This means that
experience in Java language had no influence on the
number of defects found. The p-values for the two
groups, StepVis and Ad-Hoc, were 0.285 and 0.475,
respectively.

Figure 5 presents the Java experience for both
groups.

4 CONCLUSION

According to the experimental results and analysis,
the use of the StepVis technique aided in defect
identification. In addition, considering the context of
the experiment, the participant’s experience of
inspection and the programming language had no

Code�Inspection�Supported�by�Stepwise�Abstraction�and�Visualization�-�An�Experimental�Study

45

(a) Defect 1

(b) Defect 2

(c) Defect 3

(d) Defect 4

Figure 3: Time spent inspecting the code.

Figure 4: Participants’ experience in source code inspection.

influence on the results.
Based on the results and the analysis of the

questionnaires, the following points can be
highlighted:
 When the StepVis technique is used, the

inspectors obtain a deep comprehension of the
code since this technique requires that all

elements of the code are abstracted (from the
inner to the outer, however simple they are).

 Despite the probable disadvantage of the
necessity of abstracting every element of the
code, the use of StepVis enhanced the
identification of defects once the whole project
was better understood.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

46

Figure 5: Participants’ experience (years) in Java programming language.

 The effectiveness of the code inspection activity
was not influenced by the techniques. However,
the efficiency was influenced by the technique
once the use of StepVis provides evidence of the
time improvement for executing the inspection
process.

 The effectiveness and efficiency related to
StepVis computational support of the CRISTA
tool allows the inspection data to be processed
and some reports to be generated. This aids in the
code comprehension and, consequently, in the
identification of defects.

 The computational support of the CRISTA tool
allows the inspection data to be processed and
some reports to be generated. This aids in the
code comprehension and, consequently, in the
identification of defects.
In summary, it seems that the StepVis technique

provides better conditions for defect identification
than the Ad-Hoc inspection.

A new experiment has been conducted with two
research purposes: (1) map the types of defects that
are found when applying StepVis and their
association with the object-oriented features, (2)
evaluate the decisions and workflow used by
inspectors when applying StepVis aiming at
identifying strategies for applying this technique.

ACKNOWLEDGEMENTS

Our thanks to the Brazilian funding agency CNPq.

REFERENCES

Almeida, J. R., Camargo, J. B., and Basseto, B. 2003. Best

practices in code inspection for safety-critical
software. IEEE Software, 20(3):56–63.

Aurum, A., Petersson, H., and Wohlin, C., 2002. State-of-
the-art: software inspections after 25 years. Software
Testing Verification and Reliability, 12(3):133–154.

Basili, V. R., Caldiera, G., Lanubile, F.,and Shull, F.
1996a. Studies on reading techniques. In: Annual
Software Engineering Workshop, 21, Greenbelt,
Maryland. NASA/Goddard Software Engineering
Laboratory Series, December, pp. 59–65.

Basili, V.R., Green, S., Laitenberger, O., Shull, F.,
Sørumgård, S., and Zelkowitz, M. 1996b. The
empirical investigation of Perspective-Based Reading.
Empirical Software Engineering, 1(2):133–164.

Basili, V., Green, S.,Laitenberger, O.,Lanubile, F.,Shull,
F.,Sorumgard, S.,and Zelkowitz,M. 1998. Lab package
for the empirical investigation of perspective-based
reading, University of Maryland. Available from:
http://www.cs.umd.edu/projects/SoftEng/ESEG/manu
al/pbr_package/manual.html. Last accessed: 29 August
2013.

Belgamo, A., Fabbri, S., and Maldonado, J. C.
2005.TUCCA: Improving the effectiveness of use case
construction and requirement analysis. In: Proceedings
of International Symposium on Empirical Software
Engineering, ISESE 2005, Noosa Heads, vol. 1.

Bernhart, M., Mauczka, A., Grechenig, T. 2010. Adopting
Code Reviews for Agile Software Development. Agile
Conference.

Brothers, L., Sembugamoorthy, V., Muller, M. 1990.
ICICLE: groupware for code inspection. In:
Proceedings of the ACM Conference on Computer-
supported cooperative work, CSCW.

Caserta, P.,and Zendra, O., 2011. Visualization of the
static aspects of software: a survey. IEEE
Transactions on Visualization and Computer
Graphics, 17(7):913–933.

Deline, R., Czerwinski, M., and Robertson, G., 2005.
Easing program comprehension by sharing navigation
data. IEEE Symposium on Visual Languages and
Human-Centered Computing, pp. 241–248.

Dunsmore, A., Roper, M., and Wood, M., 2003. The
development and evaluation of three diverse

Code�Inspection�Supported�by�Stepwise�Abstraction�and�Visualization�-�An�Experimental�Study

47

techniques for object-oriented code inspections. In:
IEEE Transactions on Software Engineering,
29(8):677–686.

Elberzhager, F., Münch, J., and Nha, V. 2012. A
systematic mapping study on the combination of static
and dynamic quality assurance techniques.
Information and Software Technology.

Fagan, M. E. 1976. Design and code inspections to reduce
errors in program development. IBM Systems Journal,
15(7):182–211.

Fagan, M. E. 1986. Advances in software inspections.
IEEE Transactions on Software Engineering,
12(7):744–751.

Gilb, T., and Graham, D. 1993. Software Inspection.
Wokingham, England: Addison-Wesley.

Hernandes, E., Belgamo, A., Fabbri, S. 2013.
Experimental studies in software inspection process –
a systematic mapping. In: International Conference on
Enterprise Information Systems, ICEIS.

Holzmann, G. J. 2009. SCRUB: a tool for code reviews.
Laboratory for Reliable Software, Jet Propulsion
Laboratory, California Institute of Technology.

Humphrey, W.S. 1989. Managing the software process.
Addison-Wesley Longman Publishing Co.

Johnson, B., and Shneiderman, B. 1991. Tree-maps:
aspace-filling approach to the visualization
ofhierarchical information structures. In: Proceedings
ofthe 2nd Conference on Visualization.

Kelly, D.,and Sheppard, T. 2000. A novel approach to
inspection of legacy code. Proceedings of Practical
Software Quality Techniques, PSQT’00, Austin,
Texas.

Kelly, D., and Sheppard, T. 2002. Qualitative observations
from software code inspection experiments.
Proceedings of the Conference of the Centre for
Advanced Studies on Collaborative Research,
CASCON '02.

Knight C., and Munro M., 1999. Visualising software – a
key research area. Proceedings of the International
Conference on Software Maintenance, ICSM'99, IEEE
Press.

Knight C., and Munro M., 2001. Visualising the non-
existing, IASTED International Conference: Computer
Graphics and Imaging, Hawaii, USA.

Ko, A.J., Myers, B.A., Coblenz, M.J.,and Aung, H.H,
2006. An exploratory study of how developers seek,
relate, and collect relevant information during
software maintenance tasks. IEEE Transactions on
Software Engineering, 32(12): 971–987.

Laitenberger, O., and Debaud. J., 1997. Perspective-based
reading of code documents at Robert Bosch GmbH.
Information and Software Technology.

Li, X. A., 1995. Comparison-based approach for software
inspection. Proceedings of the 1995 Conference of the
Centre for Advanced Studies on Collaborative
Research, CASCON '95.

Linger, R. C., Mills, R. C., and Witt, B.I. 1979. Structured
Programming: Theory and Practice. Addison-Wesley.

Mäntylä, M. V., and Lassenius, C. 2009. What types of
defects are really discovered in code reviews. IEEE

Transactions on Software Engineering, 35(3):430–
448.

Marucci, R. A., Fabbri, S. C. P. F., Maldonado, J. C., and
Travassos, G.H. 2002.OORTs/ProDeS: Definição de
técnicas de leitura para um processo de software
orientado a objetos. In: Simpósio Brasileiro de
Qualidade de Software, Gramado, Brazil.

Mayrhauser A., and Vans, A. M. 1998. Program
understanding behavior during adaptation of large
scale software. Proceedings of the 6th International.
Workshop on Program Comprehension, IWPC ’98,
Italy, pp. 164–172.

McMeekin, D. A., Von Konsky, B. R., Chang, E. J.,and
Cooper, D. 2009.Evaluating Software Inspection
Cognition Levels Using Bloom’s Taxonomy. 22nd
Conference on Software Engineering Education and
Training, CSEET '09.

Pfeiffer, J., and Gurd, J. 2006. Visualisation-based tool
support for the development ofaspect-oriented
programs. Aspect-Oriented Software Development
Conference.

Porto, D., Mendonça, M., and Fabbri, S., 2009a. CRISTA:
A tool to support code comprehension based on
visualization and reading technique. 17thIEEE
International Conference on Program
Comprehension.

Porto, D, Zamboni, A., Mendonça, M., and Fabbri, S.
2009b. Manutenção de código apoiada pela ferramenta
CRISTA. Anais do VI Workshop de Manutenção de
Software Moderna, 2009, VI WMSWM, Ouro Preto.

Remillard, J. 2005. Souce code review systems. IEEE
Software.

Robbilard, M. P., Coelho, W., and Murphy, G. C., 2004.
How effective developers investigate source code: an
exploratory study. IEEE Transactions on Software
Engineering, 30(12): 889–903.

Russel, G. W. 1991. Experience with inspection in
ultralarge-scale developments, IEEE Software,
8(1):25–31.

Siy, H., and Votta, L. 2001. Does the modern code
inspection have value? In: Proceedings of IEEE
International Conference on Software Maintenance.

Travassos, G. H., Shull, F., Carver, J., and Basili, V. R.
2002. Reading techniques for OO design inspections,
Technical Report CS-TR-4353, UMIACS-TR-2002-
33, University of Maryland, Maryland, 56 p. Available
from: http://drum.lib.umd.edu/bitstream/1903/1193/
1/CS-TR-4353.pdf.

Vinz, B. L., and Etzkorn L. H., 2006. A synergistic
approach to program comprehension. In: International
Conference on Program Comprehension, ICPC 2006,
pp. 69–73.

Wohlin, C., Runeson, P., and Höst, M., 2000.
Experimentation in Software Engineering – An
Introduction. Sweden: Springer.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

48

