
Capturing Context Information in a Context Aware Virtual Environment

Helio H. L. C. Monte-Alto and Elisa H. M. Huzita
State University of Maringá, Informatics Department, Maringá, Paraná, Brazil

Keywords: Virtual Environment, Context Awareness, Collaborative Work, Multi-agent Systems.

Abstract: Designing context aware applications is a great challenge given the complexity of such systems, specially
concerning the mechanisms to provide sensing, or capturing, of context information. There are many works
in literature toward providing context awareness in physical environments, such as pervasive systems. How-
ever, when dealing with virtual environments, such as distributed environments to support collaboration for
teams distributed geographically, an increase on complexity of its design comes up. There is a need to model
a software system which uses concepts present in physical environments in order to try to reduce the disad-
vantages of the distribution. This work explores this challenge, focusing on conceiving a solution for context
awareness in distributed virtual environments. We also present a model for designing a platform to support the
development of multi-agent based context aware virtual environments.

1 INTRODUCTION

Context awareness has been extensively used in dis-
tributed systems, specially pervasive systems to pro-
vide smart physical spaces. A context aware en-
vironment should be able to allow perception of it
and autonomously execute actions in order to opti-
mize its operations, its behaviours and its interactions
with the user (Viterbo et al., 2009). However, there
are other applications of context awareness beyond
physical environments. There is a growing need for
virtual environments, specially to support collabora-
tive work for users geographically distant from each
other. In such environments, context perception is not
as straight forward as in physical environments, in
which context is captured through physical sensors.
In distributed and virtual environments, such percep-
tion must be done exclusively by software entities, re-
quiring an appropriate software architecture to sup-
port context awareness.

In order to implement context aware systems, one
of the most suitable approaches is by means of multi-
agent systems, given that an agent is a computational
entity which is autonomous, situated and able to sense
in an environment (Wooldridge, 2002). Agents also
may interact with other agents, making it appropriate
for collaborative environments.

Once understood such ideas for context aware-
ness, it has been proposed a multi-agent infrastructure
to support the development of context aware systems

for virtual environments called CAKMAS (Context
Awareness and Knowledge-Based Multi-Agent Sys-
tems) (Monte-Alto et al., 2013). In its current archi-
tecture, it proposes solutions for persistence and dis-
semination, although its aim is to provide much wider
support for context awareness. One of the key is-
sues to be addressed in context aware environments
is the need of capturing context information. This
paper presents a solution for this problem, extending
CAKMAS, and focusing on mapping the concepts of
a physical environment and using them to design a
virtual multi-agent environment where agents are able
to sense what is happening in order to take decisions
and react accordingly.

This paper is divided in six more sections. Sec-
tion 2 presents some works towards context aware
and multi-agent architectures and their flaws regard-
ing context capturing in virtual environments. Sec-
tion 3 presents the conceptualization to help figuring
out how should a virtual environment be designed in
order to properly support context awareness. Section
4 presents our proposal for a multi-agent platform to
support virtual environment with context awareness
capabilities. In Section 5 it is presented a case study
to demonstrate the functionality and effectiveness of
the proposed architecture. Finally, conclusions and
future works are discussed.

605H. L. C. Monte-Alto H. and H. M. Huzita E..
Capturing Context Information in a Context Aware Virtual Environment.
DOI: 10.5220/0004885406050612
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 605-612
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



2 RELATED WORKS

One of the most adopted approaches for context aware
systems is the middleware infrastructure, which in-
troduces a layered architecture for context aware sys-
tems with the intention of hiding low-level sensing
details (Chen, 2004; Baldauf et al., 2007). In order to
provide middleware solutions, it has been proposed
agent-based systems as the approach for implement-
ing these systems. Such choice gained popularity due
to agent’s characteristics, which brings decentraliza-
tion and facilitates reasoning and sharing of context
information.

A multi-agent system requires that the agents have
an environment in which they live, act and inter-
act. Many context aware multi-agent systems archi-
tectures have been proposed in the literature thus far.
However, most works focus on physical environments
instead of virtual environments, and how to provide
context awareness in pervasive systems. There is a
lack of works focused on exploiting mechanisms to
allow software agents to sense what is happening in
a virtual environment, as well as more intuitively de-
signing virtual environments based on the concepts of
physical environments, as presented in Section 3.

The ACAI Framework, presented by Khedr and
Karmouch (2005), proposes agents that accomplish
several requirements of context awareness, such as
context composition, inferring, and inter-domain con-
text invocation. This project focuses on issues of con-
text representation and reasoning in agent systems for
pervasive environments.

CoBrA (Chen, 2004) is an agent-based architec-
ture to support context aware system in smart spaces -
i.e. physical and pervasive environments. Its architec-
ture focuses on a special agent called Context Broker,
which maintains a shared model of the context of the
environment, providing it for a community of agents,
services and devices. As it focuses on capturing con-
text from physical sensors, there is no concern about
sensing context in virtual environments.

CAKMAS is an architecture whose purpose is to
support knowledge-based and context-aware multi-
agent systems, specially for collaborative virtual en-
vironments. It is based on the DiSEN-CSE model,
which defines a whole cycle for context-awareness,
including capturing, processing, disseminating and
persisting context information. The current status of
this project focuses on persistence and dissemination
of context. This paper focuses on extending CAK-
MAS to support context capturing / sensing properly.

There are also many works focused on virtual en-
vironments in the area of Virtual Reality. However,
they usually deal with immersive digital environments

or virtual spaces, i.e., 3D environments which try to
simulate physical environments (Churchill and Snow-
don, 1998). Such works are concerned with issues re-
lated with sensing similar to physical environments,
such as distance and collision of virtual objects. This
is not the aim of our work, which proposes a dis-
tributed software system which inherits some charac-
teristics of physical environments in order to improve
awareness and collaboration for a distributed team.
Further detail will be covered in Section 3.

3 CONCEPTUALIZATION

3.1 Designing a Virtual Multi-agent
Environment

The term ”Virtual Environment” is increasingly being
part of the life of most people. Everyone is connected,
and the Web has become an extension of the phys-
ical environment for many. Although the term Vir-
tual Environment is often used for any software sys-
tem in which the user interacts, there are some more
specific definitions, specially in the area of Virtual
Reality (VR). According to Churchill and Snowdon
(1998), a Collaborative Virtual Environment (CVE)
is a computer-based, distributed, virtual space or set
of places in which people can meet and interact with
others, with agents or with virtual objects.

The idea of virtual environments are very
widespread in the area of collaborative working as a
way of supporting awareness, coordination and com-
munication in a distributed team (Benford et al., 2001;
Churchill and Snowdon, 1998). Therefore, such con-
cept is very important for this work since it defines
the way the users will interact to it and also with other
users through the environment.

In order to achieve a suitable virtual environment
to support collaboration in a distributed team, there is
nothing better than basing it on concepts involved in a
physical environment. Although our aim is not to con-
ceive a virtual environment which totally simulates a
physical environment, we can take some characteris-
tics and concepts from real physical environment in
order to design a suitable virtual environment for col-
laboration, as it is going to be exposed as follows.

3.2 Differences Between Physical and
Virtual Distributed Environments

In order to capture good ideas regarding how to de-
sign a virtual environment, it is interesting to try to
highlight differences between a physical environment

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

606



and an hypothetical virtual environment. To accom-
plish this, it is necessary to take an overview of both
environments, as it is exposed on Figures 1 and 2.

Figure 1: Physical environment.

In physical environment, an individual (or agent)
interacts with physical objects and resources that are
present in the environment, and also interacts with
other individuals. All these interactions occurring
in the environment are naturally and cognitively per-
ceived by other individuals in the environment, based
on their interest and proximity in the event. In sum-
mary, it is possible to highlight three main character-
istics of such environment:
1. An agent acts in the environment by interacting

with its objects and resources. It does that by
means of actuators provided by the environment
and linked to these objects and resources. Exam-
ple: an agent is able to open a door because it has
a knob which allows such action.

2. The agent is also able to interact (or socialize)
with other agents in the environment by some
means of communication, such as spoken conver-
sation and gestures.

3. The agents can perceive what other agents are
doing in the environment. This usually happens
when they are interested in what the other agent
is doing, or what is going on with it. The interest
may be focused on the agent in particular, in the
action the agent is taking, or both. In other terms,
we can say that an agent intercepts the interactions
of one or more different agents in order to gather
useful information earlier. This also characterize
the concept of awareness.
Summarizing, we have three main characteristics

of an environment: (i) action, (ii) socialization and
(iii) awareness. The great challenge is how to design
and implement such concepts in a distributed and vir-
tual environment. Figure 2 shows an overview of a

distributed environment and its concerns about these
issues.

One very important concept that arises from all
this scenario is context. An agent needs to be aware
of the context of the environment in order to facilitate
seeking its goals. The way the context is captured in
a physical environment is natural and sensed by hu-
man cognition. As well as a human agent is capable
of hearing and seeing what interesting events are hap-
pening around him/her, software agents must be able
to capture interesting information from the environ-
ment. They must also be capable of processing the
information captured from the environment in order
to turn it in reasonable information - or knowledge
- because conclusions or new information can be in-
ferred from it.

This work is specially concerned in capturing
context information from the environment, providing
proper awareness for the agents in a distributed and
virtual environment.

4 CAKMAS PLATFORM

4.1 Overview

Based on CAKMAS architecture (Monte-Alto et al.,
2013), we propose a FIPA-compliant Agent Platform
(AP) (FIPA, 2000), extending CAKMAS toward a
broader context aware supporting, taking into consid-
eration all the conceptualization presented in Section
3. Such platform architecture is going to be called
CAKMAS Platform. In this paper, we will focus on
the ideas and mechanisms to support awareness in
such platform. In other words, we present solutions
for the problem of agents perceiving events in the en-
vironment according to their interest.

An overview of CAKMAS Platform can be seen
at Figure 3. It illustrates the agents involved in the
environment, including specialized agents of the plat-
form, responsible for managing the platform and pro-
viding context awareness facilities. The platform is
composed of the following specialized agents:

� Manager Agent (MA): a FIPA based agent that
exerts supervisory control over access to the AP.
It also maintains a directory of registered agents
identifiers. Each agent must register with the MA.

� Directory Agent (DA): another FIPA special agent
that provides yellow pages services for the agents.
Environment services must be registered in this
agent in order to provide description and discov-
ery for them. Agents also may register their ser-
vices with the DA or query the DA to find out what

Capturing�Context�Information�in�a�Context�Aware�Virtual�Environment

607



Figure 2: Virtual environment.

services are offered by other agents.
� Service Broker Agent (SBA): Inspired by a simi-

lar solution proposed by Tapia et al. (2008), this
agent is responsible for managing incoming re-
quests from the user to be processed by services.
It basically invokes the service and returns the
response back to the users, ensuring that every
action from the user in the environment passes
through the AP, which allows context capturing
by the agents.

� Ontology Agent (OA): the agent responsible for
persisting and disseminating context information
among the agents in the environment (Monte-Alto
et al., 2013).
The remaining agents are application specific

agents. Every agent in the platform is called a CAK-
MAS Agent, and inherits some special features that
must be available in order to support context aware-
ness, as explained below.

4.2 Agent Internal Architecture

The internal architecture of a CAKMAS Agent is
shown on Figure 4. Such architecture is character-
ized by the BDI (Belief-Desires-Intentions) model
and four stages which define its behaviour and life cy-
cle. This four-stages behaviour is compliant to the ar-
chitecture of SemantiCore, an AP for Semantic Web
applications (Blois et al., 2007). It also matches the
essence of agents, which must sense the environment
by sensors, make some decisions based on its knowl-
edge and act accordingly through actuators (Russell
and Norvig, 2003).

The belief of an agent in CAKMAS is repre-
sented as knowledge about the environment - includ-
ing the context of the environment - and related ap-
plication domain, as well as the rules involved. Such

knowledge is described and implemented by means
of ontologies and the rules are implemented as infer-
ence rules, using specially Web Semantic standards
and technologies such as OWL, RDF, SPARQL and
SWRL (W3C, 2001). It is also by means of ontologies
that context information (or context knowledge, given
that the context is represented semantically) is rep-
resented in our architecture, as explained in (Monte-
Alto et al., 2013). This provides a uniformity in the
way context knowledge is shared and used for reason-
ing.

The desires of an agent are the goals it wants to
achieve. A goal can be defined as a state, or a set of
facts that the agent wants to be true in the environ-
ment. An agent knows when a goal is achieved when
its knowledge about the environment matches the de-
scription of the goal. When the agent decides, based
on its goals, to commit with an action plan, an inten-
tion is created. In other terms, the intentions of an
agent are comprised of action plans that it decided to
take in order to reach its goals.

Goals also define the interests of an agent. An
agent may be interested only on information that can
help it to reach its goals, and such information is cap-
tured by the agent by means of its sensors. This way,
the desire of an agent defines which kind of context
information it wants to be aware of.

The four-stages model of the agent behaviour is
also totally focused on the BDI model. A sensor cap-
tures messages from the environment and filters them
according to the interest, defined based on the desires,
of the agent.

The decisory component is the responsible for
reasoning about the facts coming from the environ-
ment over its own knowledge (belief), aiming to
achieve its goals. In general, such decisions are made
by means of running an inference engine with infer-

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

608



Figure 3: CAKMAS Platform.

Figure 4: Internal Architecture of a CAKMAS Agent.

ences rules over the current knowledge the agent has
about the context of the environment. These decisions
should result in the execution of actions to react ac-
cordingly to these events and also pro-actively try to
achieve its goals by acting in the environment and in-
teracting with other agents collaboratively.

The execution component use the concept of
workflow to execute actions in specific orders based
on the decisions taken by the decisory component.
The actions can also use specific actuators to act in
the environment - e.g. the service to send an e-mail re-
quires a specific actuator to invoke this service. Given
that many agents may have to execute similar actions
and use the same actuators, such architecture allows
reusing of actions and actuators.

Regarding context capturing support, CAKMAS

Agents use the pattern Observer to get informed about
events which they may be interested. Each agent has a
list of subscribers, which are the agents that are inter-
ested in the actions of this agent. Whenever the agent
acts in the environment, usually by means of message
exchanges, each one of its subscribers also receives
the message. In other words, the subscribers intercept
the message of the publisher, becoming aware about
the occurrence.

4.3 Service Broker Agent

The Service Broker Agent (SBA) is responsible for
providing an interface between the agents of the plat-
form - usually User Agents - and the services pro-
vided in the environment by managing service re-
quests and responses. It was based on the FUSION@
architecture proposed by Tapia et al. (2008), and its
functionality is detailed in Figure 5 and described as
follows:

1. An agent sends to SBA a request for a service
available in the environment, probably discovered
via DA;

2. SBA receives the request via its sensor and pass
the message to its decisory component;

3. The decisory component makes some security
checks by asking DA whether the service really

Capturing�Context�Information�in�a�Context�Aware�Virtual�Environment

609



Figure 5: Service Broker Agent behaviour.

exists and if its request message is semantically
and syntactically correct.

4. Following the decision to continue the process,
some actuators are called. One of them invokes
the service properly. The other sends the informa-
tion about the service request to every subscriber
of SBA, which is the key to provide awareness in
the environment.

5. SBA receives a response from the service invoked
via an appropriate sensor, and send it to the de-
cisory component;

6. The service response is identified and packed in
order to send the response to the requester. It also
deregisters the service as being done.

7. The agent sends the response for the requester
agent and also for every subscriber.

Given this process, we have a combination of
the Observer approach and the broker architectural
model to provide awareness for the agents in the vir-
tual environment.

5 EMPIRICAL STUDY

In complex and distributed systems it is often not
straight forward to figure out every detail of its infras-
tructure. CAKMAS Platform provides such kind of
infrastructure, thus it is expected that uncertainty dur-
ing the modelling of such architecture comes up. It is
necessary some empirical study to ensure that every

detail has been covered and make sure that it is effec-
tive. To accomplish this, a case study was carried on,
aiming to give strength to our proposal and also ex-
panding the sight to a particular application. A proto-
type of the scenario was also implemented in order to
allow an experimental study and to catch a glimpse of
the improvements introduced by CAKMAS Platform.

The scenario used for this study is the same appli-
cation which is the focus of research of our research
group: a Global Software Engineering environment,
called DiSEN. Part of its architecture aims to provide
context awareness to such environment by means of
some components such as the Middleware, the Agent
Manager and the Object / Service Manager.

The idea of this case study is to map DiSEN’s
components to CAKMAS Platform’s elements, as if
it was the base for DiSEN’s context awareness fea-
tures’ implementation. The scenario, already present-
ing such mapping, is represented in Figure 6, and de-
scribed as follows.

5.1 Preconditions

Developer Bob is member of a team which is work-
ing on project DiZEN (a fictional and contradictory
project) and whose project manager is Alice. Bob has
been allocated to work on a task T with a certain pri-
ority P1. Therefore, his personal agent BobAgent is
interested in being aware when there is a change in
T’s priority. Alice also has a personal agent called
AliceAgent, which may act in the environment on her
behalf.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

610



Figure 6: DiSEN with CAKMAS scenario.

5.2 Description

The following is the exact description of the interac-
tions that take place in our scenario:
1. Alice, the project manager, interacts with the en-

vironment and asks its personal agent AliceAgent
to change task T priority;

2. AliceAgent receives this request and looks for the
adequate service.

3. AliceAgent creates a service request following a
specified standard (e.g. SOAP) and sends it to
SBA;

4. SBA takes the required actions as described in
Section 4.3, and then invokes the service re-
quested. It also publishes the request to all sub-
scribers, which includes BobAgent;

5. BobAgent receives the message containing the
service request from AliceAgent, becoming aware
of Alice’s wish to change T priority. It knows that
the message is interesting based on its interest, or
desire, as explained in Section 4.2;

6. BobAgent notifies developer Bob about the prior-
ity change properly. Such action - the notification

- is triggered when its decisory component reason
about the fact that one of the tasks Bob is working
had its priority changed;

7. While Bob becomes aware of Alice’s action, the
request is processed by the service provider, i.e.,
the service implementation. The context knowl-
edge is also generated and sent to the OA, which
will check consistency, persist and disseminate it.
In case of success, SBA can confirm the action
to BobAgent. Such confirmation may also end up
being made by the OA, which will disseminate the
new context information later. Otherwise, SBA
can inform BobAgent that the operation triggered
by AliceAgent was not successful and advice Bob
properly about it.

5.3 Post-condition

The project manager Alice made his priority change
of T successfully and the developer Bob could be
aware of this context change immediately.

Capturing�Context�Information�in�a�Context�Aware�Virtual�Environment

611



5.4 Implementation and Experimental
Study

The given scenario, as well as a preliminary version
of CAKMAS Platform, was implemented in order to
foresee the improvements of using the proposed ap-
proaches for context capturing. As a continuation of
the previous CAKMAS implementation, it was im-
plemented in Java, based on the framework Semanti-
Core, using Jena to handle ontologies.

The scenario was run with and without the mech-
anism introduced in CAKMAS Platform. In the case
without the SBA, BobAgent gets informed when the
OA disseminates the new context in the environment,
while it persists it in the knowledge base. Each case
was run 40 times to take averages. The detailed ex-
perimental results and analysis are out of scope of
this paper given the paper length limitation. However,
just to give a glimpse of the results, the average time
BobAgent took to be aware of Alice’s action without
the SBA was 636,03 milliseconds, whereas the same
with SBA was 58,29 milliseconds. The improvement
in the time to be aware of context is significant for the
scenario, and we can deduce that it must reflect in a
real environment.

6 CONCLUSIONS AND FUTURE
WORKS

Proposing solutions for context aware virtual environ-
ments is justified by the increasing demand for tools
to support collaboration among people geographically
distributed. In such cases, the lack of a common en-
vironment in which people can act, interact and be-
come aware of the situation demands some kind of
software system to improve coordination and aware-
ness. CAKMAS Platform is proposed as an exten-
sion of CAKMAS architecture taking into account the
concept of environments, agent platforms and context
capturing. As presented in Monte-Alto et al. (2013),
previous work has focused on reasoning, persistence
and dissemination of context information, but lacked
proper ways of capturing it.

The proposed solution was analysed and validated
by means of a case study and an experimental study
using a prototype. Such empirical studies allowed
us to figure out in more detail the functionality and
effectiveness of CAKMAS Platform. However, fur-
ther validation including a more robust implemen-
tation and experimental study is necessary to give
strength to our proposal, which will be covered in fu-
ture works.

REFERENCES

Baldauf, M., Dustdar, S., and Rosenberg, F. (2007). A sur-
vey on context-aware systems. International Journal
of Ad Hoc and Ubiquitous Computing, 2(4):263–277.

Benford, S., Greenhalgh, C., Rodden, T., and Pycock, J.
(2001). Collaborative virtual environments. Commu-
nications of the ACM, 44(7):79 85.

Blois, M., Escobar, M., and Choren, R. (2007). Using
agents and ontologies for application development on
the semantic web. J. Braz. Comp. Soc., 13(2):35–44.

Chen, H. (2004). An Intelligent Broker Architecture for Per-
vasive Context-Aware Systems. PhD thesis, University
of Maryland, Baltimore County.

Churchill, E. F. and Snowdon, D. (1998). Collaborative vir-
tual environments: an introductory review of issues
and systems. Virtual Reality, 3(1):3–15.

FIPA (2000). FIPA agent management
specification. Specification 23, FIPA.
http://www.fipa.org/specs/fipa00023/SC00023K.pdf.

Khedr, M. and Karmouch, A. (2005). Acai: agent-based
context-aware infrastructure for spontaneous appli-
cations. J. Network and Computer Applications,
28(1):19–44.

Monte-Alto, H. H. L. C., Biasão, A. B., Teixeira, L. O., and
Huzita, E. H. M. (2013). Multi-agent and context-
aware solutions for a global software development en-
vironment. International Journal of Artificial Intelli-
gence, 11(A13):115–129.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence:
A Modern Approach. Pearson Education Inc, Upper
Saddle River, NJ, 2 edition.

Tapia, D. I., Rodrı́guez, S., Bajo, J., and Corchado, J. M.
(2008). Fusion@, a soa-based multi-agent architec-
ture. In DCAI, volume 50 of Advances in Soft Com-
puting, pages 99–107. Springer.

Viterbo, J., Mazuel, L., Charif, Y., Endler, M., Sabouret,
N., Breitman, K., Seghrouchni, A. E. F., and Briot,
J.-P. (2009). Managing distributed and heterogeneous
context for ambient intelligence. Context-Aware Self
Managing Systems, CRC Studies in Informatics Se-
ries, pages 79–128.

W3C (2001). W3c semantic web.
Wooldridge, M. (2002). Introduction to MultiAgent Sys-

tems. John Wiley and Sons.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

612


