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Abstract: Ambient Intelligence provides technology support and assistance to help people in their daily wellbeing. 
Equipped with ubiquitous technologies, Ambient Intelligence uses sensors to monitor the environment and 
to collect data continuously providing systems with updated information. Ideally, these computer-supported 
environments must detect relevant events to forecast future situations and to act proactively to mitigate or 
eliminate undesired situations while regarding user’s specific needs. To build a system with reactive and 
proactive characteristics in Ambient Intelligence, it is important to allow it to be extensible, predictive and 
to incorporate decision-making capabilities. In this sense, the objective of this work is to propose an ap-
proach for providing reactive and proactive behavior in Ambient Intelligence systems. More specifically, we 
want to provide Situation as a Service in Ambient Assisted Living. In the present work, we illustrate practi-
cal aspects of the system’s architecture by describing a home-care scenario in which the system is able to 
understand the behavior of the user, as the time goes by, and detect relevant (dangerous) situations in order 
to act reactively and proactively and help users manage their health condition. 

1 INTRODUCTION 

In the future it is expected that Ambient Intelligence 
(AmI) will enable environments to support people, 
being sensitive to their needs and capable of antici-
pating behaviors (Sadri, 2011). Fields such as Ambi-
ent Assisted Living (AAL) (Jara, Zamora and 
Skarmeta, 2011) and Smart Homes (Chan et al., 
2008) are emerging as AmI focused on specific 
characteristics of the user.  

Currently, there is a lack of support for extensi-
ble Ambient Intelligence systems to incorporate 
reactive and proactive behavior. In addition, these 
systems must (a) manage heterogeneous sources 
(sensors and appliances) to provide high level in-
formation such as situations; (b) process events for 
detecting situations in the environment; (c) make 
predictions of unwanted situations and to react in 
advance; (d) determine the policy of actions to con-
sume appropriate services for adapting the environ-
ment ahead the situation envisaged; (e) have expan-
sive capacities to manipulate different situations.  

Among these challenges, this paper focusses on 
how to process events to detect and predict future 

situations. In this sense, we argue that for fulfilling 
user needs, AmI systems should be reactive and 
proactive. Thus, these systems must be aware of the 
user current situation and foresee future situations. 
The system must make decisions in advance, taking 
into account evidences that demonstrate the possibil-
ity of an unwanted situation happening in the future.  

In our approach, the user and his actions are 
monitored through sensors that capture environmen-
tal data. This data is used to characterize the user 
context, using entities for obtaining a semantic char-
acterization that determines the state of the environ-
ment. In the proposed approach, the state of the en-
vironment is called “situation”. 

Thus, when a situation is detected, if necessary, 
it is possible to act reactively and proactively on the 
environment, using capabilities (services) provided 
by electronically controlled devices, seeking to adapt 
automatically the environment according to the situ-
ation envisaged.  

In our approach the actions of the system are 
achieved by using functionalities implemented by 
Web services embedded in physical objects such as 
mobile phones, televisions and radios.  
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This work focuses on unwanted situations involving 
the lives of elderly people at home. In this context, 
systems that foresee and handle unwanted situations 
proactively can assist caregivers of users who do not 
have physical or cognitive conditions for managing 
their own health, because it is necessary to act be-
fore an unwanted situation occurs.  

Thus, the approach was applied to a specific 
case-based application for managing medicines. In 
this case, citizens self-manage their health, and an 
application assists this activity. Over time, the citi-
zens are affected by cognitive decline, when they 
become unable to manager their medications and the 
system must adapt itself to assist caregivers. The aim 
is to analyze the user behavior for predicting the 
need of some early action to aid them to take their 
medications at the right time, preventing a decrease 
in their health condition.  

This paper is organized as follows. Section 2 dis-
cusses background and related work. Section 3 pre-
sents the proposed reactive and proactive approach. 
In Section 4 and 5, presents the case study devel-
oped. Finally, in Section 6, we present and discuss 
our conclusions and future works. 

2 BACKGROUND AND RELATED 
WORK 

Ambient intelligence systems need to know the 
world around users they monitor and, in order to 
perform  actions, they need to interact with users 
through the devices that surround them (Augusto, 
Nakashima and Aghajan, 2009). Therefore, intelli-
gence systems must be context-aware and proactive, 
automatically adapting to changes in the environ-
ment and considering user needs, without requir-
ing their personal attention.  

Regarding to context-aware systems, the concept 
of context must be defined. We adopt the definition 
of Ye, Dobson and McKeever (2011), in which con-
text is seen as “the environment in which the system 
operates”. Dey and Abowd (1999), however, charac-
terize context as the situation of an entity in an envi-
ronment. In the present work, the context of an envi-
ronment is thus represented by a set of entities that 
surround or interact with the user, and their semantic 
relations.  

As the time goes by, different entities or interac-
tions may be active. In this sense, we need to verify 
the current contextual state of the user and act upon 
it or on its changes. We thus need to define the con-
cept of situation, since it is used by us to character-

ize the state of the user environment. For instance, 
Ye, Stevenson and Dobson (2011) define situation 
as the abstraction of the events occurring in the real 
world that are derived from the context and hypothe-
ses about how the observed context relates to factors 
of interest.  

In this sense, applications that deal with situa-
tions are called situation-aware. Awareness implies 
vigilance in observing or alertness in drawing infer-
ence from a previous experience, so something is 
aware only if it is able to observe some object and 
design conclusions through previous observations 
(Kokar, Matheus and Baclawski, 2009). Observa-
tions could be made by services provided through 
devices, such as sensors. Therefore, by these obser-
vations, it is possible to detected events that change 
the state of the environment, characterizing thus a 
situation. 

Another important concept is the one of event. 
According to Etzion and Niblet (2010), an event is 
an occurrence within a particular system or domain, 
it is something that has happened, or is contemplated 
as having happened in that domain. Events can be 
modeled as raw and derived. Derived events are 
higher-level events in the semantic hierarchy. It 
normally corresponds to a pattern of observation. 
Raw events are produced by some entity of context 
(e.g., sensor). Events can change the state of the 
environment, therefore producing new situations. 

Works such as SOPRANO (Sixsmith et al., 
2009), PERSONA (Tazari et al., 2010), among oth-
ers, aim at modeling context, events and situations in 
middleware systems to provide a platform of health 
services in AAL. They propose conceptual models 
to transform homes into AAL environments, model-
ing their context and services (Paganelli and Giuli, 
2011). SOPRANO, for instance, has the intention of 
recognizing facts, objects, and people surrounding 
users allowing systems to act more appropriately and 
providing support to daily activities. However, in 
these works, the system is reactive, since it only acts 
after the evidence that an unwanted situation has 
occurred. They are not able to provide proactive 
actions to mitigate or eliminate undesired situations 
in advance. 

The term proactive computing was first de-
scribed by Tennehouse (2000), who proposed the 
following principles for proactive systems: they 
should be closely connected with their surrounding 
world; they should also deliver results to humans 
before the user action; and they must operate auton-
omously.   

The characteristics proposed by Tennehouse turn 
systems essentially reactive. In this sense, proactive 
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computing overlaps with the term autonomic com-
puting (Want, Pering and Tennenhouse, 2003). An 
autonomic system is one that reacts to events that 
already happened. Our approach follows the proac-
tivity definition of Engel and Etzion (2011) who 
describe proactivity in computing systems as the 
ability to mitigate or eliminate undesired future situ-
ations, identifying and taking advantage of future 
opportunities by applying prediction and automated 
decision making technologies. Thus, the aim of the 
system actions is to prevent future unwanted situa-
tions. One example is the work of Fu and Xu (2010) 
where event correlations are used for predicting 
future failures in networked computing systems. 

The current vision of proactive behavior is listed 
as the next phase in the evolution of complex event 
processing (Etzion and Niblett, 2010). Thus, Engel 
and Etzion (2011) and  Engel, Etzion and Feldman 
(2012) present the Proactive Event-Driven Compu-
ting, proposing the extension of the event processing 
conceptual model and including more two types of 
agents to the architecture of proactive event-driven 
applications: predictive and proactive.  

Proactive systems apply prediction methods for 
predicting future information and decision making. 
Boytsov and Zaslavsky (2011), for instance, analyz-
es and compares prediction methods in order to 
identify their benefits and shortcomings. Among 
these methods, they describe Bayesian networks as 
an appropriate approach for predictive models. Simi-
larly, Nazerfard and Cook (2012) present a se-
quence-based activity prediction approach that uses 
Bayesian networks in a two-step process to predict 
both activities and their corresponding features.  

Lotfi et al. (2012) seek to make prediction of ab-
normal behavior of elderly with partial dementia. 
They use sensor data for identifying anomalous sen-
sor behaviors to predict the future values of the pos-
sible data for each sensor. The predicted values are 
used to inform a caregiver in the case of anomalous 
behavior of sensors in the near future. 

To the best of our knowledge, works related to 
smart environments propose strictly reactive sys-
tems. We have seen some researches describe proac-
tive behavior to anticipate user's actions, but reacting 
only after a situation has happened. For instance, a 
system for handling situations of agitations for elder-
ly patients who take actions to anticipate actions of 
the caregivers. They, however, do not seek to identi-
fy this situation in advance to avoid it happening. 
Besides, in general these proposals do not address or 
include extensibility technologies, i.e., are not able 
to handle different situations in the course of time.  

3 A REACTIVE AND 
PROACTIVE APPROACH 

Our approach differs from other works because we 
present a new reactive and proactive approach that is 
more appropriate to attend the proper demands of 
AAL systems. Besides, it provides extensibility for 
residential smart environments. The approach is 
explained taking into account the recent history of 
self-management of a citizen’s health, where the 
system triggers reactive and proactive actions.  

The extensibility aspect of our approach is relat-
ed to the concept of pervasive applications, and is 
based in a work named Situation as a Service (SI-
aaS) (Machado et al., 2013), which is described in 
the next section. In the present work, we have added 
temporal aspects, prediction and decision making 
techniques in order to prevent the existence of un-
wanted situations in future (Section 3.2). 

3.1 Situation as a Service 

In our approach, pervasive applications are installed 
in a middleware named SItuation as a Service (SI-
aaS). Pervasive applications (appPerv) are software 
applications developed by companies specialized in 
specific fields, like health, surveillance, energy. 
Designers of appPerv must implement in a concep-
tual model that corresponds to specific situations of 
the environment that are relevant to the appPerv. 
They also must inform the appPerv context of inter-
est, generating instances of a particular type (e.g., 
Patient, Sensor) and make the linking semantics 
among them (as hasSensor).  

Therefore, the pervasive application informs the 
SIaaS middleware about the situations that are im-
portant and should be managed for the detection and 
prediction of situations, as well as a set of contextual 
information necessary for decision making.  

In this work, we are interested in a specific do-
main: home-care health support. Thus, user could 
extend the capabilities of the middleware buying a 
complete solution for managing chronic diseases or 
only one pervasive application for managing the 
schedules of their medicines. For example, the per-
vasive applications described in (Machado et al., 
2013) performs reactive actions (consumption of 
services) when a patient’s agitation situation be-
comes true.   

The SIaaS manages the environment and pro-
vides the context of interest, as well as the situation 
of interest for pervasive applications, so it is possible 
decide the more appropriate action when a situation 
is detected. It is presented in Figure 1. 
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Figure 1: Levels of the architecture.  

The SIaaS is a Service-oriented architecture with 
complex event processing that is implemented in 
three levels: Lower, Intermediate, and Upper. The 
Lower Level (3) corresponds to the physical envi-
ronment (i.e., sensors and appliances).  
The Intermediate Level (2) contains the middleware 
for providing a stable and secure environment for 
pervasive applications. It notifies any pervasive 
application whenever its situations of interest be-
come true. It comprises a conceptual model, an ap-
plication manager, a prediction and inference man-
ager, a context manager, and a proactive actions 
manager. The Upper Level (1) offers a stable com-
puting environment for pervasive applications. 

3.2 Proactive Model 

A pervasive application has interest in specific situa-
tions that involve users and what happens in their 
living environment. This pervasive application has 
the knowledge of what kind of reactive actions 
should be taken when an unwanted situation hap-
pens. The SIaaS middleware monitors the events 
that could generate a situation of interest for any 
pervasive application, and notifies it whenever such 
situation becomes true. These events occur in time 
windows and are related to situations. These situa-
tions are described by pervasive applications that 
specify their situations of interest.  

Taking into account examples from the health 
domain, we consider a scenario where the aim is to 
monitor medicine administration. Thus, if the event 
“medicine X is not administrated” is detected during 
consecutive days, it may result in health problems 
for the patient, i.e., an unwanted situation.    

The SIaaS must avoid such unwanted situations 

(e.g., the patient forgot to take his medicine and 
became sicker). For this purpose, the SIaaS initially 
learns a predictive model using data provided by the 
pervasive application. The pervasive application 
data consists on patient’s behavior patterns that will 
be managed by the SIaaS. After the learning stage, 
the SIaaS can predict situations through events de-
tected in real-time and is able to perform proactive 
actions, avoiding the occurrence of unwanted situa-
tion. Consequently, the reactive actions requested by 
the pervasive applications will not be executed, be-
cause the events (e.g., patient forgot to take his med-
icine) that would determine the situation will not 
occur. In this sense, the SIaaS acts proactively to 
prevent an unwanted situation. 

As depicted in Figure 2, the environment may be 
in two states: controlled or uncontrolled. An event 
stream, predefined as normal, characterize a con-
trolled environment where reactive actions are help-
ful. However, if the events are being detected out-
side this predefined state, it could characterize that 
the environment will become uncontrolled, thus 
increasing the dependency on proactive actions be-
ing performed by the SIaaS.  

 

Figure 2: Environmental states. 

In the environment, event streams are constantly 
monitored through data made available by sensors. 
Still, evaluating the events flow of Figure 2, at t+1 a 
pattern of events (provided by the pervasive applica-
tion) is detected (1) by the Context Manager. This 
subsystem uses a prediction algorithm to determi-
nate the probability of an unwanted situation becom-
ing true in the user living environment. The Context 
Manager has t+2 times to make the prediction, hav-
ing enough time to take corrective actions. After 
identifying the probability of the occurrence of a 
situation in t+2 (2), the Inference Manager process 
the respective rules to determinate if the rate of 
probability is relevant. If it is positive, the Proactive 
Actions Manager must be activated in t+3 (3) to 
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trigger proactive actions. This module is responsible 
for choosing the most appropriate policy to consume 
appropriate services corresponding to environmental 
devices and health care providers.  

All these actions are taken in order to bring the 
environment to a normal state and to avoid future 
unwanted situations. The goal is to return to the 
initial streams of events, thereby characterizing the 
consistence of the environment. 

3.3 Sliding Windows  

In the present approach, we consider that it is neces-
sary to analyze a sequence of events for learning and 
detecting patterns aiming to predict situations. Be-
sides, we consider that this sequence of events oc-
curs in a period of time, referenced as Sliding Win-
dow, i.e., a valid space of time where situations are 
predicted or detected and the relevant decisions are 
taken. The Sliding Windows model used in our ap-
proach is adapted from Salfner, Lenk and Malek 
(2010). In this model, a sliding can be sized or 
timed. A sized sliding window (SSW) has a specific 
size that corresponds to the number of events of a 
given pattern of interest. For instance, is possible to 
use a SSW with the last hundred events that match 
specific selection criteria. A timed sliding window 
(TSW) has a finite time frame where events of inter-
est are monitored. In this work, only ∆td is modeled 
as these two possibilities, the remainders are win-
dows of time, because they are used to model the 
window in future for an unwanted situation. 

 

Figure 3: Sliding Windows. 

Figure 3 presents a sliding window associated 
with a real time proactive behavior. At time t, the 
possibility of occurrence of a situation can be pre-
dicted with some time in advance. This period of 
time is called prediction time (∆tpr) and is based on 
the events currently detected in the environment. 
Situations are predicted in ∆tpr, which uses a size or 
time sliding window (∆td) that corresponds to the 
event stream monitored by the system. These timed 
or sized windows (∆td) are used to perform predic-
tion. We assume that proactive actions are valid for 
some period of time, named period of proactivity 
(∆tp). In this time window, triggered actions can 
change predicted situations, which are expected to 
occur in the reaction time (∆tr). If ∆tpr > ∆tp then 

there will not be enough time for all proactive ac-
tions to be triggered before the predicted situation 
(i.e., an unwanted situation) becoming true. Thus, 
∆tr is the maximum time the system has to react, 
since ∆tr is the time estimated to the situation to 
occur. Then, ∆tr is the period where reactive actions, 
related to a specific unwanted situation, are trig-
gered. 

3.4 Event and Situation Model 

In this work, the semantic relations {R} that form 
the context are represented by triples ‹Es, p, Eo› 
where the subject Es and the object Eo represent 
instances of entities of the environment, which could 
belong to the same domain or not. Similarly, as for-
malized by Ye, Stevenson and Dobson (2011), p 
represents a context predicate that encapsulates two 
entities of context in a relation. For instance, in the 
relation ‹John, hasSensor, RFID› John and RFID 
represent entities. Subjects and objects can also be 
represented by variables in reasoning rules. For ex-
ample, in the following triple, ‹x, hasSensor, y›, x 
represents any entity instantiated in the user domain 
and y represents any entity instantiated in the sensor 
domain. In this example, any pair of values of User 
and Sensor, related by the relationship hasSensor, 
can validate this context predicate. 

 

Figure 4: Conceptual model. 

Figure 4 depicts the conceptual model of our ap-
proach. The Activity entity represents daily activities 
performed by the citizen in his home, like breakfast-
ing, watching television, taking medicine or doing 
exercises. The activities are made up of human ac-
tions, for instance the activity to take medicine is 
composed by picking up a glass with water and tak-
ing the drug, represented by the semantic relations 
presented below (1). 
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‹John, catch, glass› ∧ ‹glass, has, 
water› ∧ ‹John, obtain, drug› ∧	

‹John, take, drug› ⇒	
‹John, took, medicine› 

(1)

Besides human actions, we also take into account 
automated actions taken by the system. For instance, 
the system may notify the citizen through an audible 
warning using some device (we consider that auto-
mated actions are actions performed by devices). 
Thus, actions are carried out by an agent (human or 
device) in order to achieve a goal. When an action 
either achieves or not its goal, it can generate events. 

In our approach, we take into account internal 
and external events, which are defined in the theory 
of Situation Calculus (Mccarthy, 2002). An external 
event is generated externally by human actions or by 
interacting with pervasive applications. In addition, 
external events can be generated by changing a user 
device or by changing the network connection used 
by a device. Internal events are generated internally 
by the system and are represented by assertions that 
can be given by an axiom. An internal event could 
be generated by an automated action, the detection 
of successive state variable changes, or by the modi-
fication of one specific state variable. Thus, as more 
human actions are transferred to automated actions, 
more extensible the system becomes. Events are 
represented by the following syntax (2). 

Event: (name, type, time, {R}, p) (2)

An event has a name and is characterized by a 
type (internal or external), a time (timestamp) within 
∆td windows and a set of contextual semantic rela-
tions {R}. When the event is not produced by a sin-
gle entity (e.g., raw data sensor), it may also have a 
detection pattern (p). Events can be linked to one or 
more contexts; for instance, a pattern that defines 
that an event must be detected if a specific sequence 
of events happens within a given sliding window of 
time or size involving the “user” in his/her living 
room. In this work, events can determine the evi-
dence of the beginning and the ending of a situation. 
Thus, events change the state of the environment and 
characterize a new situation. The current situation is 
represented by the following syntax (3). 

Cs: (name, Ie, {a}, Fe) (3)

As shown in (2), the current situation (Cs) has a 
name and a set of events that characterize its begin-
ning (Ie) and ending (Fe), and the time attribute of 
these events that characterize the valid time window 
of this situation, which will always be in ∆tr. In 
addition, the current situation has a set of triggered 
reactive actions {a} that were detected during a 
valid time for handling the current situation. For 

instance, below we present how to represent an 
event (Ie) that initiates the “unmedicated” situation 
(4), its corresponding final event (Fe) and the ac-
tions to be performed in this situation. 

name unmedicated (4)
Ie ‹John, shouldTake, Drug X› ∧  

‹Medicine X, timeToAdminister, 10h› 
∧ ‹currentTime, equals, 10:30› 
⇒‹John, notTake, medicine›  
 
⇒‹John,isSituationOf,{unmedicated}› 

{a} ‹System, trigger, audibleWarning› 
‹System, trigger, visualWarning› 
‹System, notify, Caregiver› 
 

Fe ‹John, catch, glass› ∧ ‹glass, has, 
water› ∧ ‹John, obtain, drug› ∧ 
‹John, take, drug› ∧ ‹John, on-
Click, appPerv› ⇒ ‹John, take, 
medicine› 
⇒‹John, isSituationOf, {medicated}› 

The event evaluation can lead the system to find 
out that an unwanted situation has a probability of 
happening in the future. In (5) we show that a Pre-
dictive Situation (Ps) is characterized by a set of 
events; a set of patterns (p), which describes some 
form of correlation among events that shape this 
situation, the probability value (pr) of its occurrence 
in a context in the future; and a timestamp (time) 
during which it may occur within ∆tr. 

Ps: (name, {event}, {p}, pr, time) (5)

For example, if a sensor detects smoke in a house 
and another one detects a gas leak, then it will be 
characterized as a dangerous situation. This demon-
strates how occurring events can influence the prob-
ability of a predicted situation (the prediction of a 
situation is addressed in the next section). Thus, 
proactive actions are needed to react to the possibil-
ity of a future unwanted situation. In the next section 
we show the model for performing reactive and 
proactive prediction for deciding what action must 
be triggered in such cases. 

3.5 Prediction for Decision Making 

Our predictive model is hybrid, since we intend to 
use an inference engine to process inference rules 
and infer that a current situation is occurring and a 
Bayesian network to determinate the probability of 
situations occurring in the near future.  

In this sense, the Bayesian network is used in or-
der to estimate the probability of a situation occur-
ring in the future. To determine whether a probabil-
ity is relevant, predetermined rules (which are not 
processed through inference), provided by pervasive 
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applications, are needed, thus determining whether 
some probability is relevant for activating the Proac-
tive Actions Manager.  

However, to build the Bayesian network, it is 
necessary the knowledge of an expert in the applica-
tion domain to indicate which events can produce a 
situation. In this sense it is assumed that the perva-
sive application is provided with rules defined pre-
viously by an expert in the specific domain of 
health. 

 

Figure 5: Proactive and Reactive Network. 

Figure 5 shows the structure of the Bayesian 
network developed in our approach. In this model, 
we consider that the cause (event) precedes the ef-
fect (situation), the events are independent variables 
of each other, and a situation is represented in a leaf 
node. 

This network has two facets, reactive and proac-
tive. In the reactive approach, the presence of events 
is the cause for the evidence of the current situation. 
In this case, if all of the events that characterize a 
situation are detected in the environment, we can 
process inference rules to detect if the situation is 
ongoing, and thus requires reactive actions.  

For instance, in (6), if events e1, e2 and e3 were 
modeled on the network as the precedents of the 
situation s1 and these events where detected in this 
sequence, it would be possible to infer (reactive 
side) that s1 is the current situation. 

IF sequence ‹e1, e2, e3› 
⇒	‹John, isSituationOf,{medicated}› (6)

In the proactive approach, the presence of these 
events is used by the Bayesian network to calculate 
the probabilities of the predictive situation. Conse-
quently, if this probability characterizes a future 
unwanted situation, proactive actions are needed. 
These values are calculated by Pr:(Ps|pa(Ps)), 
which indicates the conditional probability of a pre-
dictive situation (Ps) occurring due to its relation-
ship with the parent events pa(Ps). 

In our approach, every pervasive application in-

stalled on the SIaaS describe (through OWL files) a 
set of relevant events and how these events influence 
(qualitative part of the network Bayesian) each situa-
tion. Wok such as Lukasiewicz and Straccia (2008) 
detail how to model Bayesian networks through 
Semantic Web technologies. Therefore, the SIaaS 
builds a network to such pervasive application, iso-
lating this network from others to be able to manage 
the specific network model that is of interest for a 
given application. 

However, to avoid the system necessity of acti-
vating the reactive model some time before the net-
work computes the probability of each event (quanti-
tative part) for the predictive situation, we assume 
that the pervasive application provides data for the 
initialization of the network through a supervised 
learning process.   

After the learning phase, the network enters into 
a production state and is dynamically updated with 
information about the events detected by the system. 
Two process are constantly running on the network: 
belief update and belief revision. The belief update 
is the upgrade of the network due to updated events, 
thus we update the Conditional Probability Table 
(CPT) of the network, whereas belief revision makes 
a belief assessment query, referring to updating the 
probability value within the predictive situation. 
Beyond that, the rules (not processed by inference) 
are constantly processed to identify if the probability 
value calculated by the network is relevant for a 
predictive situation. According to that identification, 
proactive actions are triggered. An example of a 
proactive action rule is presented in (7). 
IF ‹predictiveSituation, greatherThan,  
86%› ⇒		‹emergencySituation, in, 10min› (7)

Rules identify the specific time in which a pre-
dictive situation is expected to occur within ∆tr. 
Such rules describe complex temporal predicates 
based on what the processing is carried out. These 
rules are associated with a set of actions. These ac-
tions, when consequently fired, result in new internal 
events (as described in Section 3.4), which feed into 
the network again and update the attribute probabil-
ity of the predictive situation. Thus, through the set 
of actions, the SIaaS has the purpose of eliminating 
the occurrence of unwanted events (i.e., the cause of 
the situation) and consequently decreasing the prob-
ability value of the predictive situation.  

The decision to perform an action (i.e., the ac-
tions policies) depends on the detected situation 
(current or future). The actions policies are provided 
together with their corresponding pervasive applica-
tions for SIaaS. These policies are defined by the 
developers of the pervasive applications with the 
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help of health experts. Experts help is necessary 
because these pervasive applications are related to 
the domain of health.  

This is the technique used to generate the cost of 
taking the action changing over time. When unwant-
ed events stop being detected, we characterize those 
actions as having the desired effect, thus acting as a 
reward value. 

4 CASE STUDY SCENARIO 

This case study aims to demonstrate the use of our 
approach in a scenario where the necessity of a 
mechanism that acts in proactive way is emphasized.   

The scenario is related to the aforementioned 
self-administration of medicines by patients in their 
homes. The aim is to identify when patients are no 
longer able to control their own medication.  

In this sense, we are considering that patients, in 
general, will take their medicine in a stipulated peri-
od of time or after an action system (e.g., using func-
tionalities (services) of devices of the environment 
to remember the patient about the medication). 
However, some patients can have cognitive decline 
over time, compromising the self-management of 
their health condition, thus needing help to take the 
medication at the correct time. In this scenario, the 
situation known as "unmedicated" becomes habitual, 
and reactive/proactive actions are necessary to con-
trol this situation, considering the recent history of 
self-management of citizen's health, thus assisting 
the patient to take his medicine in the best possible 
way. We considered a pervasive application de-
ployed in the SIaaS to help patients in the described 
scenario. For the implementation, we have used the 
monitoring component Esper (2010), the Bayesian 
tool Netica (2013), which provided an API that we 
used to create the Bayesian network that was insert-
ed into the Context Manager. In addition Jess 
(Friedman-Hill, 2003) was used to build Java soft-
ware process able to perform inference rules in the 
Inference Manager module. 

For the case study, the following fictitious sce-
nario was considered for describing the approach 
supported by the decision making process imple-
mented by the pervasive application. Imagine ‘Ms. 
Smith’, a 70 years old citizen who has some aging 
associated diseases such as diabetes, hypertension 
and lightweight dementia. Ms. Smith’s home is an 
intelligent environment managed by a SIaaS mid-
dleware, where a number of pervasive applications 
are installed. An example is the pervasive applica-
tion for managing medications (appPervMed). 

Ms. Smith initially controls the medication herself. 
However, as any ordinary person, sometimes, to be 
involved in some particular activity, she forgets to 
take or takes her medicines late, which puts her in an 
"unmedicated" situation. In these cases, the ap-
pPervMed requests to the SIaaS middleware to trig-
ger an audible or visual warning through devices 
located near Ms. Smith. Whenever a warning reach-
es her attention, she can interact with the system 
through a smart phone or smart TV to report explic-
itly that she took her medication. After that interac-
tion, the system will close (finish) the “unmedicat-
ed” situation.  

After some stipulated time, if Ms. Smith does not 
take her medication, the system sends a warning to 
her caregiver. It warns her caregiver that Ms. Smith 
had not taken her medicine, thus placing the respon-
sibility of interacting with the SIaaS on the caregiv-
er. Once the caregiver gives her the medicine, and 
informs the system about that, the appPervMed will 
know that Ms. Smith took the medicine and will 
determine the end of the "unmedicated" situation. 

Eventually, the caregiver himself may forget or 
may be not close to any device that could warn him 
about the moment that Ms. Smith must be medicat-
ed. Thus, the event “medicine X not taken” is de-
tected, corresponding again to the beginning of the 
situation of “Ms. Smith is unmedicated”. Audible 
and visual warnings are generated in different mo-
ments in the environment, and, after some parame-
terized time, the caregiver is warned. The ap-
pPervMed waits for a notification that Ms. Smith 
took the medication by the caregiver. If it is not 
notified in a specific period, the appPervMed trig-
gers a warning directly to the healthcare provider 
(consuming a specific Web service), placing the 
responsibility on the healthcare provider to make 
Ms. Smith taking her medicine, and, once taken, it 
ends the situation.  

As explained, alerting the caregiver is an excep-
tion. However, after some time, if Ms. Smith takes 
her medicine only after a system warning to her 
caregiver and if this behavior becomes more usual, 
this behavior may indicate a cognitive decline of Ms. 
Smith.  

Thus, it is necessary to identify (in a proactive 
way) when the cognitive impairment happens, be-
cause if this identification does not happens fast, the 
treatment will be harmed by the administration of 
drugs in wrong times. This moment may character-
ize the end of the patient's ability to medicate her-
self, requiring the caregiver to this function. There-
fore, the system must adapt itself and assist the care-
giver in his task of assisting Ms. Smith. 
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5 APPLYING THE APPROACH 
TO THE CASE STUDY  

The scenario described before shows that a perva-
sive application must react to an event (Ms. Smith 
did not take her medication) that characterize the 
unmedicated situation and also must forecast some 
situation (e.g., Ms. Smith will not take her medica-
tion without her caregiver help) and be proactive. 

Next, following our approach, we show how a 
pervasive application should work either reactively 
and proactively. 

5.1 Reactive Behavior 

The events related to this case study that are relevant 
to the appPervMed are described here, as proposed 
in Section 3.4. For performing this task we used the 
Semantic Web Rule Language (SWRL), using the 
already defined semantic relations {R} and triplets in 
the form ‹Es, p, Eo›, as presented in Section 3.4. The 
patterns to detect events were modeled as Esper 
statements. The variables were replaced to the val-
ues used in the scenario to provide an easier inter-
pretation.  

Event name: ea1 
Description: Not took the medicine 
Typed: Internal  
{R}: ‹Ms. Smith, needToTake, Drug X› ∧  
‹Drug X, timeToAdminister, 10h› ∧  
‹currentTime, is, 10:15› 
⇒‹Ms. Smith, notTaken, medicine›  

Pattern SELECT e FROM PATTERN[ 

 every e=Event(name ='ea1') ->

 (timer:at(*/15,10:00,*,*,*) 

 and not Event(name ='ea2'))]

In this rule, timer:at is an expression of a spe-
cific time that turns true. The syntax is timer:at 
(minutes, hours, days of month, months, days of 
week, seconds) (Esper, 2010). 

Event name: ea2 
Description: Took medicine 
Typed: External  
{R}: ‹Ms. Smith, medicationTime, Drug X› ∧  
‹doorMedicineChest, wasOpenedBy, Ms. 
Smith› ∧ ‹Ms. Smith, pressedOKButton, 
appPervMed›⇒‹ Ms. Smith, took, medicine›  
Pattern: SELECT e From e=Event(name='ea2') 

Event name: ea3 
Description: Took medicine after some action 
Typed: External  
{R}: the same semantic relations of ea2 

Pattern SELECT e FROM PATTERN[ 

 every e=Event(name ='ea3')->

 (Event(name ='ea1') -> 

  (Event(name = 'a1') or 

   Event(name = 'a2') or 

   Event(name = 'a3') or 

   Event(name = 'a4')))] 

Event name: a1 
Description: Audible warning after 10 min of ea1 
Typed: Internal  
{R}: ‹appPervMed, trigger, audibleService› 

Pattern SELECT e FROM PATTERN[ 

 every e=Event(name='a1')->

 (timer:at(*/25,10:00,*,*,*) 

 and Event(name ='ea1'))] 

Event name: a2 
Description: Visual warning after 25 min of ea1 
Typed: Internal  
{R}: ‹appPervMed, trigger, visualService› 

Pattern SELECT e FROM PATTERN[ 

 every e=Event(name ='a2') ->

 (timer:at(*/40,10:00,*,*,*) 

 and Event(name ='ea1'))] 

Event name: a3 
Description: Notify caregiver after 45 min of ea1 
Typed: Internal  
{R}: ‹appPervMed, notify, Caregiver› 

Pattern SELECT e FROM PATTERN[ 

 every e=Event(name ='a3') ->

 (timer:at(*,11:00,*,*,*) 

 and Event(name ='ea1'))] 

Event name: a4 
Description: Notify health provider after 2h of ea1 
Typed: Internal  
{R}: ‹appPervMed, notify, HealthProvider› 

Pattern SELECT e FROM PATTERN[ 

 every e=Event(name ='a4') ->

 (timer:at(*/10,12:00,*,*,*) 

 and Event(name ='ea1'))] 

As presented above, if event ea2 is detected, Ms. 
Smith is in the situation of “medicated”. Therefore, 
the appPervMed is not started because the situation 
“unmedicated” did not happen. The internal and 
external events and relevant actions that determine 
each situation are presented below: 

Current Situation 
name = unmedicated; 
Ie = ea1 
{a} = a1, a2, a3, a4 
Fe = ea3 

Name = medicated; 
Ie = ea2 
{a} = - 
Fe = ea1 
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If Ms. Smith does not take the medicine (event 
ea1 was detected) the “unmedicated” situation is 
initiated and appPervMed chooses the reactive ac-
tion to be triggered. After the detection of the event 
ea1, appPervMed waits for 10 minutes and, if an 
event ea2 was not detected, it will trigger an audible 
warning (a1). After the audible warning, the applica-
tion needs to wait for a feedback. If this feedback is 
not received, appPervMed triggers a2 to produce 
some visual warning. Thus, appPervMed terminate 
its execution when the resulting feedback is ea3 (i.e., 
took medicine after some action). 

5.2 Proactive Behavior 

This section presents the proactive behavior of the 
SIaaS, showing how it would preventing Ms. Smith 
from entering in an “unmedicated” situation. Initial-
ly, it makes a historical analysis of the situations 
generated by the events detected that are relevant for 
appPervMed.  

Below, we present a historical situation (HS) that 
has happened and the reactive actions triggered for 
manipulating this situation.  

ሻଵ:ଶଷ݀݁ݐܽܿ݅݀݁݉݊ݑሺܵܪ
ଵ:ଵହ = {a1} (1)

ሻଵ:			݀݁ݐܽܿ݅݀݁݉		ሺܵܪ
ଵ: = {-} (2)

ሻଵ:ଷଷ݀݁ݐܽܿ݅݀݁݉݊ݑሺܵܪ
ଵ:ଵହ = {a1, a2} (3)

ሻଵ:ଷଷ݀݁ݐܽܿ݅݀݁݉݊ݑሺܵܪ
ଵ:ଵହ = {a1, a2} (4)

ሻଵଵ:ଷ݀݁ݐܽܿ݅݀݁݉݊ݑሺܵܪ
ଵ:ଵହ = {a1, a2, a3} (5)

ሻଵଵ:ଷ݀݁ݐܽܿ݅݀݁݉݊ݑሺܵܪ
ଵ:ଵହ = {a1, a2, a3} (6)

... (n)

ሻଵଵ:ଷ݀݁ݐܽܿ݅݀݁݉݊ݑሺܵܪ
ଵ:ଵହ = {a1, a2, a3} (n+1)

ሻଵଶ:ଵ݀݁ݐܽܿ݅݀݁݉݊ݑሺܵܪ
ଵ:ଵହ = {a1, a2, a3, a4} (n+2)

ሻଵ:					݀݁ݐܽܿ݅݀݁݉		ሺܵܪ      
ଵ: = {-} (n+3)

This representation is based in a notation pro-
posed by Wasserkrug, Gal and Etzion (2005), which 
shows the initial and final time of the situation. In 
this case, curly brackets represent the actions trig-
gered during the period of time when the situation 
was valid. For instance, the first event ea1 was de-
tected at 10:15 (1), and the situation was finalized 
when the event ea3 was detected at 10:23 and the 
action a1 was triggered. In (2), Ms. Smith took the 
medicine on the right time (10:00), so, no reactive 
action was triggered. 

This historical data of behavioral management of 
medicines by Ms. Smith shows the sequence of ac-
tions that were needed to handle the unwanted “un-
medicated” situation. This HS is used to generate the 
Conditional Probability Table (CPT) for each node 
event of the Bayesian network. In this case study, 

the generation of the CPT must be sensible to a cog-
nitive decline, so the Bayesian network cannot be 
established with all the stored history of that situa-
tion. In order to identify a cognitive decline, the 
system needs to build a valid sliding window with an 
event stream of ∆td (which was described in Section 
3.3) that corresponds to the current behavior of Ms. 
Smith. Therefore, the appPervMed will register in 
the Module Monitor (Esper) of the Context Manager 
only the patterns that correspond to the sliding win-
dow used to calculate the network CPT represented 
in (8).  

 select e from pattern (8)
 [every e=Event].win:length(45)  
 where e.name='ea1' or e.name='a1' or
 name='a2' or name='a3' or name='a4'

In the previous pattern, which was deployed in 
Esper, we have defined a sliding window of ∆td 
corresponding to the last 45 times in which Ms. 
Smith had not taken her medicine (event ea1), as 
well as the actions that were detected after that situa-
tion had happened. In this pattern, if Ms. Smith 
should take a medication once a day, this window 
would correspond to 45 days. Thus, the value of the 
probabilistic predictive situation always will be set 
to a percentage that corresponds to 45 days. In this 
sense, we avoid network scalability problems related 
to the excessive number of events (since they are 
modeled as nodes in the network), and detect cogni-
tive declines with periods less than 45 days. This 
pattern generates the sequence of events that con-
stantly updates the Bayesian network and the values 
of the probability of the event that determines the 
beginning of unwanted situations of this kind.  

 

Figure 6: appPervMed Bayesian network.  

As Figure 6 shows, event ea1 is the cause of the 
“unmedicated” situation. This event, as well as 
events a1, a2, a3, a4, also influences event ea3. 
Besides, ea2 and ea3 influence the fact of Ms. Smith 
being medicated or not. The probability of Ms. 
Smith not taking her medicine at the correct time is 
63.4%, according to the simulated behavior.  
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Based on this data, the SIaaS will update the 
probability attribute of the corresponding predictive 
situation for this case, as shown below: 
Predictive Situation: 

name = unmedicated; 
{event} = {ea1, ea3, a1, a2, a3, a4}; 
{p} = ea1; 
pr = 63.4%; 
time = ea1.drug.timeTakeDrug; 

The value of time is extracted by navigating 
through the event ea1 and following to the entity of 
context drug and attribute time to take the medicine 
(timeTakeDrug) this entity of context. The ap-
pPervMed thus registers the following rule (9) that 
shows the relevance of the prediction value. 

IF ‹unmedicated.pr, greather-
Than,60%› 

⇒	‹Ms. Smith, isUnmedicatedIn, 
ea1.drug.timeTakeDrug› 

(9)

This rule demonstrates that the “unmedicated” 
situation could happen the next time that Ms. Smith 
needs to take the medicine, activating the Proactive 
Actions Manager (PAM). The PAM uses the Bayes-
ian network to identify, among the triggered actions, 
which one had the greatest influence for ea3 to be 
detected and ending the “unmedicated” situation of 
Ms. Smith. It gives more relevance to the actions 
that were followed by ea3 (i.e., took medicine after 
some action). If there is a sequence of actions trig-
gered after the detection of an unwanted situation 
(corresponding by ea1), the PAM will chose the last 
action as being responsible for the ending of the 
unwanted situation (i.e., ea3 detected).  

Figure 6 shows that the action a3 (notify the 
caregiver) was the most successful action at this 
moment, thus the PAM changes the policy of trig-
gering actions to a3 from “notify caregiver after 45 
min of ea1” to “notify caregiver BEFORE 45 min of 
ea1”. Thus, the SIaaS will warn the caregiver that 
he/she has to ensure that Ms. Smith will take the 
medicine at the right time. In this case, the ap-
pPervMed will not be triggered to perform a reactive 
action, because event ea1 will not happen. This be-
havior causes more events of type ea2 to be detected 
since Ms. Smith starts taking her medicine at the 
right time, so consequently the situation “unmedi-
cated” will not happen and the probability of the 
Bayesian Network for being medicated (ea2) in-
creases. 

We assume that there is a parameterized value 
with the criteria of policy selection actions to update 
the triggering order of proactive actions after this 
rule be updated. This will avoid that an action, after 

being identified as most effective, be always chosen 
as a proactive action that should be executed forever. 
This calibration is necessary because, in this case 
study, we are monitoring the behavior of a person, 
and this behavior may change over time. In the ex-
ample given, Ms. Smith could not respond to the 
warnings of the SIaaS for some period of time be-
cause she was unmotivated with the treatment, so the 
warnings to the caregiver would effectively make 
her taking her medicine. However, if she did not 
show cognitive decline, she could return to her self-
health management without requiring the notifica-
tion of the caregiver. Therefore, there is a need for 
policies that trigger proactive actions to be updated. 
So, the SIaaS will again generate warnings to Ms. 
Smith.   

6 CONCLUSIONS 

Most of the research efforts in situation awareness 
for AAL are generally related to the detection of 
situations and the immediate reaction for these situa-
tions. In this sense, we have demonstrated the neces-
sity of mechanisms to act proactivity in order to 
avoid unwanted situations in AAL.  

In addition, we consider that for an Ambient In-
telligence application to act proactively it must have 
learning capabilities. Therefore, these applications 
must understand and learn from the events that hap-
pened, predicting situations of interest and making 
decisions in advance related to the user needs. Thus, 
we consider the use of a Bayesian Network for iden-
tifying when it is necessary to act in a changed way.  

In this paper, we presented an approach for ena-
bling smart environments with reactive and proac-
tive characteristics, more specifically in AAL. The 
main contributions of our approach are: (i) a method 
for supporting extensibility in systems to Ambient 
Assisted Living by including experts experience 
while modeling pervasive applications; (ii) an ap-
proach for handling reactive and proactive behav-
iors; and (iii) a model of sliding windows for model-
ling time in complex event processing.  

The next steps of this research include (i) finish-
ing an application prototype; (ii) testing the situation 
prediction over a real world automated environment; 
(iii) improving aspects related to the prediction 
model; and (iv) adapting the predictive model for 
taking decisions in a dynamic Bayesian network. 
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