
Architecture Principles Compliance Analysis

João Alves1, André Vasconcelos1,2 and Pedro Sousa1
1Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, Lisbon, Portugal

2INESC-Inovação, Instituto Superior Técnico, Lisbon, Portugal

Keywords: Enterprise Architecture, Architecture Principles, Architecture Analysis, Architecture Principle Compliance
Analysis.

Abstract: The architecture principles play a key role in the enterprise architecture evolution. However, the architecture
does not always address the principles intentions, which could result in unplanned deviations. Through the
related work is perceptible the nonexistence of an architecture analysis based on architecture principles.
Hereupon, this research proposes an architecture analysis to evaluate the architecture compliance with
architecture principles. The proposed analysis, based on ArchiMate consists in the principle formalization
where the principle expected impact is recognized. This analysis enables to identify the principle compliant
elements in an enterprise architecture description. This analysis has been applied in one of the largest
Portuguese insurance companies to analyse the compliance of some specific architectures. The analysis
feasibility presents this research as a contribution to the architecture principles field.

1 INTRODUCTION

Modern enterprises face a range of challenges
imposed by their environment (Op’t Land et al.,
2008) which impacts how they hold their evolution,
making them transform. This is where organizations
position the enterprise architecture (EA) as an
instrument to coordinate and steer their
transformation (Greefhorst and Proper, 2011). The
EA design defines the delivered services and all the
alignment between the underlying business
processes, information systems and IT infrastructure
(Greefhorst and Proper, 2011). The robustness of
this design is critical to face the imposed challenges.

Hereupon, the EA design must evolve in order to
make effective the organization adaption to the
environment. To properly guide this evolution, the
architecture principles are positioned as the key
ingredient. The architecture principles provide rules
and guidelines to inform and support the way in
which an organization sets about fulfilling its
mission (The Open Group, 2009). Therefore, it’s
important that EA design complies with their
guiding principles, which is not always achieved.
This emphasizes the need for an EA compliance
evaluation based on architecture principles.

However, the related work study shows that an
EA analysis to evaluate the EA compliance with

their guiding principles still lack. Hereupon, our
vision pretends to formalize architecture principles,
based on ArchiMate to enable their EA compliance
analysis. This formalization enables to analyse an
enterprise architecture description (EAD) through
the detection of architecture structures that represent
the principle expected impact and consequently
identify their compliant elements.

This work is organized as follows. In section 2
are explained the principal domains related with this
research and its motivation. In section 3 the
approach behind the research proposal is presented.
In section 4, the proposed analysis based on two
principles is highlighted. In section 5 the research
proposal feasibility is demonstrated in a real case
study and finally the section 6 concludes the paper
and provides research future directions.

2 RELATED WORK AND
MOTIVATION

2.1 Enterprise Architecture

The EA can be defined as a coherent whole of
principles, methods, and models that are used in the
design and realisation of an enterprise’s

328 Alves J., Vasconcelos A. and Sousa P..
Architecture Principles Compliance Analysis.
DOI: 10.5220/0004882803280334
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 328-334
ISBN: 978-989-758-029-1
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

organisational structure, business processes,
information systems, and infrastructure (Lankhorst,
2009). It enables a better decision making by sharing
knowledge on architecture decisions and provides a
way to describe and control an organization’s
structure, processes, applications, systems, and
technology in an integrated way (Lankhorst, 2009).

The analysis intended by this research is
intimately connected how EA could be represented.
The ArchiMate comprises an EA modelling
language providing precise descriptions of the
architecture in different domains and different
stakeholders, a feature that is not allowed in other
modelling languages (The Open Group, 2012). The
integrated representation between domains could
turn easier to analyse the principle impact that
propagates through multiple domains. The
possibility to extend the ArchiMate metamodel (The
Open Group, 2012) represents also another
important issue. Some specific cases in principle
analysis could require the unambiguously
identification of a certain element or relationship
that is not endorsed by the ArchiMate metamodel.
These considerations justify the ArchiMate use in
the proposed analysis.

2.2 Architecture Principles

The architecture principles can be seen as general
rules and guidelines, intended to be enduring and
seldom amended, that inform and support the way in
which an organization sets about fulfilling its
mission (The Open Group, 2009). They play a
prominent role in the EA development giving advice
how to design target architecture by restricting the
design freedom of EA transformation projects (Aier
et al., 2011). The architecture principles to be really
effective and be considered good principles they
must have a clear semantic, understandable syntax
and the right focus (Lindström, 2006; Van Bommel
et al., 2007). However, if any of these characteristics
are violated some deviations in the expected impact
could emerge (Greefhorst and Proper, 2011). This
fact emphasises the need to verify if the EA impact
is the prescribed by the architecture principles.

The principle application consists in the
transformation activity, which is separated in two
types. The first one called derivation consists in the
principles transformation into statements that are
relevant in a more specific context. The other is
related with the principle transformation to models.
This transformation it´s build on the fact that
architecture principles can be the rationale behind a
number of elements in the model and for their

relationships (Greefhorst and Proper, 2011).
It’s also important to relate the transformations

with the respective compliance management. In the
compliance management is advised the principle
refinement into requirements and then in design
decision to perform the compliance verification
(Greefhorst and Proper, 2011). However, this advice
maps with the derivation transformation. So, it‘s
evident a lack of a compliance verification to the
principle transformation to models and it is here that
our work presents as a contribution.

Finally, the architecture principles used are
selected from the catalogue in (Greefhorst and
Proper, 2011). Another catalogue is provided by
TOGAF (The Open Group, 2009) although the
principles from the previous catalogue present some
advantages. They are based on real-world
architectures (Greefhorst and Proper, 2011), they are
aligned with ArchiMate and are more level-specific
(Vieira, 2012).

2.3 Architecture Analysis

The EA discipline advocates the use of models to
support decision-making (Johnson et al., 2007).
These decisions can be supported by appropriate
analysis techniques that show why a solution is
better or to detect inconsistencies (Šaša and Krisper,
2011). Lankhorst (2009) describes different
architecture analysis techniques that can be used
with ArchiMate. Quantitative and qualitative
analysis techniques are distinguished.

Quantitative analysis focuses on the quantitative
aspect of relationships between different EA
elements and layers. It can be used for optimization
by quantifying the effect of alternative design
choices obtaining measures to support impact-of-
change analysis (Šaša and Krisper, 2011).
Qualitative analysis enables to understand how a
system that conforms to the architecture works, to
find the impact of a change on the architecture, or to
validate the architecture correctness. This analysis
distinguishes structural and dynamic aspects
(Lankhorst, 2009). The structural analysis is used to
determine the EA change impact which implies
traverse the architecture and consider each relation
and its meaning to determine whether the change
might propagate. Description logics are useful
formalisms to perform this analysis. For dynamic
analysis, techniques based on formal interpretations
are used. Dynamic analysis improves consistency
and focuses on logical aspects of the models. (Šaša
and Krisper, 2011)

Other approaches based on EA patterns exist for

Architecture�Principles�Compliance�Analysis

329

business support analysis (Šaša and Krisper, 2011).
The approach used consists in the pattern
formalization to detect architecture structures that
characterize each pattern. The detection of the
referred structures enables to be aware of what could
be changed and how the EA could evolve. The
pattern formalization is based on ArchiMate.

Hereupon, the proposed analysis could be
positioned in the structure analysis, however it is not
intended to analyse the EA change impact. It allows
evaluating the EA coherence which could result in
the improvement of the architecture dynamics.
These improvements could represent the rationale
underlying the prescribed architecture principle.

3 APPROACH

The architecture principles are considered the
rationale for the existence of several EA elements
and relationships (Greefhorst and Proper, 2011),
which could position EADs as artifacts that provide
relevant information for the compliance analysis.
The approach underlying the proposed analysis is
based on (Šaša and Krisper, 2011). Initially it
consists in the identification of the EA elements and
relationships needed to perform the compliance
analysis. Then, the architecture structures that
represent the principle expected impact are
recognized. This recognition enables to determine

the compliant elements in the analyzed EAD. So, the
used approach is composed as follows.
 To Define Relevant EA Perspectives. These

perspectives are the viewpoints that represent the
structures impacted by the principle. Their goal is
to ensure that corresponding views illustrate
exactly the relevant elements for the analysis.

 To Define Characteristics That Address the
Principle Perspectives. These characteristics
define the prescriptions imposed by the principle.
They enable to recognize the principle expected
impact in the EAD.

In summary, we represent an architecture principle
as a set of elements, which is formalized with its
membership conditions. If an EA element respects
the principle membership conditions it is compliant.

4 PROPOSAL

To perform the proposed analysis the symbols used
in the principle formalization are presented in Table
1. These symbols based on (Šaša and Krisper, 2011)
represent the ArchiMate elements (The Open Group,
2012) impacted by the considered principles.
However, it’s important to notice that not every
element belongs to the ArchiMate metamodel. The
new elements and relationships correspond to
extensions to the metamodel. The reason for each
extension is explained in the principle analysis that
requires it. (The Open Group, 2012).

Table 1: Symbols for principle formalization.

Symbols

PIA Set of all elements and relations
of an EAD ACPreL Set of all presentation logic application

components in the EAD: ACPreL ⊆ AC

BR Set of all business roles in the
EAD ACProL Set of all process logic application

components in the EAD: ACProL ⊆ AC

CR Set of all customers in the EAD:
CR ⊆ BR ACBL Set of all business logic application

components in the EAD: ACBL ⊆ AC

BI Set of all business interfaces in
the EAD ACDL Set of all data logic application

components in the EAD: ACDL ⊆ AC

EF Set of all electronic forms in the
EAD: EF ⊆ BI

(a,b) ∈
Realization

a is related to b with the Realization
relationship : a realizes b

BS Set of all business services in the
EAD

(a,b)∈
Composition

a is related to b with the Composition
relationship: a is composed of b

AS Set of all application services in
the EAD

(a,b) ∈
Aggregation

a is related to b with the Aggregation
relationship: a aggregates b

AC Set of all application components
in the EAD

(a,b) ∈ Used
by

a is related to b with the Used by
relationship: a is used by b

DO Set of all data objects in the EAD (a,b) ∈
Provide

a is related to b with the Provide
relationship: a provides b

(a,b) ∈	
Creation

a is related to b with the Creation
relationship: a creates b

(a,b) ∈
Assignment

a is related to b with the Assignment
relationship: a is assigned to b

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

330

Table 2: Applications are modular principle (Greefhorst and Proper, 2011).

A.28 Applications Are Modular (AAM)
Type of information: application
Quality attributes: reliability, maintainability, portability
Rationale:
 Modularized applications are much easier to develop, maintain, reuse and migrate than monolithical

applications.
 Modularized applications are also more reliable since changes have a more localized and therefore

predictable impact.
Implications:
 Applications are decomposed into components that have limited and acyclical dependencies on other

components.
 Application components are units of configuration management and deployment.
 Application components have a logical and documented layered structure, where lower level layers are

independent of higher level layers.
 Presentation logic, process logic, business logic and data exist in separate layers or components.

It’s also relevant to understand how the principle
perspectives are defined. If PIA represents a set of
all element and relationships of an EAD, then a
viewpoint can be defined as a function vp that maps
a given EA into a subset of its elements and their
relations. Function vp(PIA)=P, P⊆PIA, where P
represents a view of the EA from the viewpoint vp.
Hereupon, two functions are defined to represent a
viewpoint (Šaša and Krisper, 2011):
 Function Elt(x), where x⊆PIA, is a function which

returns all elements in a given EAD x or in a given
view x of an EA.

 Function Rel(x), where x⊆PIA is a function which
returns all relationships in a given EAD x or in a
given view x of an EA.

4.1 Applications Are Modular Analysis

The compliance analysis presented here is based on
the principle highlighted in Table 2. Concerning this
analysis, the needed ArchiMate extensions are
represented as follows.
 The ACPreL, ACProL, ACBL and ACDL sets

identify the application components that
implement presentation, process, business and data
logic, respectively.

4.1.1 Definition of AAM Perspectives

The AAM viewpoint (AAMV), AAMV⊆PIA is
defined as follows.

(1)Elt(AAMV)={x|(x∈AC) ∨ (x∈AS, ∃ac1,ac2∈AC:
(ac1,x)∈Realization ∧ (x,ac2)∈Used by)}

(2)Rel(AAMV)={(x,y)|x,y∈AC: (x.y)∈Composition ∨
(x.y)∈Aggregation} ∪ {(t,z)|z∈AC,t∈AS :

(z,t)∈Realization ∨ (t,z)∈Used by}

4.1.2 Definition of AAM Characteristics

Concerning the AAM analysis, the principle
prescribes that each monolithical application
component only should implement one type of logic.
The MoAC1L set identifies the application
components that address this prescription.

(3)MoAC1L=MoAC\(MoAC∩ACSevL)

The MoAC set identifies the monolithical
components and ACSevL defines the application
components that implement at least two logics.

(4)MoAC={a|a∈AC ∧ (∄b∈AC: (a,b)∈Composition
∨ (a,b)∈Aggregation)}

(5)ACSevL=(ACPreL∩ACProL)∪(ACPreL∩ACBL)
∪(ACPreL∩ACDL)∪(ACProL∩ACBL)∪(ACProL∩

ACDL)∪(ACBL∩ACDL)

The principle also prescribes about the
dependency between application components. This
dependency is related to the usage that a component
makes from other component. To control this
dependency the application components that
correspond to a layer with lower abstraction level
are independent of higher level components. So, the
components with a certain type of logic only could
use application components with lower or equal
abstraction level logic. To verify this prescription
the different logics have to be classified depending
on the abstraction level. From the higher level to the
lower, the presentation logic is followed by the
process, business and data logic. The ACU set
identifies the monolithical components that address
the dependency prescription. The ACPreLU,
ACProLU, ACBLU and ACDLU (Appendix) sets
define for each logic the components that endorse
the dependency prescription.

Architecture�Principles�Compliance�Analysis

331

Table 3: Data are provided by the source principle (Greefhorst and Proper, 2011).

A.14 Data Are Provided by the Source (DPS)
Type of information: data, application
Quality attributes: reliability, efficiency
Rationale:
 When those who have the data also provide them, unnecessary intermediate layers (e.g. people or IT

components) are prevented.
 The performance and reliability of the data also increases, since each link in the chain adds

performance overhead and potential errors.
Implications:
 Electronic forms are provided to customers to enter their requests.
 Applications acquire data from the source application.

(6)ACU=ACPreLU ∪ ACProLU ∪ ACBLU ∪

ACDLU

The principle also prescribes about the
application component composition. The
components only should be composed by
components in accordance with the prescriptions
previously analysed. This guarantees the application
layered structure intended by the principle. So, the
ACComp set identifies the components that respect
this prescription.

(7)ACComp={ac|ac∈(AC\MoAC)∧(AppComp(ac)⊆
ACU)}

The AppComp(ac) function previously used
identifies the application components that compose a
certain component.

(8)AppComp(x)={ac|ac∈AC∧((x,ac)∈Composition∨
(x,ac)∈Aggregation)}

Hereupon, the principle compliant application
components are identified by the AAM set.

(9)AAM = ACU ∪ ACComp

4.2 Data Are Provided by the Source
Analysis

The compliance analysis presented here is based on
the principle highlighted in Table 3. Concerning this
analysis the ArchiMate extensions needed are:
 The Creation and Provide relationships. They are

created to avoid the access relationship ambiguity.
 The CR set identifies business roles that

correspond to customers.
 The EF set identify business interfaces that

represent electronic forms.

4.2.1 Definition of DPS Perspectives

The DPS viewpoint (DPSV), DPSV⊆PIA is
characterized as follows.

(10)Elt(DPSV)={x|(x∈AS) ∨ (x∈AC, ∃a∈AS:
(x,a)∈Realization) ∨ (x∈DO, ∃b∈AS: (b,x)∈Provide
∨ (b,x)∈Creation)} ∪ {y|(y∈BS) ∨ (y∈BI, ∃c∈BS:

(x,c)∈Assignment ∧ ∃c∈BR: (x,c)∈Used by)}

(11)Rel(DPSV)={(x,y,z)|x∈AS,y∈DO,z∈AC,
((x,y)∈Provide ∨ (x,y)∈Creation) ∧

(z,x)∈Realization} ∪ {(t,u,v)|t∈BR,u∈BI,v∈BS,
(u,z)∈Assignment ∧ (u,t)∈Used by}

4.2.2 Definition of DPS Characteristics

The principle prescribes that data object should be
provided by its application source. The application
source of a certain data is the application component
responsible for its creation. So, the ASDOAS set
identifies the application services that only provide
data created by the component that realizes that
services.

(12)ASDOAS={a|a∈AS∧(∃do∈DO: (a,do)∈Provide)
∧ (∃b∈ASAC(a): (b,do)∈Creation)}

The ASAC(a) function identifies all application
services realized by the application component that
realizes a certain application service.

(13)ASAC(a)={as│as∈AS∧∃ac∈AC:(ac,a)∈Realizat
ion∧(ac,as)∈Realization}

It’s also prescribed that should be provided
electronic forms to customers enter their requests
and use the delivered business services. This
prescription is endorsed by the BSEF set.

(14)BSEF={bs|bs∈BS∧∃bi∈EF:(bi,bs)∈Assignment
∧∃br∈CR:(bi,br)∈Used by}

Hereupon, the DPS set identifies the principle
compliant elements.

(15)DPS = ASDOAS ∪ BSEF

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

332

5 CASE STUDY

To demonstrate our proposal the compliance
analysis was applied to real EADs provided by one
of the largest Portuguese insurance companies. The
used architectures should address the considered
principles and for that reason are used to perform
this analysis. So, for each principle analysis several
views describe the analysed architecture, where are
marked in green the compliant elements resulting
from the analysis application. It’s important to
notice that these views are based on the principle
perspectives and their element names are letters due
to confidentiality reasons. In Figure 1 and 2 each
partition represents a view where the responsible set
for the compliance analysis is also referred.

5.1 AAM Analysis Application

The AAM analysis is illustrated in Figure 1.

Figure 1: AAM compliance analysis.

5.2 DPS Analysis Application

The DPS analysis is illustrated in Figure 2.

Figure 2: DPS compliance analysis.

5.3 Results Analysis

The recognition of the EA compliant elements
through the proposal application also enables to
acquire the knowledge of what the non-compliant

elements are. Regarding the AAM analysis (Figure
1) the non-recognition of several elements as
compliant is due to their development have been
carried before the emergence of software application
modularity principles. This past legacy represents
the reason for the non-recognition of “D” and “E” as
compliant elements.

Concerning the DPS analysis (Figure 2), the “F”
non-recognition is explained by a redundancy in the
insurance company middleware layer. The existence
of this redundancy is known by the architects and is
explained by the acquisition of the “A” and “E”
components as a package. When other components
want to obtain the “D” object from services provided
by “A” they can’t, since “E” is responsible for the
communication with “A”. So, “D” only could be
provided through “E” which does not represent its
application source. Consequently “F” is not
recognized as compliant.

Hereupon, the proposed compliance analysis
enable to evaluate the EA based on architecture
principles. This analysis allows identifying the
compliant elements through the principle expected
impact.

6 CONCLUSIONS

In this paper was proposed an EA analysis based on
architecture principles. This analysis enables to
identify the compliant elements of an EAD with
their guiding principles. The analysis endorses two
different principles sufficiently objective to realize
which impact they have on the EA. The principle
expected impact and the ArchiMate language
provide the basis for the approach underlying the
proposed analysis. Initially are defined the
architecture perspectives which provide the elements
and relationships impacted by the principle. Then,
for each perspective are formally defined the
conditions prescribed by the selected principle. This
formalization is used to verify if the elements of a
certain perspective are or not compliant with the
respective principle.

The analysis feasibility was demonstrated in real
architectures where compliant elements are
identified and the non-conformities are justified. As
part of this research, this analysis will be extended to
endorse other architecture principles and also it’s
expected their implementation in an EA
management tool to a larger and complex analysis
could be performed. To conclude, as identified in
this work an EA analysis based on architecture
principles still lack. Hereupon, our research

Architecture�Principles�Compliance�Analysis

333

contributes to surpass this gap providing a
mechanism that allows analysing the principle
compliance through an EAD.

REFERENCES

Aier, S., Fischer, C., Winter, R., 2011. Construction and
Evaluation of a Meta-Model for Enterprise
Architecture Design Principles. Wirtschaftsinformatik
Proceedings.

Greefhorst, D.,Proper, E., 2011. Architecture Principles:
The Cornerstones of Enterprise Architecture,
Springer, Berlin.

Johnson, P., Lagerström, R., Närman, P., Simonsson, M.,
2007. Enterprise architecture analysis with extended
influence diagrams. Information Systems Frontiers.

Lankhorst, M., 2009. Enterprise Architecture at Work:
Modelling Communication and Analysis, Springer.
Berlin, 2nd edition.

Lindström, A., 2006. On the syntax and semantics of
architectural principles. In HICSS '06, 39th Hawaii
international conference on system sciences.
Computer Society Press.

Op’t Land, M., Proper, H.A., Waage, M., Cloo, J.,
Steghuis, C., 2008. Enterprise architecture—creating
value by informed governance, Springer. Berlin.

Šaša, A., Krisper, M., 2011. Enterprise architecture
patterns for business process support analysis. In
Journal of Systems and Software. Elsevier.

The Open Group, 2012. ArchiMate 2.0 Specification, Van
Haren Publishing.

The Open Group, 2009. TOGAF Version 9 TOGAF Series,
Van Haren Publishing.

Van Bommel, P., Buitenhuis, P.G., Stijn, J.B.,
Hoppenbrouwers, A., Proper, E.H.A., 2007.
Architecture Principles – A Regulative Perspective on
Enterprise Architecture. In Reichert M, Strecker S,
Turowski K (eds) Enterprise modelling and
information systems architectures Gesellschaft fuer
Informatik.

Vieira, T., 2012. Evaluating Enterprise Architectures:
From Principles to Metrics. MscThesis.

APPENDIX

(16)ACPreLU={ac1|ac1∈(ACPreL∩MoAC1L)∧((∃a
c2∈MoAC1L:(ac2,ac1)∈Used
by∨(∃as1∈AS:(as1,ac1)∈Used

by∧(ac2,as1)∈Realization))∨(∄ac3∈AC:(ac3,ac1)∈
Used by ∧∄as2∈AS:(as2,ac1)∈Used by))}

(17)ACProLU={ac1|ac1∈(ACProL∩MoAC1L)∧((∃
ac2∈(ACProL∪ACBL∪ACDL)∩MoAC1L):(ac2,ac1

)∈Used by∨(∃as1∈AS:(as1,ac1)∈Used
by∧(ac2,as1)∈Realization))∨(∄ac3∈AC:(ac3,ac1)∈

Used by ∧∄as2∈AS:(as2,ac1)∈Used by))}

(18)ACBLU={ac1|ac1∈(ACBL∩MoAC1L)∧((∃ac2∈
((ACBL∪ACDL)∩MoAC1L):(ac2,ac1)∈Used

by∨(∃as1∈AS:(as1,ac1)∈Used
by∧(ac2,as1)∈Realization))∨(∄ac3∈AC:(ac3,ac1)∈

Used by ∧∄as2∈AS:(as2,ac1)∈Used by))}

(19)ACDLU={ac1|ac1∈(ACDL∩MoAC1L)∧((∃ac2
∈(ACDL∩MoAC1L):(ac2,ac1)∈Used

by∨(∃as1∈AS:(as1,ac1)∈Used
by∧(ac2,as1)∈Realization))∨(∄ac3∈AC:(ac3,ac1)∈

Used by ∧∄as2∈AS:(as2,ac1)∈Used by))}

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

334

