
Evolving a Core Banking Enterprise Architecture
Leveraging Business Events Exploitation

Beatriz San Miguel, Jose M. del Alamo and Juan C. Yelmo
Center for Open Middleware (COM), Universidad Politécnica de Madrid (UPM), Campus de Montegancedo, E-28223,

Pozuelo de Alarcón, Madrid, Spain

Keywords: Event-Driven Architecture (EDA), Enterprise Architecture (EA), Event, Middleware, Service Oriented
Architecture (SOA).

Abstract: Business information has become a critical asset for companies and it has even more value when obtained
and exploited in real time. This paper analyses how to integrate this information into an existing banking
Enterprise Architecture, following an event-driven approach, and entails the study of three main issues: the
definition of business events, the specification of a reference architecture, which identifies the specific
integration points, and the description of a governance approach to manage the new elements. All the
proposed solutions have been validated with a proof-of-concept test bed in an open source environment. It is
based on a case study of the banking sector that allows an operational validation to be carried out, as well as
ensuring compliance with non-functional requirements. We have focused these requirements on
performance.

1 INTRODUCTION

In 2011, Santander Bank (together with its
technological and operational divisions ISBAN and
PRODUBAN) and Universidad Politécnica de
Madrid created a joint technology center called
Center for Open Middleware (COM). COM is the
incubator of an open software ecosystem aiming at
developing middleware solutions and experimenting
with new software architecture approaches.

There are different technologies hosted under the
COM umbrella and one of the key ones is an
Enterprise Architecture (EA) called BankSphere
(BKS). Created by the Santander Group, BKS is a
set of integrated design tools, and a deployment and
runtime environment that speeds up the development
of new bank software such as applications for
customers, call center staff or bank branch workers.
BKS has constantly evolved to fulfil Santander
requirements, and now it is required to enhance the
generation and exploitation of real time business
information. This last part can be achieved by
applying an event-driven approach in BKS.

Event Driven Architecture (EDA) allows
systems and applications to deliver and respond to
real time information, helping to support business
needs from an IT management standpoint

(Malekzadeh, 2010). Thus, it has associated both
technological benefits and business advantages. As
regards the former, EDA provides loose coupling
between its components, which reduces
dependencies and allows modifications without
giving rise to side effects. A many-to-many
communication pattern is also applied, facilitating
the reusability of information and the freedom to act
independently with the received information. All the
above creates an adaptive and flexible architecture
that results in business advantages. EDA enables
faster, more agile and more responsive business
processes, enhancing the informed decision making
model and the automation and motoring of
operational activities, among other business
advantages.

In early 2012, we started to work on a pilot
project intended to research, analyse and evaluate
event-oriented approaches, architectures, tools and
technologies and its potential application and
integration into the context of Santander Group
architectures. Specifically, the project focuses on the
correct incorporation and use of real time business
events in the BKS context, identifying the key
necessary elements and integrating them into BKS,
while minimizing interference with the existing
architecture and procedures. Moreover, a

181San Miguel B., del Alamo J. and Yelmo J..
Evolving a Core Banking Enterprise Architecture - Leveraging Business Events Exploitation.
DOI: 10.5220/0004879901810189
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 181-189
ISBN: 978-989-758-029-1
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

requirement to all COM solutions is that they must
be based on open-source technologies that open up
new possibilities.

The specific requirements necessary to evolve
the core banking EA towards an EDA approach are:
the definition of business events; the design of a
reference architecture, which identifies the
integration points with the specific EA, and the
description of the initial governance approach to
manage the new elements.

This paper is organized as follows. First, section
2 covers related work and puts our work in
perspective. Section 3 gives an overview of the
background of the project: EDA and BKS main
concepts. Then, a proposed solution to introduce
EDA in BKS is presented in section 4. Section 5
includes an operational validation though a case
study and a non-functional validation focussing on
performance. Finally, section 6 concludes the paper
and introduces areas of future research.

2 RELATED WORK

Diverse studies have tackled the introduction of
business events in existing architectures of different
domains. Most of them describe general approaches
for EDA and SOA integration such as (Taylor et al.,
2009) or (Malekzadeh, 2010), while others address
only specific issues of the EDA integration like
modelling, simulation, methodologies, performance,
etc. For example, (Clark and Barn, 2012) proposes
an EDA modelling notation and its associated
simulation language; (Weigand, 2011) describes
unified event ontology and a methodology for event-
driven business processes; and (Vidačković et al.,
2010) explains a business-oriented development
methodology for event processing.

The papers reviewed provide the theoretical basis
to evolve EAs. Most of them include a validation
exercise through a case study in the application field.
However, they are usually academic or simplified
examples, not practical experiences for real-world
EAs, since most companies, and banks in particular,
do not usually publish them. Our contributions are
focused on this last point, a real-world EA evolution
and its associated solutions, which we think are of
the utmost interest for engineers and practitioners.

3 BACKGROUND

3.1 Event Driven Architecture

EDA is a software architecture style based on
multiple entities communicating asynchronously via
announcements or notifications, known as events.
Instead of the traditional synchronous, request-
response interaction model, where a requestor asks
for services or messages and waits for an answer
from a replier; in EDA, events are transmitted in a
fire-and-forget mode. In other words, events are
communicated without a previous request and
without being concerned about what happens
afterwards with them.

Basically, an event is a change in a state within a
particular system or domain that merits attention
from other systems (Taylor et al., 2009). The term
has been given other meanings, depending on the
context. It can refer to the actual occurrences (the
things that have happened), which are also known as
instances of a particular type of events. On the other
hand, we can use ‘event’ or ‘notification’ to specify
the particular communication of an event instance.
Generally, the word ‘event’ is used in both cases
without distinction. We will use ‘event instance’ or
‘event notification’ where its distinction is relevant.

We can think about different types of event
taking place in a company, such as events related to
low-level technical information, software activity,
user actions or business data. Furthermore, we may
also consider events happening outside the company
(e.g. stock exchange markets, social networks or any
other data sources). By way of example, low-level
technical events can be information from sensors,
ATM status, network data or activity in many other
devices. Software events can indicate calls to
methods, execution of services or exceptions in the
execution of a program or a process. We may
understand user events as actions or information
generated by both customers and workers of a
company. Finally, this paper focuses on business
events. They are those generated by the core
company activities and represent relevant
information that has impact on its economic
development and management. For instance, in a
financial institution, business events can derive from
the registration of new customers, canceling of
services, money withdrawals, or the contracting of
products such as credits, mortgages, etc.

A generic EDA is made up of three core layers:
producers, channel and consumers (Figure 1). The
process begins at the producer layer, detecting,
creating and sending events through a channel, and

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

182

ends when consumers receive these event
notifications and carry out a specific task
(automatically or with human intervention).

Figure 1: Generic EDA layers.

Producers can contain a software subcomponent
called preprocessor to add intelligence to the event
publication. It can carry out different tasks such as,
filter, prioritize or homogenize the produced events.
Thus, only the most relevant events will be sent or
all event notifications will have the same format.

The channel is responsible for transporting event
notifications between producers and all associated
consumers. It usually takes the form of a Message
Oriented Middleware (MOM), which is a software
infrastructure that can send and receive messages
between distributed systems, regardless of platforms,
technologies and resources used.

A MOM can use different messaging models
such as point-to-point or publish/subscribe. In the
first model, only one consumer receives a particular
event notification, while in the second, more than
one consumer may express their interest in a set or
subset of event types, in order to be notified when a
producer generates their registered interest (Eugster
et al., 2003). Technically, it is usually achieved
thanks to an intermediary entity known as broker
that receives all event notifications from producers
and routes them to the subscribed consumers, using
queues that store event notifications if necessary.

Consumers can be any entity such as software
components, applications or systems that react to the
received notifications. For example, it can create
new event notifications, invoke a service, initialize a
business process, increase a value or notify humans
to carry out manual tasks. There is a special kind of
consumer that is known as an event processing
engine, which encompasses the set of computational
procedures to carries out operations with events such

as reading, creation, transformation, deletion or
correlation (Etzion and Niblett, 2010). Because of its
importance, it is frequently considered as an
independent layer in EDA.

There can be three styles of event processing
which may be used together (Michelson, 2006):
simple, stream and complex. The former is the most
basic process: an event is received and it produces
an action. On the other hand, Event Stream
Processing (ESP) continually receives all kinds of
events (ordinary and notable) and through
established rules or queries on the flow of data, and
then decides whether or not to forward events (or
information about them) to other consumers. Finally,
Complex Event Processing (CEP) relates different
event types from various sources to produce new
events or extract relevant information.

3.2 BKS Banking Services Platform

BKS is a set of development tools created by the
Santander Group that allows programmers to create
new banking applications quickly. It includes a
design framework integrated with the Eclipse IDE,
and a deployment and runtime environment based on
Java Enterprise solutions and web technologies.

BKS has been designed to allow the reuse of
software components and simple, fast programming.
The former is achieved by its Service Oriented
Architecture (SOA)-like approach, where pieces of
software are developed and exposed to be reused by
other components. The latter is carried out by using
a visual programming environment that allows
programmers to design applications through usable
graphical user interfaces (GUI). It hides the code
details and lets programmers to use graphic symbols
that represent software components.

Simply put, BKS programmers can create
presentation and business flows by reusing
previously implemented software components. The
business flows are exposed by a facade and can be
used to create banking applications. An application
is usually constituted by a main presentation flow
that calls different business flows, which in turn call
backend operations or services.

A BKS application is typically turned into a Java
Enterprise Edition application, exposing the
application through a web module (WAR) and
implementing the business logic in various
Enterprise JavaBeans (EJB). It is then executed in a
runtime environment provided by BKS (Figure 2).

The execution of BKS applications at runtime is
as follows. First, a request for an application is
detected and redirected to the operation container. It

Evolving�a�Core�Banking�Enterprise�Architecture�-�Leveraging�Business�Events�Exploitation

183

Figure 2: Basis of BKS applications at runtime.

invokes different initial operations and the states
defined by the presentation flow (PF). These states
can call business flows through a common facade.
At this point, the execution entails invoking backend
operations and external components defined by the
business logic. Finally, the request ends when all
presentation states have been executed and the
control is returned to the user.

4 BKS MEETS EDA

In the previous sections we have reviewed the
foundations of EDA and the main features of BKS.
Converging on a solution that brings the best of
these architectures requires extending current BKS
capabilities and identifying the key integration
points that interfere minimally in the existing
architecture and the associated procedures.

Specifically, we include the results obtained for
evolving an EA towards the EDA paradigm in the
following subsections. The specific results are: the
definition of the new banking business events, the
design of a reference architecture to integrate EDA
that allows business event generation and
exploitation and identifies the specific integration
points with BKS, and finally, a description of the
initial governance approach to manage the new EDA
elements.

4.1 Business Event Definition

The event definition entails deciding which semantic
and data each event instance must contain, and
which data-exchange format is assigned to event
notifications. Given that there is no standard or a
generally adopted event format, and there is a huge
variety of business event types with different
meanings and aims, the event definition is one of the

most problematic issues in EDA integration.
We have carried out a study with the possible

alternatives that are used or can be used to
communicate and later, process business events,
concluding the following:
 There is a wide range of event definitions in

different formats that addresses specific issues in a
company and changes depending on the purpose of
the event, the domain or the business layer (Becker
et al., 2012).
 Event notifications can be implemented by any

data-exchange format such as XML, JSON,
Google Protocol Buffers, CSV, ASN.1 or Hessian
(Aihkisalo, 2011) and (Maeda, 2012).
 Event processing engines can use Java Objects,

expressions or JSON-based or tag-delimited
languages to represent events.

Moreover, we have examined some initiatives
proposed in the field of web services, such as the
WS-EventDescription or the WS-Notification. They
are not specific event definitions and cover the
description of communication protocols between
web services. Events in other domains, for example
the specification Activity Streams for social web
application, have also been reviewed.

Clearly, there is no single solution to choosing
language and some of them can be used either
jointly or separately. However, there is a trend
towards formats that allow the inclusion of two
differentiated parts: header and body (Michelson,
2006) and (Etzion and Niblett, 2010). The header
includes metadata information: generic event
information such as the name, identifier, occurrence
time or producer identification, or can describe the
event type. On the other hand, the body or payload
contains the specific data on the event instance.

We have decided to follow the aforementioned
structure in an XML format. We have defined a
general XML Schema Definition (XSD) that
contains the basic structure for all event types. Here,
the header has three basic elements common to all
events:
 eventType: indicates the kind of event according to

the hierarchy of the Santander Group’s business
event catalogue. It has an attribute denominated as
a category that specifies the nature or domain of
the event and the value is a text string that contains
two parts separated by a dot, indicating the
business area and the specific type.
 createdTime: contains the timestamp of an event

occurrence.
 createdBy: identifies the event producer that

generates the event.

The body is limited by an element called

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

184

recordAppData that contains a reference to other
separated XSD. There is a XSD for each event type
and each of them describes the specific data of an
event type. It is important to highlight that we have
divided the header and body definitions in different
XSDs to allow specialized actors to handle a specific
part.

4.2 Reference Architecture

An EDA process starts with the detection and
creation of events. Although BKS does not include
any EDA layers, it uses relevant business
information that can be mapped to banking business
events. As a result of these facts, event producers
have been detected as the only integration point
between EDA and BKS architectures (Figure 3).

We have detected two main ways to incorporate
event producers in BKS applications:
 Explicit way. BKS programmers must include a

call to an event producer component to generate
business events, configuring the exact values for
the business event instance. In other words, they
have to decide where to include the creation of the
event inside the business logic and moreover,
obtain the context data that corresponds to event
instances.
This solution has several drawbacks. First,
programmers have to acquire new responsibilities
and understand new concepts related to business
areas that differ from their daily technical work.
Secondly, this incorporation in existing banking
applications, which are currently in production,
implies their modification and it can entail risks in
stable applications.
 Implicit way. Here, the incorporation of event

producers is almost transparent for programmers.
They are strictly limited to defining the business
logic and the business event generation is
associated with calls to business flows.
The main disadvantage of this solution is the low
quality of the generated events. They correspond to
calls to functional business methods but they do
not necessarily tie in with business event
definitions. To solve this last point, a preprocessor
can be included. It can create real business events
based on execution traces obtained from calls to
the facade. However, it requires an in-depth
analysis of the context and each functional
component to be related to business events.

Both alternatives can coexist in BKS. We have
specifically proposed to use explicit business event
generation for new BKS applications and implicit
generation for existing applications.

The rest of the EDA layers (channel and
consumers) will be new elements in BKS. At
present, BKS already incorporates a stable
commercial messaging system for logging the
application. It allows execution traces to be stored in
a database to be batch processed. Therefore, a MOM
that allows the publish/subscribe model to distribute
business events in real time has to be incorporated.

Figure 3: EDA integration with BKS.

4.3 Initial Governance Approach

The incorporation of EDA elements in BKS entails
the creation of new operational and organizational
processes that allow the Santander Bank to govern
business events. Governance is a wide discipline that
can be applied on multiple perspectives of a
company such as that related to EA, IT, data,
business or SOA. Basically, it seeks to define a
global structure for establishing and ensuring how
the company resources sustain and extend the
organization strategies. To begin with, we have
identified the organizational processes involved in
the creation, use and reuse of business events in the
BKS context. This new process has been called
event lifecycle and has been defined according to the
existing procedures in the bank.

The event lifecycle (Figure 4) describes in design
time the different states that must be carried out to
define, incorporate and use business events
generated by applications. In previous sections, we
noticed that BKS programmers know the functional
specification and logical model of their applications.
However, they ignore the business value of their
components. Consequently, other stakeholders must
participate.

Evolving�a�Core�Banking�Enterprise�Architecture�-�Leveraging�Business�Events�Exploitation

185

Figure 4: Event lifecycle.

We have identified four main actors in the event
lifecycle: a project leader of an event-oriented
application that wants to use a specific event, a
project leader responsible for the BKS application
that generates the event and the corresponding
programmers of each project. Members of the
quality department participate in approving different
stages.

The lifecycle starts with an identification stage:
the event-oriented project leader detects the need to
consume a specific business event to take advantage
of it and examines whether the specific banking
business event exists. If it is already incorporated in
any BKS application, a subscription to this event is
made. Otherwise the new event is defined.

The definition process begins with a formal
request for the incorporation of a new business event
(application stage). The request goes through a
validation stage and if approved, the event is defined
and incorporated into a BKS application. The quality
department validates this last step again. The
definition process ends with the event subscription
and use.

5 VALIDATION

In order to validate the previous solutions, we have
developed a proof-of-concept test bed in an open
source environment. It incorporates several event
producers, a MOM, a CEP, and different event
consumers that give shape to a banking case study.
The case study supports the operational validation of
our contributions as well as the evaluation of some
non-functional aspects, such as performance.

5.1 Case Study

The case study consists of a wire transfer scenario
whose aim is to demonstrate the feasibility of the
proposed solutions and the value added to the
business by EDA. The scenario takes into account
Santander customers who are sending and receiving
money from the same bank or others. It must
incorporate the technologies and mechanisms that
allow the detection, distribution and use of the
associated business events. Moreover, it must show
any of the multiple possibilities for exploiting these
events in real time.

We have identified two main business event
types: sent wire transfer and received wire transfer.
The former represents events of orders that
Santander customers carry out to transfer a certain
amount of money to other bank institution. On the
other hand, received wire transfers are orders from
customers of other banks to Santander customers.
Each event type contains the specified header and
the following information in the body: session
identification, IP address, source account, target
account and amount of the transfer.

Our scenario includes the following logical
entities (Figure 5):
 Two event producers. Each of them generates a

different business event for wire transfers and
publishes it through a MOM.
 One MOM that distributes the received events to

all the associated consumers.
 A CEP that acts as a consumer and receives all the

previous events. It extracts relevant information
and displays it in a visualization dashboard.
Moreover, if applicable, it generates a new event
type that indicates that an individual (not a
corporate entity) has received a wire transfer above
a threshold. This new event type is called user
alert.
 An application displaying a wire transfer

dashboard that shows relevant information about
the business events of sent and received wire
transfers.
 Two consumers that react to the user alert event.

One of them is a simulation of a Customer
Relationship Management (CRM) that displays
records of the wire transfers received by Santander
users. Moreover, it can manage, assign and create
alerts to call center software with the aim of
carrying out commercial actions. The other
consumer is a user notification system that sends
mails and/or Short Message Service (SMS) to
Santander users that have activated the real time
notification service to be informed about their
transactions.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

186

Figure 5: Architecture of the case study.

We have developed the previous components using
open source tools and applications, and Java
programming language. Event producers have been
entirely implemented as Java preprocessors that use
information from different BKS applications. They
generate event notifications based on the proposed
XML event definition for sent and received wire
transfers and publish them through a channel.

The channel is implemented by an open source
MOM called RabbitMQ (RabbitMQ, 2013) that
supports the Advanced Message Queuing Protocol
(AMQP) in its version 0.9.1. AMQP covers different
messaging models such as publish/subscribe. Its
main advantage is to be interoperable allowing
consumers and producers to use any programming
language or data format.

As regards the CEP consumer, we have selected
an open source solution available for Java as Esper,
and for .NET as NEsper (EsperTech, 2013). It
allows large volumes of events to be processed by
applying ESP and CEP. Basically, Esper allows
applications to store queries and run the event
streams through to obtain information or new event
streams. Queries are written using Event Processing
Language (EPL) that is similar to the Structure
Query Language (SQL) of databases. The
differences are: the queries are carried out through
an event stream, the data available for querying
inside the stream is defined by views and the basic
units of data are events and their specific
information.

We have obtained information on the received
events with EPL queries such as the total number of
sent or received transfers, the accumulated amount

or the amounts per second for each event type. We
also have drawn up a ranking of the top five banks
for the most sent accumulated amounts. We extract
extra information on the received events by carrying
out an enrichment process. Thus, we have located
the source of the transfers. In particular, the
associated Santander bank branches that are source
or destination of transfers.

All the previous information has been displayed
in a web application called Wire Transfer
Dashboard. We have implemented it using the
Google Charts that allow a lot of chart types to be
incorporated such as maps, tables, or line or column
diagrams. We used WebSocket technology to
communicate Esper with the web application.

Finally, we have used Esper to obtain a new
event stream with all the received wire transfers that
have an amount of more than €3,000 and whose
target account belongs to an individual, not a
corporate entity. We have developed two consumers
that react to it: CRM and the user notification
system, implemented by Java web applications.

5.2 Performance Evaluation

We have conducted a first set of performance
measures to evaluate whether the selected open
source tools fulfil the basic requirements for our
case study. In particular, we began by verifying how
many messages per sec (throughput) RabbitMQ
supports and how many delays experienced by the
messages (latency) is added.

We considered a real time scenario, where one
producer publishes events and one consumer reacts

Evolving�a�Core�Banking�Enterprise�Architecture�-�Leveraging�Business�Events�Exploitation

187

to them as soon as they arrive. We also use two
types of messages: persistent (guaranteeing that it
will not be lost) and non-persistent (the opposite
case). We sent ten thousand messages of 100
different payload sizes, ranging from 181 to 12KB
with a 120B interval. Moreover, each test was run
three times and the measures obtained were
averaged.

We have carried out the evaluation in two
different environments to compare the results. First
we used two virtual machines, one for the messaging
broker and another for the consumer and producer.
Each machine has an Intel Xeon E5520 @2.27 GHz
x 4 cores processor, running 2GB RAM, 30 GB disk
capacity and Ubuntu 12.04 LTS server 64 bits. Then,
we used two physical machines with greater
features, a processor Intel Core i7-3720Q @2.60
GHz x 8 cores, 16GB RAM and 80 GB disk
capacity, running in an isolated network.

Figure 6 summarizes the results for the
throughput of producers, which are very similar but
a little lower for consumers. We observe that there is
a decrease in the throughput when the message size
increases. Also, there is a notable difference between
using virtual machines and not using them.

Figure 6: Throughput for producers.

We estimated that event notifications have a size
between 2KB to 5KB, where we observe that the
throughput is greater than 4,000 messages per sec in
both cases (virtual and physical machines), doubling
it in physical machines. The results are within the
target range and therefore, suggesting that
RabbitMQ can be applied in BKS. Moreover, using
physical machines we will cover larger amounts of
events. Regarding the latency, we obtained an
average delay of 119-125 milliseconds with physical
machines and 148-158 milliseconds with virtual
machines. Both results are acceptable to the
proposed cases.

6 CONCLUSIONS

We have analyzed how to introduce EDA in a core
banking EA that allows programmers to create
software bank applications quickly, efficiently and
proving high performance. This evolution towards
EDA allows the obtaining and exploiting of banking
business events but it has associated challenges. We
have analyzed them and proposed a set of solutions,
which are: a business event definition based on an
XML structure with our own semantic, a reference
architecture to integrate EDA that identifies the
specific integration points with the banking EA, and
a definition of an event lifecycle that allows the
incorporation and use of business events without
interfering with the existing EA and its related
governance processes. These solutions have been
successfully validated in a proof-of-concept test bed
that uses open source tools. Also, we have carried
out non-functional validations of the selected tools,
focusing on a performance evaluation.

Since our first results have demonstrated the
workability of our approach, the future points
towards further analysing the governance of an
EDA. The core banking EA requires solutions that
allow the cataloguing and managing of events to
optimize their production, reuse and consumption.
The monitoring of events and their lifecycle will
also ensure the consistency of the EDA solution.

ACKNOWLEDGEMENTS

This work is part of the Center for Open Middleware
(COM), a joint technology center created by
Universidad Politécnica de Madrid, Banco
Santander and its technological divisions ISBAN
and PRODUBAN.

REFERENCES

Aihkisalo, T., 2011. A Performance Comparison of Web
Service Object Marshalling and Unmarshalling
Solutions. In SERVICES 2011, 2011 IEEE World
congress on Services. IEEE.

Becker, J., Matzner, M., Müller, O., Walter, M., 2012. A
Review of Event Formats as Enablers of Event-Driven
BPM, Lecture Notes in Business Information
Processing vol. 99, 2012, pp. 433-445.

Clark, T., Barn, B.S., 2012. A Common Basis for
modelling Service-Oriented and Event-Driven
Architecture. In ISEC '12, Proceedings of the 5th India
Software Engineering Conference, pp. 23-32. ACM

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

188

Portal: ACM Library.
EsperTech 2013, Event Stream Intelligence. Available

from: <http://esper.codehaus.org/>. (15 October
2013).

Etzion, O., Niblett, P., 2010. Event Processing in Action,
Manning Publications. Greenwich, CT, USA, 1st
edition.

Eugster, P., Felver, P., Guerraoui, R., Kermarrec,A., 2003.
The many faces of publish/subscribe, Journal ACM
Computing Surveys (CSUR), vol.35, no.2, pp.114-131.
ACM Portal: ACM Library.

Maeda, K., 2012. Performance evaluation of object
serialization libraries in XML, JSON and binary
formats. In DICTAP 2012, 2st International
Conference on Digital Information and
Communication Technology and it’s Applications, pp.
177-182. IEEE.

Malekzadeh, B., 2010. Event-Driven Architecture and
SOA in collaboration - A study of how Event-Driven
Architecture (EDA) interacts and functions within
Service-Oriented Architecture (SOA). Department of
Applied Information Technology 2010:056. Available
from: University of GothenBurg. (15 October 2013).

Michelson, B. M., 2006. Event-Driven Architecture
Overview – Event-Driven SOA Is Just Part of the EDA
Story. Available from: Patricia Seybold Group.

RabbitMQ 2013, RabbitMQ Messaging that just works.
Available from: <http://www.rabbitmq.com/>. (15
October 2013).

Taylor, H., Yochem, A., Phillips, L., Martinez, F., 2009.
Event-Driven Architecture: How SOA Enables the
Real Time Enterprise (1st ed.). Addison-Wesley
Professional.

Vidačković, K., Kellner, I., Donald, J., 2010. Business-
oriented development methodology for complex event
processing: demonstration of an integrated approach
for process monitoring. In DEBS '10, Proceedings of
the Fourth ACM International Conference on
Distributed Event-Based Systems, pp. 111-112. ACM
Portal: ACM Library.

Weigand, H., 2011. The pragmatics of event-driven
business processes. In I-Semantics '11, Proceedings of
the 7th International Conference on Semantic Systems,
pp. 211-218. ACM Portal: ACM Library.

Evolving�a�Core�Banking�Enterprise�Architecture�-�Leveraging�Business�Events�Exploitation

189

