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Abstract: One of the most commonly used ways to represent requirements traceability is the requirements traceability 
matrix (RTM). The difficulty of manually creating it motivates investigation into alternatives to generate it 
automatically. This article presents two approaches to automatically creating the RTM using artificial 
intelligence techniques: RTM-Fuzzy, based on fuzzy logic and RTM-N, based on neural networks. They 
combine two other approaches, one based on functional requirements entry data (RTM-E) and the other 
based on natural language processing (RTM-NLP). The RTMs were evaluated through an experimental 
study and the approaches were improved using a genetic algorithm and a decision tree. On average, the 
approaches that used fuzzy logic and neural networks to combine RTM-E and RTM-NLP had better results 
compared with RTM-E and RTM-NLP singly. The results show that artificial intelligence techniques can 
enhance effectiveness for determining the requirement’s traceability links. 

1 INTRODUCTION 

Several authors highlight the importance of 
requirements management to the software 
development process (Zisman and Spanoudakis, 
2004) (Cleland-Huang et al., 2012) (Sommerville, 
2010). The majority of software errors found are 
derived from errors in the requirements elicitation 
and on keeping up with their evolution throughout 
the software development process (Salem, 2006). 

Research performed by the Standish Group 
(1994) (2005) showed that the three most important 
factors to define whether a software project was 
successful or not are: user specification gaps, 
incomplete requirements, and constant changes in 
requirements. Notice that these factors are directly 
related to requirements management, which has the 
traceability feature as a key point. 

One of the main elements to help the activities of 
requirements traceability is the requirements 
traceability matrix (RTM). The RTM is designed to 
register the existing relationships among system 
requirements. Due to its importance, it is the main 
focus of much research. Sundaram and others 
(2010), consider traceability determination and RTM 

to be essential in many software engineering 
activities, although it is a time consuming and error 
prone task. The authors claim that this task can be 
facilitated if computational support is given and the 
use of such automatic tools can significantly reduce 
effort and costs to elaborate and maintain 
requirements traceability and the RTM. These 
authors emphasize that such support is still very 
limited in existing tools. According to Cleland-
Huang and others (2012), the research which has 
recently addressed requirements traceability has 
focused on the automatic traceability definition. 

Among the ways to automate traceability, Wang 
and others (2009) highlight that current research 
makes use of three approaches: 
 The spatial vector model (SVM): the work of 

Hayes and others (2003), this approach will be 
mentioned in Section 5.2. 

 Semantic indexing: the work of Hayes and 
others. (2006) uses the ideas proposed by 
Deerwester and others (1990) from Latentic 
Semantic Indexing (LSI) in order to also 
automatically identify traceability. When LSI is 
in use, not only is the word frequency taken into 
consideration, but also the meaning and context 
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used in its construction. 
 The network probability model: the work of 

Baeza-Yates and others (1999) uses ProbIR 
(Probabilistic Information Retrieval) to create a 
matrix in which the dependencies among the 
terms are mapped in relation to the other 
document terms. 
Given the aforementioned context, this article 

presents two approaches to automatically create the 
RTM using artificial intelligence techniques: RTM-
Fuzzy based on fuzzy logic and RTM-N based on 
neural networks. Both of them combine two other 
approaches; RTM-E, that is based on functional 
requirements (FRs) entry data and RTM-NLP, that is 
based on natural language processing (NLP). 

Fuzzy logic is being applied because as is 
known, traceability determination involves many 
uncertainties, and fuzzy logic has the ability to 
handle them. Besides, to improve the effectiveness 
of this approach genetic algorithms were used to 
determine the best configuration of the fuzzy system 
pertinence functions. Neural networks are being 
used because they can store knowledge acquired 
through examples and make inferences about new 
ones, using examples during the training phase. In 
our case, as we had executed some experimental 
studies, there was much data available to train the 
neural network, so motivating its use. 

All these four approaches determine the level 
(“no dependence”, “weak dependence” or “strong 
dependence”) of the relationship between two FRs. 
To help the definition of the ranges that determine 
these levels generated by RTM-E and RTM-NLP a 
decision tree was used (Artero, 2009; Coppin, 2004) 
with the data obtained from previous experimental 
studies (Di Thommazo et al., 2012). 

The four approaches were evaluated by a new 
experimental study to quantify the effectiveness of 
each one. It is worth mentioning that the RTM-E and 
RTM-NLP approaches had already provided 
satisfactory results in two previous experimental 
studies (Di Thommazo et al., 2012) (Di Thommazo 
et al., 2013). To make all these experiments feasible, 
the four RTM automatic generation approaches were 
implemented in the COCAR tool (Di Thommazo 
and others, 2007). COCAR tool supports some 
activities of Requirements Engineering. It is possible 
to store the description, processing, input data, 
output data, constraints and stakeholders of each FR 
of a system. The tool provides the generation of the 
RTM according to four approaches that are 
presented in this paper. Also, some reports on the FR 
can be generated. 

This article is organized as follows: in Section 2 

requirements management, traceability and RMT are 
introduced; Sections 3 and 4 present a brief 
definition of fuzzy logic and neural networks, 
respectively; in Section 5, the four RMT automatic 
generation approaches are presented and exemplified 
by using the COCAR tool; Section 6 shows the 
experimental study performed to evaluate the 
effectiveness of the approaches; conclusions and 
future work are discussed in Section 7. 

2 REQUIREMENTS 
MANAGEMENT TECHNIQUES 

Requirements management is an activity that should 
be performed throughout the whole development 
process, with the main objective of organizing and 
storing all requirements as well as managing any 
changes to them (Zisman and Spanoudakis, 2004) 
(Sommerville, 2010). 

As requirements are constantly changing, 
managing them usually becomes a laborious and 
extensive task, thus making relevant the use of 
support tools to conduct it (Lai and Liu, 2009). 

According to the Standish Group (2005), only 
5% of all developed software makes use of any 
requirements management tool, which can partially 
explain the huge problems that software companies 
face when implementing effective requirements 
management and maintaining its traceability. 
Various authors emphasize the importance of tools 
for this purpose (Sommerville, 2010; Kannenberg 
and Saiedian, 2009; Goknil et al., 2011). Zisman and 
Spanoudakis (2004), for instance, consider the use of 
requirements management tools to be the only way 
for successful requirements management. 

Two important concepts of requirements 
management are requirements traceability and 
traceability matrix, which are explained next.  

2.1 Requirement Traceability 

Requirements traceability concerns the ability to 
describe and monitor a requirement throughout its 
lifecycle (Guo et al., 2009). Such requirement 
control must cover all its existence from its source – 
when the requirement was identified, specified and 
validated – through to the project phase and 
implementation and ending at the product’s test 
phase. Thus, traceability is a technique that allows 
the identification and visualization of the 
dependency relationship between one requirement 
and the others, and/or the other artifacts generated 

Using�Artificial�Intelligence�Techniques�to�Enhance�Traceability�Links

27



throughout the software’s development process. The 
dependency concept does not mean, necessarily, a 
precedence relationship between requirements but, 
instead, how coupled they are to each other with 
respect to data, functionality, or any other 
perspective.  

According to Guo and others (2009), 
requirements traceability is an important 
requirements management activity as it can provide 
the basis for requirements evolutionary changes, 
besides directly acting on the quality assurance of 
the software development process. 

Zisman and Spanoudakis (2004) consider two 
kinds of traceability: horizontal traceability, when 
the requirements’ relationship occurs between 
different artifacts like the requirements document 
(RD), models, source codes and, test artifacts; and 
vertical traceability, the focus of this paper, in which 
traceability is analyzed inside the same artifact, like 
the RD for instance. Through this artifact’s FRs 
analysis it is possible to identify their relationship 
and generate the RTM. 

2.2 Requirement Traceability Matrix—
RTM 

According to Goknil and others (2011), despite the 
various existing research treating traceability 
between requirements and other artifacts (horizontal 
traceability), only minor attention is given to the 
requirements relationship between themselves, that 
is, their vertical traceability. The authors also state 
that this relationship influences various activities 
within the software development process, such as 
requirements consistency verification and change 
management. A method of mapping such a 
relationship among requirements is RTM creation. 

In addition, Cuddeback and others (2010) assert 
that an RTM supports many software engineering 
validation and verification activities, like change 
impact analysis, reverse engineering, reuse, and 
regression tests. In addition, they state that RTM 
generation is laborious and error prone, a fact that 
means, in general, it is not generated or updated. 

Overall, the RTM is constructed as follows: each 
FR is represented in the i-th line and in the i-th 
column of the RTM, and the dependency between 
them is recorded in the cell corresponding to each 
FR intersection (Sommerville, 2010).  

Guo and others (2009), Goknil and others (2011) 
and IBM (2012) have debated the importance and 
need of the RTM in the software development 
process, once such a matrix allows the prediction of 
the impact that a change (or the insertion of a new 

requirement) has on the system as a whole. 
Sommerville (2010) emphasizes the difficulty of 
obtaining such a matrix and goes further by 
proposing a way to subjectively indicate not only 
whether the requirements are dependent but how 
strong such a dependency is. 

3 FUZZY LOGIC 

Fuzzy logic was developed by Zadeh (1965) and, 
instead of simply using true or false, proposes the 
use of a variation of values between a completely 
false and an absolutely true statement.  

In classic set theory there are only two pertinence 
possibilities for an element in relation to a set as a 
whole: the element pertains or does not pertain to a 
set (Artero, 2009). In fuzzy logic, pertinence is given 
by a function to which the real values pertain in a 
closed interval between 0 and 1. The process of 
converting a real number into its fuzzy 
representation is called “fuzzyfication”. Another 
important concept in fuzzy logic is related to the 
rules that use linguistic variables in the execution of 
the decision support process. The linguistic variables 
are identified by names, have a variable content and 
assume linguistic values, which are the names of the 
fuzzy sets (Artero, 2009). In the context of this 
work, the linguistic variables are the traceability 
obtained by the three RTM generation approaches 
and may assume the values (nebulous sets) “no 
dependence”, “weak dependence” or “strong 
dependence”, which will be represented by a 
pertinence function. 

4 NEURAL NETWORKS 

Neural networks are inspired by the human brain 
and are composed of several artificial neurons. 
These neurons were created by McCulloch and Pitts 
(1943). In a neural network each neuron receives a 
number of input values. A function—called the 
activation function—is applied to these input values 
and the neuron activation level is generated as the 
function result that corresponds to the output value 
provided by the neuron. Neural networks are used to 
model complex relationships between inputs and 
outputs and have the ability to acquire knowledge 
for pattern recognition (Coppin, 2004). 

There are multiple classifications for neural 
networks, depending on different characteristics: 
 the number of layers or the type of connectivity: 
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fully connected or partially connected; 
 the flow of the processed signals: feed-forward 

or feed-back; 
 the way the training is done: supervised (when 

desired input and output data are presented to the 
neural network) or unsupervised (when only the 
input data are presented to the neural network 
and it is in charge of setting the output values). 
The training consists of presenting input patterns 
to the network such that it can adjust their 
weights. Thus, its outputs should present an 
adequate response when the input data provided 
are similar but not necessarily identical to those 
used in training (Artero, 2009). 
An important kind of neural network is a 

multilayer perception (MLP) neural network. It is 
composed of source nodes that represent the network 
input layer, one or more intermediate layers, and an 
output layer. Except for the input layer, the others 
are composed of neurons. The MLP network 
connectivity is feed-forward; that is, the output of 
each neuron connects only to all the neurons of the 
next layer, without the presence of feed-back loops. 
Thus, the signal propagates in the network 
progressively. To develop the RTM-N approach an 
MLP neural network was used. 

5 APPROACHES TO RTM 
GENERATION 

The four RTM automatic generation approaches 
proposed in this work only take into consideration 
the software FRs and establish the relationship 
degree between each pair of them. 

The RTM names were based on each taken 
approach. The approach called RTM-E had its 
traceability matrix named RTMe, the RTM-NLP 
matrix was called RTMnlp, the RTM-Fuzzy matrix 
was called RTMfuzzy, and the RTM-N matrix was 
called RTMn. 

The approaches are implemented in the COCAR 
tool, which uses a template (Kawai, 2005) to store 
all requirements data. After the template is 
completed, the RD provides all the necessary data to 
evaluate the approaches. The main objective of such 
a template is to standardize the FR data, avoiding 
inconsistencies, omissions and ambiguities. 

One of the template fields (which makes the 
RTM implementation feasible) is called Entry, and it 
is used to store the FR’s data entry in a structured 
and organized way. It is worth mentioning here the 
work of Kannenberg and Saiedian (2009), which 

considers the use of a tool to automate the 
requirements recording task to be highly desirable. 
In the following, the approaches are presented. 

5.1 RMT-E Approach 

RTM generation is based on the FR input data. The 
dependency relationship between FRs is determined 
by the percentage of common data between FR 
pairs. This value is obtained through the Jaccard 
Index calculation (Real and Vargas, 1996), which 
compares the degree of similarity and/or diversity 
between the data sets of each pair. Equation 1 
represents this calculation. 

 
(1)

The equation numerator is given by the quantity 
of data intersecting both sets (A and B), and the 
denominator corresponds to the quantity associated 
to the union between those sets. 

Considering FRa as the data set entries for a 
functional requirement A and FRb the data set 
entries for a functional requirement B, their 
dependency level can be calculated by Equation 2. 

 
(2)

Each position (i,j) of the traceability matrix 
RTM(i,j) corresponds to values from Equation 3: 

 (3)

As COCAR stores the requirements data in an 
atomic way, once the data is inserted into a 
requirement data set, it becomes available to be 
inserted into the data set of another FR. This fact 
avoids data ambiguity and data inconsistency. 

It is worth noting that initiatives using FR data 
entries to automatically determine the RTM were not 
found in the literature. Similar initiatives do exist to 
help determine traceability links between other 
artifacts, mainly models (for UML diagrams) and 
source codes, like those found in Cysneiros and 
Zisman (2008). 

The determination of the dependency levels (“no 
dependence”, “weak dependence” and “strong 
dependence”) was initially carried out based on three 
RDs from applications of different domains. Such a 
process was performed in an interactive and iterative 
way, adjusting the values according to the detected 
traceability for each one of the three RDs. The levels 
obtained were: “no dependence” for values equal to 
0%; “weak dependence” for values between 0% and 
50%; and “strong dependence” for values above 
50%. Adopting these intervals two experimental 
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studies (Di Thommazo et al., 2012; Di Thommazo et 
al., 2013) were conducted. To improve the accuracy 
of the approach we decided to use the decision tree 
J48 (Coppin, 2004; Artero, 2009) aiming to detect 
the best intervals to define the levels of dependency. 
If we could be able to determine better intervals, the 
approach would be more effective, classifying 
correctly the relationship between two FRs. Decision 
tree is a technique able of finding the best intervals 
based on previous data (Artero, 2009). Hence, data 
from all RDs used in the previous experimental 
studies (Di Thommazo et al., 2012; Di Thommazo et 
al., 2013) were applied as input data to generate the 
decision tree.  

As shown in Figure 1, based on the RDs, two 
types of matrix were generated: the RTMe and the 
RTMref, where this last was construed by specialists 
as will be detailed in Section 6. The percentage 
determined by the RTM-E approach (from 0 to 
100% of dependence) and the correct level of each 
relationship link determined in the RTM-Ref were 
applied to create the decision tree. Hence, analyzing 
the decision tree new intervals were defined.  

5.2 RMT-NLP Approach 

RTM generation is based on NLP which, in the 
context of requirements engineering, does not aim 
for text comprehension itself but, instead, aims to 
extract embedded RD concepts (Deeptimahanti and 
Sanyal, 2011). There are many initiatives that make 
use of NLP to determine different traceability types 
in the software development process. However, few 
of them consider traceability inside the same artefact 
(Goknil et al., 2011). In addition, the proposals 
found in the literature do not use a requirements 
description template nor determine dependency 
levels as in this work. Hence, aiming to determine 
the dependency level between two FRs, the 
frequency vector and cosine similarity methods were 
used (Salton and Allan, 1994). This method 
determines a similarity percentage between two text 
excerpts. 

To improve the process efficiency, text pre-
processing is performed before applying the 
frequency vector and cosine similarity methods in 
order to eliminate all words that might be considered 
irrelevant, like conjunctions articles and prepositions 
(also called stopwords). For example: after this step 
the excerpt “Allow warehouse users to check in/out 
a set of inventory items”, becomes “Allow 
warehouse users check set inventory items”. After 
this, a process known as stemming is applied to 
reduce all words to their original radicals, levelling 

their weights in the text similarity determination. 
Thus the phrase that we are using as example 
becomes: “Allow warehouse user check set 
inventory item”. After these two steps, the method 
calculates the similarity between two FRs texts: each 
excerpt is represented through a vector. The 
occurrences in each vector are counted to determine 
each word frequency. Both vectors are 
alphabetically reorded. Vectors have their terms 
searched for matches on the other and, when the 
search fails, the word is included in the “faulting” 
vector with 0 as its frequency. After this, it is 
applied the Equation 4 to calculate the similarity.  

 
(4)

As in the RTM-E approach, the dependency 
level values had been defined according to the 
decision tree (J48): “no dependence” from 0% to 
37%; “weak dependence” from 37% to 67%; and 
“strong dependence” for values above 67%. 

5.3 RMT-Fuzzy Approach 

The RTM generation is based on fuzzy logic. The 
purpose of this approach is to combine, through a 
fuzzy system, the two approaches previously 
detailed. In this way, it is possible to consider both 
features—the relationship between the entry data 
manipulated by the FRs (RTM-E) and the text that 
describes the FRs (RTM-NLP)—to create the RTM. 

Note that RTM-E and RTM-NLP determine the 
dependency levels (“no dependence”, “weak 
dependence”, and “strong dependence”) between 
two FRs according to the value generated by the 
approaches. However, this method of calculating the 
dependency level can be very imprecise. 

For instance, if the RTM-NLP approach 
generates a value of 56.5% for the dependency 
between two FRs, according to Figure 1, the 
dependency level would be “no dependence”, 
whereas a value of 57.5% would indicate “weak 
dependence”. Using the fuzzy logic, this problem is 
minimized due to the possibility of working with a 
nebulous level between those intervals through the 
use of a pertinence function, as mentioned in Section 
III. This conversion from absolute values to its fuzzy 
representation is called fuzzification.  

In the pertinence functions, the X axis represents 
the dependency percentage between FRs (from 0% 
to 100%), and the Y axis represents the pertinence 
level, that is the probability of belonging to a certain 
fuzzy set (“no dependence”, “weak dependence” or  
“strong dependence”),  which  can  vary from 0 to 1. 
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Figure 1: Steps to determine the new intervals level. 

Figure 2 depicts the adopted fuzzy system, where 
RTM-E and RTM-NLP are the entry data. Table 1 
indicates the rules created for the fuzzy system. Such 
rules are used to calculate the output value, that is, 
the RTMfuzzy determination. Initially, the values 
used for creating the pertinence functions were 
determined based on the experience of the authors of 
this paper. However, aiming to improve these 
functions, we used a genetic algorithm to reach 
better values for them. 

 

Figure 2: Fuzzy System. 

The use of genetic algorithm to improve the 
results os Fuzzy System has been used in literature 
According with Herrera (2008) the automatic 
definition of an fuzzy rule based system can be 
supported by genetic algorithms. 

Genetic algorithms are evolutionary algorithms 
which generate solutions to optimization problems. 
They are inspired by natural evolution and apply 
concepts like selection, mutation and crossover 
(Artero, 2009). 

Another important concept is the concept of the 
chromosome, which corresponds to a set of 
properties of the “problem”. Hence, the first step in 
using the genetic algorithm was to model the initial 
parameters of the pertinence functions in a 
chromosome. Figure 3 illustrates the chromosome 
definition scenario. 

Table 1: Rules used in Fuzzy system. 

 Antecedent  Consequent 

if 
RTM-E = “no dependence” 
AND RTM-NLP = “no 
dependence” 

then 
“no 

dependence” 

if 
RTM-E = “weak” AND 
RTM-NLP = “weak” 

then “weak” 

if 
RTM-E = “no dependence” 
AND RTM-NLP = “strong” 

then “weak” 

if 
RTM-E = “strong” AND 
RTM-NLP = “strong” 

then “strong” 

if 
RTM-E = “no dependence” 
AND RTM-NLP = “weak” 

then 
“no 

dependence” 

if 
RTM-E = “weak” AND 
RTM-NLP = “no 
dependence” 

then “weak” 

if 
RTM-E = “no dependence” 
AND RTM-NLP = “strong” 

then “weak” 

if 
RTM-E = “strong” AND 
RTM-NLP = “weak” 

then “strong” 

if 
RTM-E = “strong” AND 
RTM-NLP= “no 
dependence” 

then “weak” 

Each function of each linguistic variable is used 
in the chromosome. As an example, considering the 
RTM-E approach defined by this author, data from 
the pertinence function “weak dependence” (Figure 
3-A) was used to create the green part of the 
chromosome. After using the genetic algorithm the 
same pertinence function was modified as shown in 
Figure 3-B. The genetic algorithm process is 
summarized in Figure 4. 

After the first chromosome creation (Figure 3), 
the next step is the initialization phase, when a 
generation of chromosomes is created. Thus, other 
chromosomes are randomly generated, with new 
values in some parts of the initial chromosome. In 
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this case, a population of 100 individuals was used.  
The next step is the selection phase where 

individuals that will continue in the next generation 
are selected. In this phase the roulette wheel 
selection algorithm was used, selecting 40% of the 
original population, based on the fitness function. 
This function evaluates the efficiency of each 
chromosome in solving the traceability detection.  

To do this, we used data from a previous 
experimental study (Di Thommazo et al., 2012) 
since the values of RTM-E, RTM-NLP and 
reference RTM were known. The fitness function 
was used to summarize how close each chromosome 
was to the best solution. 

After selecting the individuals that we will “keep 
alive” in the next generation, the genetic operators 
mutation and crossover were applied. When the 
mutation operator was applied a chromosome value 
(e.g. one cell of the green block) was randomly 
chosen to be changed with a new value (also 
randomly chosen). In the new population, 5% was 
generated through the mutation operator. The other 
individuals were generated using the crossover 
operator. Applying the crossover operator means 
that two chromosomes must be chosen to be crossed, 
generating new ones. 

The process was iteratively executed until the 
termination phase was reached and the best 
chromosome was found. As the stop criterion we 
used 30 iterations. At the bottom of Figure 4 are the 
initial values of the first chromosome that generated 
the first population and the chromosome that 
reached the best results in the last population. 

5.4 RMT-N Approach 

RTM generation is based on neural networks. The 
purpose of this approach is to combine, through an 
MLP neural network, the two first approaches—
RTM-E and RTM-NLP. An MLP neural network 
was used to develop the RTM-N approach. The 
process of training neural networks is detailed in 
Figure 5. Data from a previous experimental study 
(Di Thommazo et al., 2012) were used: the input 
data were the values of the RTM-E and RTM-NLP 
approaches and the output was the correct 
relationship, marked in the reference RTM (RTM-
Ref). For example: considering the input values of 
0.87 from RTM-E and 0.45 from RTM-NLP, it is 
necessary to set in the neural network that the output 
must be “strong dependence”, since this is the value 
of the RTM-REF. This is achieved by setting the 
value “1” to the neuron that represents “strong 
dependence” and “0” to the two other neurons. After 

setting these values, the neural network should be 
trained, adjusting their weights to be able to detect 
similar inputs of RTM-E and RTM-NLP and correct 
results of dependence. If the input values were 0.42 
from RTM-E and 0.58 from RTM-NLP, the neuron 
that represents the “weak dependence” must be set 
with “1” and the other with “0”.  The knowledge of 
patterns used to train the neural network came from 
the previous experimental studies, represented in 
Figure 5 by the DRs, RTMe, RTM-NLP and RTM-
Ref. 

Once the neural network has been created and 
trained, and it is provided with new input data 
obtained by the RTM-E and RTM-NLP approaches, 
the level of dependence between the involved FRs 
can be automatically identified (Di Thommazo et al., 
2013). 

To clarify the approaches it will be used the 
application of them a real system developed for a 
private aviation company (the full example is 
available at Di Thommazo et al., 2012 and Di 
Thommazo et al., 2013). To exemplify the RTM-E 
consider the following two FRs: FR3 related to 
products going in and out from a company’s stock 
(warehouse) and FR5, related to an item transfer 
from one stock location to another. How they have 
some similar input data the RTM-E indicates a 
“strong dependence” (66% of common data) 
according to the Jaccard Index. The text of these two 
FRs also have a high similarity (88%), generating a 
“strong dependence” by RTM-NLP. 
To exemplify the RTM-Fuzzy, consider the same 
FR3, previously mentioned, and FR7, related to the 
stock report generation. They do not have common 
entry data and, therefore, there is “no dependency” 
between them according to RTM-E. Despite this, 
RTM-NLP indicates a “strong dependency” (75.3%) 
between these FRs. This occurs because both FRs 
deal with the same set of data (although they do not 
have common entry data) and a similar scope, thus 
explaining their textual similarity. The fuzzy logic 
processing (presented in the Section 5.3), after 
applying Mandami’s inference technique, generates 
the the value 42.5 for these entries, that corresponds 
to “weak dependence”. To exemplify the RTM-N 
consider the same FR3 and FR5 already used in the 
first example. After the neural network was trained 
according to the process clarified in Section 5.4 it is 
ready to classify the FRs relationship. As the 
relationship between FR3 and FR5 generated by 
RTM-E was 66% and generated by RTM-NLP was 
88%, these values are used as input to the neural 
network and the output indicates that the value of 
this relationship between FR3 and FR5 is “strong 
dependence”. 
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Figure 3: Creation of chromosome to be used in genetic algorithm.  

 

Figure 4: Steps of genetic algorithm. 

6 EXPERIMENTAL STUDY 

To evaluate the effectiveness of the proposed 
approaches, an experimental study has been 

conducted following the guidelines below: 
 

Context: The experiment has been conducted in the 
context of the Software Engineering class at IFSP—
Federal Institute of São Paulo—as a voluntary extra
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Figure 5: Steps of training the neural networks. 

activity. The experiment consisted of each pair of 
students conducting requirements gathering on a 
system involving a real stakeholder. The final RD 
had to be created in the COCAR tool. 

Objective: Evaluate the effectiveness of the RTM-E, 
RTM-NLP, RTM-Fuzzy and RTM-N approaches in 
comparison to a reference RTM (called RTM-Ref) 
and constructed by the detailed analysis of the RD. 
The RTM-Ref creation is detailed next. 

Participants: 32 undergraduate students on the 
Systems Development course at IFSP. 

Artifacts utIlized: RD, with the following 
characteristics: 
 produced by a pair of students on their own; 
 related to a real application, with the 

participation of a stakeholder with broad 
experience in the application domain; 

 related to the information systems domain with 
basic creation, retrieval, updating and deletion of 
data; 

 inspected by a different pair of students in order 
to identify and eliminate possible defects; 

 included in the COCAR tool after identified 
defects were removed. 

RTM-Ref: 
 created from RD input into the COCAR tool; 
 built based on the detailed reading and analysis 

of each FR pair, determining the dependency 
between them as “no dependence”, “weak 
dependence”, or “strong dependence”; 

 recorded in a spreadsheet so that the RTM-Ref 
created beforehand could be compared to the 
RTMe, RTMnlp and RTMfuzzy for each system; 

 built by the DR authors with supervision of this 
work’s authors. The students were always in 
touch with the stakeholders whenever a 
reservation was found. 

Metric: the metric used was the effectiveness of the 
three approaches with regard to the coincidental 
dependencies found by each approach in relation to 
the RTM-Ref. Effectiveness is calculated by the 
relation between the quantity of dependencies 
correctly found in each approach, against the total of 
all dependencies that can be found between the FRs. 
Considering a system consisting of n FRs, the total 
quantity of all possible dependencies (T) is given by 
Equation 5: 

 
(5)

Therefore, the effectiveness rate is given by 
Equation 6: 

 

(6)

Results: The results of the comparison between the 
data of RTMe, RTMnlp, RTMfuzzy and RTMn are 
presented in Table 2. The first column contains the 
name of the specified system; the second column 
contains the FR quantity; and the third provides the 
total number of possible dependencies between pairs 
of FRs. These values were calculated through 
Equation 5. The fourth, sixth, eighth and tenth 
columns contain the total number of coincidental 
dependencies between the respective approach and 
the RTMref. For example: if the RTM-Ref has
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Table 2: Experimental study results. 

 RTM-E RTM-NLP RTM-Fuzzy RTM-N 

System 
Req 
Qty 

# of possible 
dependencies 

correct effect. correct effect. correct effect. correct effect.

Medical 17 136 115 85% 106 78% 124 91% 122 90% 
Car Rental 23 253 204 81% 190 75% 215 85% 217 86% 

Sales 18 153 122 80% 121 79% 130 85% 133 87% 
Clothing Store 17 136 103 76% 105 77% 117 86% 119 88% 

Cars 16 120 97 81% 93 78% 107 89% 107 89% 
Habitation 16 120 103 86% 93 78% 110 92% 110 92% 
Book Store 21 210 167 80% 157 75% 177 84% 180 86% 

Pizza Delivery 16 120 95 79% 86 72% 104 87% 106 88% 
Sales 22 231 195 84% 186 81% 213 92% 206 89% 

Administration 17 136 103 76% 101 74% 113 83% 117 86% 
Movies 17 136 103 76% 93 68% 112 82% 114 84% 
Games 18 153 119 78% 118 77% 130 85% 131 86% 
Food 19 171 134 78% 132 77% 144 84% 145 85% 

Student 17 136 102 75% 94 69% 114 84% 117 86% 
Computer Store 15 105 82 78% 78 74% 91 87% 91 87% 

Ticket 20 190 159 84% 155 82% 169 89% 171 90% 
 
determined a “strong dependence” in a cell and the 
RTM-E approach also defined the dependency as 
“strong dependence” in the same position, a correct 
relationship is determined. The fifth, seventh, ninth 
and eleventh columns represent the effectiveness of 
the RTMe, RTMnlp, RTMfuzzy and RTMn 
approaches, respectively, calculated by the relation 
between the quantity of correct dependencies found 
by the approach and the total number of 
dependencies that could be found (third column). 
 

Results Analysis: Statistical analysis was been 
conducted using SigmaPlot software. Applying the 
Shapiro-Wilk test it could be verified that the data 
followed a normal distribution, and the results 
shown next are in the format: average ± standard 
deviation. To compare the effectiveness of the 
proposed approaches (RTM-E, RTM-NLP, RTM-
Fuzzy and RTM-N) variance analysis (ANOVA) has 
been used for post-test repeated measurements using 
the Holm-Sidak method. The significance level 
adopted was 5%. The RTM-N approach was found 
to be the most effective with (87.3% ± 2.18), 
whereas the RTM-Fuzzy approach offered (86.6% ± 
3.1) the RTM-E approach offered (79.6% ± 3.5), and 
the RTM-NLP obtained an effectiveness level of 
(75.7% ± 3.7). Based on these data it is possible to 
observe that the RTM-N and RTM-Fuzzy 
approaches (that combine the other two approaches 
through artificial intelligence) were more effectives 
on traceability detection than the RTM-E and RTM-
NLP approaches singly. 

In this experimental study, the results obtained 
by the RTM-E approach were similar to those 
obtained in two previous studies (Di Thommazo et 

al., 2012) (Di Thommazo et al., 2013), despite the 
fact that, in the first study, the RTM-NLP only 
presented an effectiveness level of 53%, which led 
us to analyze and modify this approach. In the 
second experimental study (Di Thommazo et al., 
2013) this approach had an effectiveness level of 
75%, very similar to that obtained in this 
experimental study. Even with such improvements, 
the approach still generates false positive cases, that 
is, non-existing dependencies between FRs. 
According to Sundaram and others (2010) the 
occurrence of false positives is an NLP characteristic, 
although this type of processing can easily retrieve 
the relationship between FRs.In the RTM-E data 
analysis, there were very few false positives. In most 
cases, the dependencies found, even the weak ones, 
did exist. The errors influencing this approach were 
due to relationships that should have been counted as 
“strong” being counted as “weak”. As previously 
mentioned, if a relation was found to be “strong” in 
RTM-Ref and the proposed approach indicated that 
the relation was “weak”, an error in the experiment’s 
traceability was counted. In the case of relationships 
indicating only “dependence” or “no dependence”, 
that is, without using the “no dependence”, “weak 
dependence” or “strong dependence” labels, the 
effectiveness determined would be higher. In such a 
case the precision and recall metrics could be used, 
given that such metrics only take into account the 
fact that a dependency exists and not its level 
(“weak” or “strong”) (Cleland-Huang et al., 2012). 

In relation to the RTM-Fuzzy approach, the 
results generated by it were always higher than the 
results found by the RTM-E and RTM-NLP 
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approaches alone.  
A previous study with RTM-Fuzzy had an 

effectiveness level of 83%. To improve this result in 
this study, the approach was improved with the use 
of genetic algorithms, as detailed in Section 5. With 
the new fuzzy system pertinence functions, better 
results were found (86%). 

In relation to the RTM-N approach the generated 
results were also always higher than the results found 
by the RTM-E and RTM-NLP approaches alone. 

The experimental study herein presented has 
some threats to its validity. One of them is related to 
the students’ inexperience in eliciting the 
requirements from the stakeholders. In an attempt to 
minimize this risk, known domain systems were used 
as well as RD inspection activities. The inspection 
was conducted based on a defect taxonomy 
commonly adopted in this context and which 
considers inconsistencies, omissions, and 
ambiguities, among others. Another risk is related to 
the correctness of the RTM-Ref. To minimize errors 
in this artifact the authors of this paper helped the 
students with this task and the stakeholder was 
contacted whenever there was any doubt about the 
relationship. 

6 CONCLUSIONS AND FUTURE 
WORK 

This article presents two approaches to 
automatically create the RTM using artificial 
intelligence techniques. RTM-Fuzzy is based on 
fuzzy logic and RTM-N is based on neural networks. 
They combine two other approaches: RTM-E, which 
is based on the percentage of entry data that two FRs 
have in common, and RTM-NLP, which uses NLP to 
determine the level of dependency between pairs of 
FRs. 

Fuzzy logic was used to treat the uncertainties 
that might negatively interfere in the requirements 
traceability determination. Thus, RTM-Fuzzy uses 
the results presented in two other approaches but 
adds a diffuse treatment in order to perform more 
flexible RTM generation. Hence, RTM determination 
is a difficult task, even for specialists, and using the 
uncertainties treatment provided by fuzzy logic has 
been shown to be a good solution for automatically 
determining traceability links with enhanced 
effectiveness. To improve this approach, genetic 
algorithms were used to determine the pertinence 
function. Compared with a previous experimental 
study, after the use of this technique, the 
effectiveness improved from 83% to 86%. 

Neural networks were used due to the possibility 
of using the knowledge from previous experimental 
studies conducted to detect the traceability links with 
RTM-E and RTM-NLP. With the data from these 
experimental studies a neural network was trained 
such that it was able to detect the traceability 
automatically. The results of the experimental study 
show that combining the other approaches through a 
neural network is a promising solution to 
automatically create the RTM. 

From the four approaches here presented, it is 
worth noting that there are already some reported 
proposals in the literature using NLP for traceability 
link determination, mainly involving different 
artifacts (requirements and models, models and 
source code, or requirements and test cases). Such a 
situation is not found in RTM-E, for which no similar 
attempt was found in the literature. Comparing the 
four approaches presented in this paper with the 
others initiatives in the literature it is possible to say 
that, while the other approaches are limited to 
establish if “there is” or “there is no” dependence 
between two FRs, the approaches presented in this 
paper determine the level of dependence: “no 
dependence”, “strong” or “weak”. This feature 
allows a development team give a special attention to 
the “strong dependencies” if there is any constraint of 
resources in the project (people, time, money) in 
case, for example, during a maintenance activity. In 
addition, the major initiatives, according to Wang 
and others (2009) - LSI and VSM, ProbIR - are 
focused on NLP, which implies in a large number of 
false positives (Sundaram et al., 2010). To minimize 
this problem, the approaches RTM-Fuzzy and RTM-
N combine the RTM-NLP with the RTM -E 
presented in this paper, minimizing the number of 
false positives and increasing the effectiveness of the 
approaches, as shown by the experimental study. 

The four approaches were implemented in the 
COCAR environment, so that experimental study 
could be performed to evaluate the effectiveness of 
each approach. The results showed that RTM-Fuzzy 
and RTM-N presented superior effectiveness 
compared to the others. The disadvantage of the 
approaches is that they are restrict to FRs. 

The results motivate the continuity of this 
research, as well as further investigation into how 
better to combine the approaches for RTM creation 
using fuzzy logic. The main contributions of this 
particular work are the incorporation of the COCAR 
environment, which corresponds to the automatic 
relationship determination between FRs. This 
facilitates the evaluation of the impact that a change 
in a requirement can generate on the others. New 
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studies are being conducted to improve the 
effectiveness of the approaches. As future work, it is 
intended to improve the NLP techniques. Another 
investigation to be undertaken relates to how an 
RTM can aid the software maintenance process, , 
offering support for regression test generation. 
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