
Toward Evolution Models for Data Warehouses

Saïd Taktak1, Jamel Feki1 and Gilles Zurfluh2
1University of Sfax, FSEGS Faculty, P.O. Box 1088, Miracl Laboratory, Sfax, Tunisia

2University of Toulouse 1 Capitole, IRIT, Toulouse, France

Keywords: Data Warehouse, Evolution Model, MDA, QVT.

Abstract: A Data warehouse (DW) is characterized by a complex architecture, designed in order to integrate data
derived from operational data sources (DS), hence providing advanced analytical tools of these data. The
DW is highly dependent on its DS. Hence, evolutions of the DS schema need to be propagated to the DW
schema and content. This paper presents a model-driven approach for the evolution of a multidimensional
DW. It is based on two evolution models: a first evolution model for the DS and another for the DW. These
two models concern the data structure aspects as well as the evolution operations. The transition between
these two models is performed through specific transformation rules defined in QVT
(Query\View\Transformation).

1 INTRODUCTION

In the data warehousing (DW) field, whatever the
enterprise's philosophy falls into i) Bill Inmon's
camp where the DW is one part of the overall BI
system, or into ii) Ralph Kimball's camp where the
DW is the conglomerate of all data marts within the
enterprise, data issued from the operational systems
are extracted, transformed, cleansed and finally
loaded into the fact and dimension tables of the
famous star schema which represents the keystone
modeling diagram that has twofold objectives: first,
it highlights the subject of analyses (i.e., fact
representing the activity to be evaluated) and,
secondly, it shows up the axes (i.e., dimensions)
according to which the fact’s data could be analyzed
(Inmon, 2002).

This strong dependency between the DW and the
data source (DS) leads to a new evolution problem
that addresses the impact of the DS schema
evolution on the DW. In fact, the dynamic evolution
of business processes within the enterprise can lead
to another evolution of the DS schema. The
associated DW cannot escape from this evolution
which can simultaneously affect its schema, stored
data, and also the ETL process (Extract-Transform-
Load) (Vassiliadis, 2009).

This paper treats this evolution problematic, it is
organized as follows. In section 2, we overview
researches related to the DW evolution problem.

Section 3 proposes a model-driven approach for the
propagation of DS schema changes towards the DW.
Section 4 defines the evolution models of both the
DS and the DW. Section 5 presents an example of
transformation rules formalized in QVT (Query
\View \Transformation); it is for the automatic
passage between these two models. Finally, section
6 concludes the paper and enumerates our future
perspectives.

2 RELATED RESEARCHES

The DW evolution problem has been the subject of
several research studies. It was treated from several
points of views: Analytical need evolution, DS
schema evolution, etc.

Some researchers (Favre et al., 2007), (Benitez et
al., 2004), (Blaschka et al., 1999) have limited their
study to the DW evolution as a result of evolution of
decision makers needs, without considering the case
of the DS evolution. Other literature works
(Bellahsene, 2002), (Wrembel and Bebel, 2007),
(Solodovnikova, 2008) have examined the evolution
of the source schema as well as its impact on the
DW. This suits our concern in this paper.

Accordingly, in (Rundensteiner et al., 1999) and
(Bellahsene, 2002) the authors consider the DW as a
set of materialized views built directly from the data
sources. In this approach, any change in the DS

472 Taktak S., Feki J. and Zurfluh G..
Toward Evolution Models for Data Warehouses.
DOI: 10.5220/0004877304720479
In Proceedings of the 2nd International Conference on Model-Driven Engineering and Software Development (MODELSWARD-2014), pages 472-479
ISBN: 978-989-758-007-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

schema requires views maintenance.
As a practical extension, the authors of

(Rundensteiner et al., 1999) have developed a
prototype to automate the rewriting of the
materialized views definitions in order to reflect and
to be coherent with the realized structural changes at
the layer of the DS. Their EVE (Evolvable View
Environment) tool consists of two basic modules:
The first module is used to describe the appeared
changes in the DS. The second module allows the
user to evolve the views via an extended Structured
Query Language (SQL) version.

In (Bellahsene, 2002), the author presents an
approach for a dynamic adaptation of the
materialized views in response to an evolution of the
DS. This approach is applied to maintain not only
the schema views, but also its instances (i.e., data).
The main idea of this contribution is to avoid
recalculating the views after each change done on
the DS by subtracting the schema of the new view
from the old one.

The authors studied the impact of the DS
evolution on the DW. Nevertheless, their proposed
solutions are only applicable in case the DW is
composed of a set of materialized views.

In (Papastefanatos et al., 2009), the authors
tackle the inconsistencies that may appear in ETL
processes after the DS evolution. They proposed the
"HECATAEUS" tool which offers to the designer a
mechanism for adapting the ETL activities to the
changes happening in the DS schema. Moreover, the
tool is able to detect precociously the vulnerable
components (i.e., affected) in the Information
System (IS). The proposed approach is based on a
technical representation which includes all the
essential components of the ETL process and also
produces a graph evolution model (Simitsis et al.,
2005). Following a change in the graph element(s),
the tool detects automatically the graph parts that
have to be affected and also highlights the changes
to be made according to a set of rules a priori
defined.

This ensures the consistence of the ETL
procedures. However, this study was limited to the
ETL feeding process and did not treat the impact of
the DS schema evolution on the schema of the DW.

In (Wrembel and Bebel, 2007) and
(Solodovnikova, 2008), the authors were interested
in studying the effect of the DS evolution on the DW
schema.

They adopted an approach based on versioning
in order to historize the versions of DW schemas.

In (Wrembel and Bebel, 2007), the authors
presented a formal model for a multi-version DW.

They identified a set of evolution operations
affecting the DW schema and its instances. The
authors have distinguished between two types of
DW versions: Real version and Alternative version.
The DW real version is created in order to reflect
the changes in the real environment of the enterprise,
whereas the aim of the DW alternative version is to
ensure the change in the simulation process based on
“What-If” analyses. In order to validate their
approach, the authors have developed a software
tool for both the maintenance of the DW and the
management of its versions.

In (Solodovnikova, 2008), the author suggested a
tool for the DW evolution which ensures the
creation and manipulation of several versions as well
as the construction and execution of associated
reports. He also defined a physical representation of
the schema version in the database and a logical
representation of the DW, hence classifying the
changes which may affect the DW into three
categories: Physical, logical and semantic changes.

Solutions proposed by (Solodovnikova, 2008)
and (Wrembel and Bebel, 2007) allow the automatic
detection of the DS changes and assist the
administrator in the propagation of these changes
towards the DW. These studies are mainly based on
the administrator’s expertise and do not propose
automatic propagation rules for the DW alterations.
For example, when adding a new table/column to the
DS schema, the administrator must manually define
the potential role of the new table/column in the
DW. For instance, (s)he indicates whether the added
table could become a dimension, a fact, a measure or
a parameter.

Table 1: Comparison of DW evolution approaches.

Table 1 presents a recap of the approaches studied in
this section. These contributions have addressed the
DS evolution effect on the DW from different points
of views: materialized view evolution, ETL

DW Evolution Evolution Approach

Mat.
Views

ETL
DW

schema
Classic MDA

Rundensteiner
et al., 1999 - - -
Bellahsene,

2002 - - -
Wrembel and
Bebel, 2007 - - -

Solodovņikova
2008 - - -

Papastefanatos
et al., 2009 - - -

Authors

Criteria

Toward�Evolution�Models�for�Data�Warehouses

473

Figure 1: Model-driven approach for DW evolution.

evolution and DW schema evolution. We note that
all suggested solutions are realized in a software
engineering conventional context; therefore, their
implementations are platform-dependent and, thus, it
is so hard to be adapted on different platforms.

In our current research, we are addressing the
evolution problem of the decision information
system by adopting the Model-Driven Architecture
(MDA). This choice is motivated by the fact that
MDA provides a flexible and effective evolution of
the management support. Indeed, the DW evolution
process requires less effort when it is managed with
a high level of abstraction (i.e. when using models
and transformations), hence improving the quality.
This is particularly advantageous because MDA
provides mechanisms for automatic transformation
between models at different levels, unlike the
traditional approaches which directly affect the
implementation part. Moreover, MDA can provide
support for the development, integration,
interoperability, scalability, portability and
reusability of information systems (Mazon and
Trujillo, 2008).

3 PROPOSED APPROACH

We adopt the MDA to automate the extension of the
DS schema evolution towards the DW which is
loaded from this DS.

The MDA provides an approach to systems
development based on models and model
transformations in accordance with a set of OMG

(Object Management Group) standards (OMG,
2004). This approach separates functional system
specifications details and their implementation. In
fact, everything in MDA is considered as a model, as
well as the schema and source code too.

Figure 1 shows the different steps of our
proposed approach where we find three modeling
levels and two types of transformations: Vertical and
Horizontal.

The vertical transformation involves different
levels of abstraction. It allows the passage from the
requirements model (CIM: Computation
Independent Model) to the analysis and design
model (PIM: Platform Independent Model) and then
to model concrete design (PSM: Platform Specific
Model) in order to reach the end of a code of
impaired DW. The passage between these different
levels of models is achieved through transformation
rules (Section 5).
 CIM: is a model independent from any computer

system. This is the application domain model. It
represents the starting point of the DW alteration
process which describes the administrator needs in
terms of changes to be applied on the decision
information system.
 PIM: is a model independent from any

technological platform. It defines the structure and
behavior of the system without reference to the
execution platform. This level constitutes the
major part of the proposed approach. It allows the
management of changes in the decision
information system levels, namely Data
Warehousing and ETL.

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

474

 PSM: it is a model dependent on technological
platforms, and represents a projection of a PIM on
a given platform for the generation of
corresponding executable code.

The horizontal transformation allows the passage
from one or more sources to a target model having
the same level of abstraction. Figure 1 shows this
type of model transformation at the PIM level.
We distinguish three models of evolution:
 Data source evolution model: This model

describes all the evolution operations that may
affect a relational DS (table, column...).
 Data warehouse evolution model: It describes all

operations that may affect the multidimensional
structures (dimensions, facts ...). It should be
derived from the DS evolution model.
 ETL evolution model: It describes the ETL

applicable evolution operations. It is intended to be
derived from the two previous evolution models:
DS and DW evolution models.

Each of these models must be conform to a meta-
model which must be, in its turn, based on a meta-
meta-model (MOF: Meta-model Object Facility)
(OMG, 2001).

The transformation rules are defined with the
QVT transformation language which is also based
on a MOF meta-model (OMG, 2009). These rules
allow defining mappings between source and target
meta-models and their execution results in the
generation of the target model from the source
model. Figure 2 shows the source and target
evolution models. They will be presented in the next
section.

4 EVOLUTION MODELS

In order to represent the three evolution models, we
use the UML (Unified Modeling Language) class
diagram (OMG, 2001) which is a graphical object-
oriented language (Prat et al, 2006).
We use UML in order to model the structural and
behavioral aspects of a system through a set of
models. Specifically, the class models are used to
represent simultaneously these two aspects. Indeed,
a UML class diagram is composed of a static
property list and a set of operations to describe the
evolution models (Figure 2).

On the one hand, we use the property list in order
to define schemas of the DS, ETL process and the
DW and, on the other hand, the operations to
identify the changes which may affect each of these
structures.

Figure 2: The structure of the evolution models.

Remember that in this paper, we are only interested
in studying the impact of the DS evolution model on
the DW model. So, we limit ourselves to two
evolution models: (i) Data Source Evolution Model
and (ii) Data Warehouse Evolution Model (Figure
2).

The following sub-sections detail these two
evolution models.

4.1 Data Source Evolution Model

The DS evolution model is the basic model for the
deduction of the ETL and DW evolution models. It
defines the relational DS schema (such as tables,
constraints...) using the class properties as well as
the evolution operations that apply to it (add table,
add column...).

The DS evolution model conforms to the meta-
model presented in Figure 3. This latter is composed
of a DS_Schema class which is an extension of the
Package meta-class. The schema of the DS, in its
turn, is composed of several tables. Each one of
them is defined by a Table class which is an
extension of the Class meta-class.

Each table contains one or more columns; a
column may be a primary key (or part of it) and/or
even a foreign key.
The Column class is an extension of the
StructuralFeature meta-class.

The dashed region of Figure 3 models the DS
schema. We add operations describing the changes
affecting the DS model. These operations (addition,
deletion, modification...) mainly concern tables and
columns. We modeled them with the
DS_Evolution_Operation class which represents an
extension of the Operation meta-class.

A transformation enables the automatic
generation of a target model starting from a source
model by applying a set of rules. It requires
generation of a target model starting from a source

Relational
data source

Data
warehouse ETL

data source
evolution
operations

DW
evolution
operations

ETL
evolution
operations

D
at
a

St
ru
ct
u
re
s

Data Source
Evolution Model

O
p
er
at
io
n
s

Data Warehouse
Evolution Model

ETL
Evolution Model

(i) (ii) (iii)

Toward�Evolution�Models�for�Data�Warehouses

475

Figure 3: Data Source Evolution Meta-model.

model by applying a set of rules. It requires
specifying the meta-models describing these models.

In this section we have defined the source meta-
model (DS Evolution Meta-Model). Then we
describe the target meta-model (i.e. DW Evolution
Meta-Model).

4.2 Data Warehouse Evolution Model

DW Evolution Model conforms to the DW
Evolution Meta-model depicted in Figure 4.

The DW Evolution Meta-model has two parts
(Figure 4): The first one, in dashed line, describes
the DW schema and the second part deals with the
DW Evolution Operations.

For the first part, the DW structure is loaded with
the DW schema meta-data. As to the second part, the
operations of evolution will be deducted
automatically from the DS Evolution Model based
on the transformation rules.

Figure 4 shows the DW Evolution Meta-model
which is composed of the warehouse schema
DW_Schema (meta-class Package extension).
This schema is composed of fact tables Fact and
dimensions tables Dimension. A Dimension is
composed of one or more hierarchies Hierarchy
which contains one or more attribute levels Level.
Fact, Dimension, Hierarchy and Level are
extensions of the meta-class Class. The fact table
contains one or more measures Measure. Each level
of hierarchy is composed of parameters Parameter
which may be associated with one or more weak
attributes Weak_Attribute.
Measure, Parameter and Weak_Attribute inherit
from the class Attribute which is an extension of the
meta-class StructuralFeature.

Evolution operations of the DW level can be
applied to the various DW model components (fact

table, dimensions hierarchies, parameters and weak
attributes).

These operations can be constructive (add
dimension, add measure, etc.) or destructive (delete
dimension, delete hierarchy, etc.). We model these
operations through the class DW_Evolution
_Operation which is an extension of the meta-class
Operation.

In this section, we have defined the DS and
target evolution meta-models. In the next section, we
present the transformation rules.

5 MODEL TRANSFORMATION

This section presents the QVT formalization of the
transformation rules allowing the automatic passage
between the source and warehouse evolution
models. These transformations mainly relate to
evolution operations. Each operation in the DS
evolution model can be transformed automatically
into one or more evolution operations in the target
model (i.e. DW Evolution Model).To propagate a
DS evolution operation, first we need to determine
the modified element (table, column, etc), its
corresponding element in the DW schema
(dimension, fact, parameter, etc) as well as the
evolution operation (add table/column, alter column,
etc). All these details are traceable from the two
evolution models described in Figures 3 and 4.

Table 2 lists the possible transformations
applicable to the DW after adding a new table or
column to the DS schema. For example, the
evolution operation AddTable could be transformed
into AddDimension operation in the DW evolution
model when the rule TableToDim is applied.

ColumnTable

+P_Key
1..*

+F_Key

*
+Attribut

*

DS_Schema

Package StructuralFeautureClass Operation

DS_Evolution_Operation

*

*

*

*

* *

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

476

Figure 4: Data Warehouse Evolution Meta-Model.

Figure 5: Description of the transformation semTOwem.

Figure 5 shows a textual description of the
transformation semTOwem which takes as input the
two models sem and wem.

sem is an instance conform to the Source
Evolution Meta-model (Figure 3). wem is an
instance conform to the Warehouse Evolution Meta-
model (Figure 4).

The transformation semTOwem contains a set of
relations (TableToDim, TableToFact, ColToMeas ...)
which must be verified on the candidate models
(sem, wem) for the achievement of the
transformation.

As an example, the relation ColToMeas

transforms the evolution operation AddColumn into
AddMeasure (Figure 6). This transformation is
defined by:

 Two domains such as DS_Evolution_Operation
(dseo) and DW_Evolution_Operation (dweo)
which must be matched through the elements
belonging to them.

 A when clause specifies the relation condition. For
this example, the relation ColToMeas is only
applicable when: (1) the DS evolution operation is
AddColumn, and (2) the added column is numeric
and (3) the modified table loads a fact.

We illustrate the ColToMeas relation on the
relational data source of Figure 7 and its DW of
Figure 8.
The addition of a column (Reduction_Rate, Number)
to the table SALE of the DS to express the reduction
rate of each transaction is translated into an
AddColumn ('Reduction_Rate’, Number) evolution
operation affecting the class SALE of the DS
evolution model. In this evolution operation:

(1) The column is added using the AddColumn
operation,

(2) The column is added using the AddColumn
operation,

(3) the type of column Reduction_Rate is numeric,
and

Fact Dimension Hierarchy

Attribute

ParameterWeak_AttributeMeasure

*

1..*

1..*

1..*1..*

Level

1..*

Package StructuralFeauture

Class

Operation

DW_Schema DW_Evolution_Operaton*

* * * * *

Transformation semTOwem
(sem : SourceEvolutionMetaModel,
wem : WarehouseEvolutionMetaModel)

{
Relation TableToDim {…}
Relation TableToFact {…}
Relation TableToHier {…}
Relation ColToMeas {…}
Relation ColToLev {…}
Relation ColToPara {…}
…

}

Toward�Evolution�Models�for�Data�Warehouses

477

Table 2: Example for the evolution operation (Add) and transformation rules.

Figure 6: Description of the relation ColToMeas.

(4) the table SALE of the DS loads the SALE fact
table of the DW.

According to the when clause (Figure 6), the
condition of the relation ColToMeas is satisfied.
Therefore, the operation AddColumn ('
Reduction_Rate’, Number) is transformed into an
evolution operation applied to the fact table
AddMeasure (M_Reduction_Rate, number).

Figure 7: Relational data source schema.

Figure 8: DW Star schema SALE built on the DS schema
of Figure 7.

6 CONCLUSIONS

In this paper we have discussed the problem of the
data sources evolution and then studied its impact on
a multidimensional data warehouse.

To address this problem, we proposed a model-
driven approach in order to automate the
propagation of the data source schema evolution
toward the multidimensional data warehouse. This
approach is based on two evolution models
presenting simultaneously the structural and

Evolution
Operation

Data Source
(DS)

Relations
(R)

DataWarehouse (DW)

Fact Dimension Hierarchy Level Measure Weak_Att Parameter

Add

Table

TableToFact

TableToDim

TableToHier

TableToLev

Column

ColToHier

ColToLev

ColToMeas

ColToWatt

ColToPara

Relation ColToMeas
{

Domain sem dseo : DS_Evolution_Operation
{

DS_Schema = ds : DS_Schema{ },
table = t : table

{name = tn,
column= cl:Column{ }},

type =‘AddColumn’,
Parameter = Ps : Parameter

{c_name = cn,
c_type = ct}

}
Domain wem dweo : DW_Evolution_Operation
{

DW_Schema = ds : DW_Schema{ },
fact = f : fact { },
type =‘AddMeasure’,
Parameter = Pw : Parameter

{m_name = ‘M_’+cn,
m_type = ct }

}
When
{

dseo.type = ‘AddColumn’
and ct=‘Number’
and Fact (t) = f /*returns a fact

loadable from a table t */
}

}

CUSTOMER (Id_Cust, First_Name, Last_Name, #Id_City…)

CITY (Id_City, City_Name…,#Id_Cntry)

COUNTRY (Id_Cntry, Country_Name…)

SALE (Id_Sale, Date, #Id_Cust, Sale_Amount)

SALE_ITEM (#Id_Sale, #Id_Prod, Sold_Qtity)

PRODUCT (Id_Prod, PName, Unit_Price, #Id_Categ)

CATEGORIE (Id_Categ, CName)

MODELSWARD�2014�-�International�Conference�on�Model-Driven�Engineering�and�Software�Development

478

behavioral aspects of data in terms of the evolution
operations. The passage between these two models
is achieved through a set of transformation rules. In
this paper we have illustrated one rule and defined it
for the case of adding a new column to the DS; this
column transforms into a measure in the
multidimensional DW. The remaining rules exist in
(Taktak and Feki, 2012) as textual description but
they are not yet coded as QVT
(Query\View\Transformation) transformations.

We have started the step of testing the set of
rules on samples DS/DW schemas (Azaiez et al,
2013). In order to experimentally validate the
proposed models and all transformations, we are
looking to apply them on a real case study.
In the future research, we have the intention to
extend the DW alteration process to take into
account expected evolutions of the ETL (Extract
Transform and Load procedures.

REFERENCES

Azaiez, N., Taktak, S., Feki, J., 20113. DWEv : Un
prototype pour l'évolution partielle du schéma
multidimensionnel. 7éme édition de la Conférence
Maghrébine sur les Avancées des Systèmes
Décisionnels (ASD 2013), Marrakech, Maroc, pages
457-462.

Bebel, B., Eder,J., Koncilia, C., Morzy, T., Wrembel, R.,
2004. Creation and Management ofVersions in
Multiversion Data Warehouse.In XIXth ACM
Symposium on Applied Computing (SAC), Nicosia,
Cyprus, pages 717–723.

Bellahsene, Z., 2002. Schema Evolution in Data
Warehouses.Knowledge and Information-Systems
4(3), pages 283–304.

Benitez-Guerrero, E.I., Collet, C., Adiba, M., 2004. The
Whes Approach To Data Warehouse Evolution, e-
Gnosis (online), 2, Art. 11.

Blaschka, M., Sapia, C., and Hofling, G., 1999. On
Schema Evolution in Multi-dimensional Databases.In
Ist International Conference on Data Ware-housing
and Knowledge Discovery(DaWaK), Florence, Italy,
volume1676 of LNCS, pages 153–164.

Favre, C., Bentayeb, F., Boussaid, O., 2007. A Survey of
Data Warehouse Model Evolution, Encyclopedia of
Database Technologies and Applications, Second
Edition, Idea Group Publishing.

Inmon, W., 2002. Building the Data Warehouse (3rd
Edition). New York. Wiley & Sons.

Mazon, J.N., Trujillo, J. 2008. An MDA approach for the
development of data warehouses. Decision Support
Systems (DSS’08), Vol. 45 (1), pages 41-58.

OMG, 2001. Object Management Group: Unified
Modeling Language Specification 1.4.
http://www.omg.org/cgi-bin/doc?formal/01-09-67.

OMG, 2004. Object Management Group: Model Driven
Architecture (MDA). http://www.omg.org/cgi-
bin/doc?formal/03-06-01.

OMG, 2009. Object Management Group: Meta Object
Facility (MOF) 2.0 Query/View/Transformation,
version 1.1, ttp://www.omg.org/spec/QVT/1.1/Beta2/.

Papastefanatos, G., Vassiliadis, P., Simitsis, A., Sellis, T.,
Vassiliou, Y., 2009. Rulebased Managementof
Schema Changes at ETL Sources. In The International
Workshop on ManagingEvolution of Data Warehouses
(MEDWa), Riga, Latvia.

Prat, N., Akoka, J., Comyn-Wattiau. I., 2006. A UML-
based data warehouse design method, Decision
Support Systems (DSS‟06), Vol. 42(3), pages 1449-
1473.

Rundensteiner, E. A., Koeller, A., Zhang, X., Lee, A.J.,
Nica, A., 1999. Evolvable View Environment EVE: A
Data Warehouse System Handling Schema and Data
Changes of Distributed Sources. The International
Database Engineering and ApplicationSympo-sium
(IDEAS'99), Montreal, Canada.

Solodovņikova, D., 2008. The Formal Model for
Multiversion Data Warehouse Evolution.
Postconference proceedings of the 8th International
Baltic Conference on Databases and Information
Systems, Tallinn, Estonia, Frontiers in Artificial
Intelligence and Applicationsby IOS Press, pages 91-
102.

Taktak, S., Feki, J., 2012. Toward Propagating the
Evolution of Data Warehouse on Data Marts, 2nd
International Conference on Model & Data
Engineering (MEDI’2012), Poitiers, France, pages
178-185.

Vassiliadis, P., 2009. A survey of Extract-transform-Load
technology. International Journal of Data
Warehousing & Mining (IJDWM’09), Vol. 5(3),
pages. 1-27.

Wrembel, R., Bebel, B., 2007. Metadata management in a
multiversion data warehouse.In Journal on data
semantics VIII.Lecture Notes In Computer Science,
Vol. 4380. Springer-Verlag, Berlin, Heidelberg pages
118-157.

Toward�Evolution�Models�for�Data�Warehouses

479

