
DG-Query: An XQuery-based Decision Guidance Query Language

Alexander Brodsky1, Shane G. Halder1 and Juan Luo2
1Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, VA 22030, U.S.A.

2Information Technology Unit, George Mason University, 4400 University Drive, Fairfax, VA 22030, U.S.A.

Keywords: DG-Query, XQuery, Mathematical Programming.

Abstract: Decision optimization is broadly used for making business decisions such as those for finding the best
production planning in manufacturing. An optimization model may indicate the total cost of a certain supply
chain given the various sourcing and transportation options used; the corresponding optimization problem
can be to select among all possible sourcing and transportation options to minimize the total cost.
Optimization modelling requires considerable mathematical expertise and effort to generate effective
models. Additionally, the optimization process is heavily dependent on data. However, optimization
languages such as IBM’s ILOG CPLEX OPL and Bell Laboratories’ AMPL, do not provide native support
for manipulation of XML data. On the other hand, XQuery is a language for querying and manipulating
XML data, which has become a ubiquitous standard (W3C) for data exchange between organizations;
although, XQuery has no decision optimization functionality. To resolve this gap, this paper proposes DG-
Query, an XQuery-based Analytics Language that seamlessly merges the XML data transformation and
decision optimization capabilities. This is accomplished by first annotating existing XQuery expressions to
precisely express the optimization semantics, and second to translate the annotated queries into an
equivalent mathematical programming (MP) formulation that can be solved efficiently using existing
optimization solvers. This paper presents DG-Query with an example, provides its formal semantics, and
describes implementation through a reduction to MP formulation.

1 INTRODUCTION

In the age of data explosion, business intelligence
analytics tools have been developed to provide users
with the ability to gain insights about their business.
Data analytics tasks can be classified into three main
groups of (1) descriptive, (2) predictive and (3)
prescriptive analytics. Descriptive analytics involves
the manipulation and integration of large streams of
data, using tools similar to database query
languages. Predictive analytics acquires insights into
the data using techniques of data mining and
statistical learning. Prescriptive analytics deals with
prescribing users actionable recommendations on
how to move a (business) system towards an optimal
outcome. This task is typically implemented using
decision optimization tools.

Applications of decision optimization include
deciding on business transactions within supply
chains, stipulating environment policies which are
aimed at public welfare, and finding the best
response in an emergency. For example, given a

repository of manufacturing plants and raw material
suppliers, a business owner will need to decide on
production planning and sourcing, namely, which
products and in what quantities should be
manufactured and where raw materials should be
purchased from in order to maximize the total
profitability.

Implementing solutions to such problems
involves Mathematical Programming (MP) and/or
Constraint Programming (CP), and using software
packages called Optimization (MP or CP) Solvers.
Optimization problems for both MP and CP are
expressed by providing decision variables that range
over some domain (e.g. reals, integers, binary, finite
domain), constraints (e.g. arithmetic equations and
inequalities over the decision variables), and the
optimization objective (e.g. cost, revenue, profit,
time) that needs to be minimized or maximized.
Solving an optimization problem (either MP or CP)
involves finding a value for each decision variable
from its domain, in such a way that the optimization
objective is minimized or maximized as required,
while all constraints are satisfied (IBM, 2013).

152 Brodsky A., G. Halder S. and Luo J..
DG-Query: An XQuery-based Decision Guidance Query Language.
DOI: 10.5220/0004868201520163
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 152-163
ISBN: 978-989-758-027-7
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

While MP is geared more toward problems with
numeric variables (over reals and/or integers), CP is
mostly used for combinatorial optimization
problems (where some variables range over finite
domains), which are typical in applications for
planning and scheduling (IBM, 2013). For both MP
and CP, optimization modelling languages such as
OPL (IBM, 2011), AMPL (AMPL, 2013), and
GAMS (Boisvert, R.F., Howe, S.E., and Kahaner,
D.K. Kahaner, 1985), are used to formulate decision
variables, constraints and the objective function.

While MP and CP are most suitable technologies
for finding high-quality solutions to optimization
problems efficiently, the development of MP/CP
models requires significant effort and mathematical
expertise (in Operations Research) that most
database application developers and data analysts do
not have. Furthermore, the resulting models are
typically not modular, extensible or reusable.

On the other hand, to support descriptive (as
opposed to prescriptive) analytics tasks, database
query languages such as XQuery can be easily used,
which operates on XML (Extensible Markup
Language) data. XML, designed by the World Wide
Web Consortium (W3C), has become a standard for
data exchange between organizations (W3C, Jan.
2012). Not only is data easy to represent in XML,
XML is a self-describing language with the
flexibility to define complex data structures.
Furthermore, it has mechanisms to express
constraints on the structures and contents of XML
documents, such as XML schemas, DTDs and
Schematron, which allows for rule-based validation
regarding the detection of patterns in an XML
document (Rick Jelliffe and Academia Sinica
Computing Centre, 2002). The XML language is not
complicated to use as a result of its simple constructs
(W3C, Sep. 2006). Considering the widespread use
of XML for data storage and exchange, it is no
longer a nice feature to have but a necessity for any
tool that is data driven. Not only should optimization
modelling software support XML as a data source,
the software should also provide an easy mechanism
for querying XML data.

XQuery is an appropriate tool for the job.
XQuery is also designed by W3C, and its language
syntax for querying XML data is very similar to
SQL for querying a relational database, making it
easier to learn if the user already has knowledge of
SQL. While XQuery is a fully-featured language, the
FLWOR (For, Let, Where, Order by, and Return)
expression provides an elegant way to query and
manipulate XML data (W3C, Dec. 2010). Moreover,
XQuery and XML are languages that are easy to

learn and use by database application developers and
data analysts. However, XML/XQuery does not
support decision optimization.

Bridging the gap between the efficiency of
optimization algorithms based on MP/CP and the
ease of use by database application developers and
data analysts using XML/XQuery is exactly the
focus of this paper. We propose DG-Query, an
XQuery-based Decision Guidance Query Language,
which allows building optimization models by
writing or reusing existing XQuery code/programs
with minor annotations for optimization, thus
making the language easy to use by database
application developers or data analysts.

Seemless integration of the decision optimization
models with XQuery programs presents a unique
challenge. The reason for this is that optimization
models declaratively express decision variables,
constraints and the optimization objective, while
XQuery programs are written as forwardly executed
computation. We would like to avoid the direct
encoding of optimization models, e.g. in XML,
because this would create an impedance mismatch.

Instead, the idea of DG-Query is to annotate
XQuery programs with non-deterministic variables
to indicate that, intuitively, some values in the
computation are unknown, and should be determined
by the system, in such a way that a designated value
(computed by the XQuery) be optimized subject to
Boolean assertions (constraints), which are also
added as program annotations.

The technical problem we need to overcome is to
automatically translate DG-Query programs, with
their non-deterministic semantics, into formal
optimization models, expressed as MP or CP
problems. The MP/CP problems are then solved to
generate a solution to the optimization problem. The
optimization solution provides values for non-
deterministic variables, which makes the XQuery
computation deterministic and allows an answer to
be produced.

DG-Query is designed to extend the prevalent
XQuery language with minimal annotation. As a
result, we believe that DG-Query could be easily
adopted by database application developers and data
analysts especially if they are already familiar with
XQuery. In summary, the contributions of this paper
are:
 We introduce DG-Query, an XQuery-based

analytics language for decision optimization and
define its formal semantics

 We provide a reduction method to automatically
transform DG-Query programs into formal MP

DG-Query:�An�XQuery-based�Decision�Guidance�Query�Language

153

models, which can be solved by ILOG CPLEX
solver

 We describe the implementation architecture of
DG-Query
The rest of this paper is organized into 7

sections. In Section 2, we give a motivating running
example. In Section 3, we briefly discuss the
challenges of decision optimization, and discuss a
few related works. Before we present the formal
syntax and semantics of DG-Query, in Section 4, we
use the running example to present DG-Query
informally in an XQuery like syntax. We then give
the formal syntax and semantics of DG-Query in
Section 5. We present our implementation prototype
and architecture in Section 6, discuss our experiment
design in Section 7 and conclude with Section 8.

2 A RUNNING EXAMPLE

To make our discussion concrete, consider a simple
example of decision guidance to support a small
manufacturing network. Company X owns multiple
manufacturing plants, building products to be sold.
The raw materials necessary to build a product are
provided by various suppliers. Each supplier has a
limited quantity for the various raw materials. The
company must stay below its overall raw material
purchasing budget while maximizing its profit. The
decisions that Company X needs to make are:
 The quantity of products each manufacturing

plant should build
 The quantity of raw materials to be purchased

from the various suppliers
Before explaining how DG-Query solves this

problem, we describe a pure XQuery based solution
in this section. The XML data representing the
manufacturers, suppliers, and product parts are given
below respectively. The XML schema definitions for
manufacturers, suppliers, product parts are given in
the Appendix.

Manufacturers XML Data:
<manufacturers>
 <products>
 <product mid='manuf1'
 prodid='product1'
 name='table'
 ppu='100.00' />
 <product mid='manuf2'
 prodid='product1'
 name='table'
 ppu='120.00' />
 ...
 /products>
</manufacturers>

The manufacturers XML data represents the

manufacturing network. Each product has an
associated manufacturer identifier ‘mid’, product
identifier ‘prodid’, product description ‘name’, and
the price to be sold per unit ‘ppu’.

Suppliers XML Data:
<suppliers>
 <parts>
 <part sid='supp1'
 partid='part1'
 name='wooden leg'
 cpu='2.50'
 supply='10' />
 <part sid='supp2'
 partid='part1'
 name='wooden leg'
 cpu='3.00'
 supply='5' />
 ...
 </parts>
</suppliers>

The suppliers XML data expresses the supply of
raw materials available for purchase by
manufacturers. Each part has an associated supplier
identifier ‘sid’, part identifier ‘partid’, part
description ‘name, the cost per unit ‘cpu’, and the
available quantity ‘supply’.

Product Parts XML Data:
<productParts>
 <productPart prodid='product1'
 partid='part1'
 qty='4' />
 <productPart prodid='product2'
 partid='part1'
 qty='4' />
 ...
</productParts>

The product parts XML indicates the
composition of a product by specifying the quantity
of raw materials, i.e. parts needed to produce a piece
of each product. The attribute ‘prodid’ corresponds
to a manufacturer’s product, ‘partid’ corresponds to
a supplier’s part, and ‘qty’ indicates the number of
parts needed for the associated product.

With all the information given in the
manufacturers, suppliers, and product parts XML
data, we are trying to decide on the quantity of
products for each manufacturer to produce and from
which supplier to purchase the required parts, such
that the objective, the total profit of manufacturers,
will be maximized. The XQuery variable
$manufItems_index (see below) is defined in the
XQuery program to represent the quantity of each
product to be produced by the manufacturer. In the
variable $manufItems_index, the quantity is
represented by the attribute ‘qty’, and the ‘prodid’
and ‘mid’ associate the product back to the original
manufacturers XML. We have assigned a value to
the quantities for each product. However, we need

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

154

to keep in mind that the set of quantities required to
generate the maximum profit may not be known in
advance and may be too complex to compute
manually in real life.
 (: Manufacturer Product Quantity :)
let $manufItems_index :=
 <products>

 <product prodid='product1'
 mid='manuf1'
 qty='0' />
 ...
 <product prodid='product3'
 mid='manuf1'
 qty='8' />
 ...

 </products>

Another XQuery variable $suppItems_index is
defined to represent the quantities of raw materials,
i.e. parts, purchased by manufacturers from each
supplier. The quantity is represented by the attribute
‘qty’, and ‘partid’ and ‘sid’ associate the part back to
the original suppliers XML. From the perspective of
maximizing the total profit, the quantity of each
purchased part from the suppliers is another decision
to be made by the manufacturers. We assign a value
for the quantities of parts but similarly, the set of
quantities may not be known in advance in real life.
(: Supplier Part Quantity :)
let $suppItems_index :=
 <parts>
 <part partid='part1' sid='supp1' qty='8' />
 <part partid='part2' sid='supp1' qty='0' />
 <part partid='part3' sid='supp1' qty='0' />
 <part partid='part4' sid='supp1' qty='3' />
 ...
 </parts>

To calculate the total profit for manufacturers,
the following XQuery variables are defined. The
variable $budget represents the total budget
available for purchasing parts from suppliers. The
variable $total_cost represents the total
manufacturing cost of all manufacturers. The
variable $total_revenue represents the total revenue
of manufacturers by selling the products. The
variable $total_profit represents the difference
between the $total_revenue and $total_cost. The
objective of this manufacturing model is to
maximize the total profit, i.e. $total_profit.
(: Total budget available :)
let $budget as xs:decimal := 1000.00
let $total_cost as xs:double :=
 sum (
 for $s in $allSuppliers//supplier,
 $p in $allParts//part
 return
$suppItems_index//part[@sid=$s/@sid
 and @partid=$p/@partid]/@qty
 * $suppliers//part[@sid=$s/@sid
 and @partid=$p/@partid]/@cpu)

let $total_revenue as xs:double :=
 sum (for $m in
$allManufacturers//manufacturer,
 $p in $allProducts//product
return
$manufItems_index//product[@mid=$m/@mid

and @prodid=$p/@prodid]/@qty *
$manufacturers//product[@mid=$m/@mid
 and @prodid=$p/@prodid]/@ppu)
let $total_profit as xs:double :=
 $total_revenue - $total_cost

To calculate the $total_profit, some intermediate
variables are defined as follows for convenience.
(: Unique manufacturer ids :)
let $allManufacturers :=
 <manufacturers>
{
for $id in distinct-
values($manufacturers//product/@mid)

 return <manufacturer mid='{$id}' />
}
</manufacturers>

(: Unique supplier ids :)
let $allSuppliers :=
 <suppliers>
 {

 for $id in distinct-
values($suppliers//part/@sid)

 return <supplier sid='{$id}' />
 }
 </suppliers>

(: Unique product ids :)
let $allProducts :=
 <products>
{

for $id in distinct-
values($manufacturers//product/@prodid)

 return <product prodid='{$id}' />
}

</products>

(: Unique part ids :)
let $allParts :=
 <parts>

 { for $id in distinct-
values($suppliers//part/@partid)

 return <part partid='{$id}' />
 }

 </parts>

(: Expression: Qty Per Product Produced :)
let $producedqty :=
 <products>

{
 for $p in $allProducts//product/@prodid

 return
 <product prodid='{$p}'

qty='{
sum($manufItems_index//product[@prodid=$p]/@
qty)

 }'/>
}

 </products>

(: Expression: Quantity Per Part Required :)

DG-Query:�An�XQuery-based�Decision�Guidance�Query�Language

155

let $reqqty :=
<parts>
{

 for $p in $allParts//part/@partid
 return
 <part partid='{$p}' qty='{

sum($suppItems_index//part[@partid=$p]/@qty)
 }'/>

 }
</parts>

The XQuery variables $allManufacturers,
$allSuppliers, $allProducts, and $allParts store a
sequence of elements containing attributes
corresponding to the unique identifiers of
manufacturers, suppliers, products, and parts
respectively. The variable $producedqty represents a
sequence of elements containing attributes
corresponding to a unique product and the total
quantity of that product produced over the entire
manufacturing network. And finally the variable
$reqqty stores a sequence of elements containing
attributes corresponding to a unique part and the
total quantity of that part purchased from all the
suppliers.

In this manufacturing network, we also want the
system to enforce some business rules for the
production process, e.g. the quantities of products
produced by manufacturers must be greater than or
equal to zero, and parts purchased by manufacturers
from suppliers must also be greater than or equal to
zero, and less than or equal to the quantity available
by the suppliers. Additionally, the total cost of
manufacturing must be less than or equal to the
specified budget. The result of the business rules is
represented by boolean variables with values of
either ‘True’ or ‘False’. The first two variables,
$producedqty and $reqqty, are intermediate ones for
business rule definitions. The translation of these
business rules is straightforward and will be
explained in Section 4.
(: Business Rule: Produced Quantity >= 0 :)
let $producedProductsGEZero as xs:boolean :=
 every $p in $manufItems_index//product
 satisfies xs:integer($p/@qty) ge 0

(: Business Rule: Purchased Parts >= 0 :)
let $purchasedPartsGEZero as xs:boolean :=
 every $p in $suppItems_index//part
 satisfies xs:integer($p/@qty) ge 0

(: Business Rule: Purchased Parts >=
Required Parts :)
let $purchasedPartsGERequiredParts as
xs:boolean :=
 every $p in $reqqty//part satisfies sum(
$suppItems_index//part[@partid=$p/@partid]/@
qty) ge xs:integer($p/@qty)

(: Business Rule: Part Supply Per
Supplier >= Purchased Parts :)

let $partSupplyGEPurchasedParts as
xs:boolean :=
 every $s in $suppliers//part
 satisfies $s/@supply ge
 $suppItems_index//part[@partid=$s/@partid
 and @sid=$s/@sid]/@qty
	
(: Business Rule: Total Cost <= Budget :)
let $totalCostLEBudget as xs:boolean :=
 $total_cost le $budget

The result of the XQuery program is the total
cost, total revenue, and total profit generated based
on the products produced and parts purchased, and
the boolean values of the defined XQuery business
rules and variables indicating whether the rules are
satisfied. The result is returned in the format of a
regular XML document.

Result XML:
 <result>
 <producedProductsGEZero>
 {
 $producedProductsGEZero
 }
 </producedProductsGEZero>
 <purchasedPartsGEZero>
 {
 $purchasedPartsGEZero
 }
 </purchasedPartsGEZero>

 <totalCostLEBudget>
 {
 $totalCostLEBudget
 }
 </totalCostLEBudget>
 <total_cost>
 {
 $total_cost
 }
 </total_cost>
 <total_revenue>
 {
 $total_revenue
 }
 </total_revenue>
 <total_profit>
 {
 $total_profit
 }
 </total_profit>
</result>

3 RELATED WORK

DG-Query application development requires both
XML/XQuery and Operations Research (OR)
solutions. Difficulties arise when using OR tools
(MP or CP) alone. The designing of the OR models
requires full knowledge of the search space and the
objective for the task of efficient system operations.
The OR modelling abstraction (e.g., OPL (IBM,

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

156

2011) and GAMS (Boisvert, R.F., Howe, S.E., and
Kahaner, D.K. Kahaner, 1985)) typically requires
OR expertise, a skill that database/software
developers may not have. Alternatively, XML and
XQuery tools are more intuitive to IT professionals
and have been widely used as a standard information
exchange file format among heterogeneous systems,
under multiple platforms. However, XQuery
languages are not designed for decision optimization
as they cannot express decision optimization
problems, and further solve them. For continuous
decision variables, uncountable possibilities of
values to choose are obviously beyond the
expressiveness of XQuery languages. For discrete
cases, if the search space is large, it will be still
inefficient for XQuery to try every possible discrete
case. Its evaluation algorithms have not taken
advantage of MP and CP search strategies to achieve
potential efficiency and flexible optimization goals.

Optimization modelling software is heavily
dependent on data, and a lack of native support for
XML or XML processors requires that data stored or
transmitted as XML be converted to a supported
format. IBM’s ILOG CPLEX Optimization
Programming Language (OPL) software provides
interfaces to various data sources including database
support but not XML (IBM, 2011). Bell
Laboratories’ AMPL software falls into the same
category as IBM’s OPL, no XML support (AMPL,
2013). However, Maplesoft’s Maple software does
include an interface for XML. Maple incorporates an
Extensible Stylesheet Language Transformations
(XSLT) engine used to process XML data
(Maplesoft, 2013). Although XSLT was created by
W3C, its language constructs are verbose and
complex, which could pose a challenge for use by
OR analysts.

The language CoJava (Brodsky, A. and Nash H.,
2006) offers both simulation of process modelling in
Java, and the capabilities of true decision
optimization. The syntax of CoJava is identical to
Java but with a few special construct, i.e., definition
of decision variables of a numeric value, the
assertion of constraints and the designation of a
variable as the objective to be optimized. The
semantics of CoJava interprets the program as an
optimal nondeterministic execution path. The
constraints are part of the procedure. The procedure
of the CoJava language can represent numerous
modules of an entire model, or even larger, an entire
software system. Running a CoJava program
involves first finding an optimal execution path and
then procedurally executing it.

Reporting applications over databases are

intuitive and have long been established using the
mature database query technology. A Decision
Guidance Query Language framework (Brodsky A.,
Egge N. and Wang X.S., 2011)(Brodsky, A., Bhot,
M.M., Chandrashekar, M., Egge, N.E., and Wang,
X.S., 2009)(Brodsky, A., Egge, N.E., and Wang
X.S., 2012) proposed a query language which was
built on the Structured Query Language (SQL), and
also included optimization functionality in it. It
annotates existing SQL queries to precisely express
the optimization semantics. It then translates the
annotated SQL queries into equivalent MP, which
can be solved efficiently. However, DGQL only
supports the traditional relational database and does
not support XML, a data format that gives more
flexibility for data structures and is easier to be
deployed in support of multiple platforms.

4 DG-QUERY VIA EXAMPLE

In this section, we use the existing XQuery
statements in our manufacturing network example
shown in Section 2 to illustrate the DG-Query
language. We will discuss the DG-Query formal
syntax and semantics in the next section.

Taking a pure XQuery program, only a few
annotations are needed for software/database
developers to re-write the XQuery program as a DG-
Query program for decision optimization. In
summary the annotations are (i) index set
definitions; (ii) ‘insert’ statements with ‘?’; (iii)
objective (maximize / minimize); and (iv)
constraints.

Continuing with the example in Section 2, we
assume that the XQuery variables, supplier part
quantity $suppItems_index, and the manufacturer
product quantity $manufItems_index, are decision
variables to be determined, with the objective of
maximizing the total profit described by the variable
$total_profit. Instead of the given values for the
XML attribute ‘qty’ for both XQuery variables
$suppItems_index and $manufItems_index, we
replace them with the following DG-Query
statements.
(:Index set for all manufacturers’
products :)
let $manufItems_index as index(@mid,
@prodid) on $manufacturers :=
{ $manufacturers//product }

insert @qty as xs:integer on
$manufItems_index := ?

(: Index set for all suppliers’ parts :)
let $suppItems_index as index(@sid, @partid)

DG-Query:�An�XQuery-based�Decision�Guidance�Query�Language

157

 on $suppliers := { $suppliers//part }

insert @qty as xs:integer on
$suppItems_index := ?

The index(@attribute1, @attribute2, …,
@attributeN) type is a special construct of DG-
Query used to build an index set from a sequence of
elements, where each element represents an object
(i.e. a product) of the same type, as specified by an
XPath expression over an XML document. The keys
for the index set are indicated by the attributes
@attribute1, @attribute2. …, @attributeN provided.
The index set makes all of the attributes in the
sequence of elements accessible to the optimization
process.

The ‘insert @qty as …’ statement is another
special construct of DG-Query that performs two
operations: 1) For the optimization process, the
attribute specified is marked as a decision variable to
be solved; 2) After the optimization has completed,
the solution for each decision variable is inserted as
an attribute back into the source XML. Intuitively,
with any assignment of nonnegative values to the
attribute ‘qty’, there will be a total profit value given
by the variable $total_profit. The task now is to
automatically generate an assignment that gives the
maximum profit for our manufacturing network
example. We need to specify the objective explicitly
as required by the optimization solver. The variable
of $total_profit is calculated as the difference
between the $total_revenue and $total_cost. The
variable $total_revenue is calculated as the sum of
cost per unit times quantities over the item set of
$suppItems_index. The variable $total_cost is
calculated as the sum of price per unit times
quantities over the item set of $manufItems_index.
We also defined a constraint, which is used to
specify that $total_cost should be less than or equal
to the overall budget indicated by $budget. Each
constraint corresponds to a business rule specified in
the pure XQuery program. The constraints assert a
condition to be satisfied by the expressions.
constraint $producedProductsGEZero
constraint $purchasedPartsGEZero
constraint $purchasedPartsGERequiredParts
constraint $partSupplyGEPurchasedParts
maximize $total_profit

Given these annotations, DG-Query will parse
the XQuery program and generate the necessary
optimization model as well as convert the XML data
into the appropriate format expected by the solver.
After the solver has found a solution, as long as one
is feasible, the values are written back into the
source XML as shown below:

Updated Manufacturers XML data:
<manufacturers>
 <products>
 <product qty="0"
 mid="manuf1"
 prodid="product1"
 name="table"
 ppu="100.00"/>
 ...
 <product qty="18"
 mid="manuf1"
 prodid="product3"
 name="plate"
 ppu="10.00"/>
 ...
 </products>
</manufacturers>

Updated Suppliers XML data:
<suppliers>
 <parts>
 <part qty="10"
 sid="supp1"
 partid="part1"
 name="wooden leg"
 cpu="2.50"
 supply="10"/>
 <part qty="2"
 sid="supp1"
 partid="part2"
 name="wooden table top"
 cpu="70.00"
 supply="10"/>
 ...

 </parts>
</suppliers>

Note that the attribute ‘qty’ was not originally
present in the source XML for either manufacturers
or suppliers, and was added as a result of the
optimization process.

5 FORMAL SYNTAX AND
SEMANTICS

The DG-Query language is designed to extend the
functionality of XQuery with annotations that can be
used by an optimizer to solve decision optimization
problems. The sections to follow describe the DG-
Query annotations in detail.

5.1 Annotation Syntax

5.1.1 Index Sets

let $variable_name as index(@a1, ..., @a2)
on $source_xml_variable_name := {
 XPath_Expression
 }

Index sets are used by the optimization process

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

158

to index integer or float arrays. They are also used to
access XML element attributes that are required in
the mathematical computation for the model. The
XQuery variable representing an index set is linked
to another XQuery variable containing the source
XML over which to build the index. Both the index
set variable and the source variable must be declared
in the outermost scope of the program. Additionally
the XML contained by the source variable must be
well-formed. When using the index type annotation
you must also specify the attributes that represent
the unique key for identifying a particular element in
the generated index. The XPath expression retrieves
the sequence of elements of the same type from the
source variable to be used for the index set.

5.1.2 Insert Expression

insert @attribute_name as [xs:integer |
xs:double]on $index_variable_name := ?

The insert expression is used by the optimization
process to identify the variable that needs to be
solved by the optimization solver. Note that the
attribute name should not already exist in the source
XML referred to by the index variable because it is
inserted into the source XML after a solution has
been found. The index set variable referenced must
be declared beforehand. The attributes to be
inserted/solved for can only be of integer or double
types. The question mark assignment identifies that
the value for the attribute is unknown and must be
solved for during the optimization process.

5.1.3 Objective

[minimize|maximize] $math_expr_variable_name

The objective is a mathematical representation of
the problem to be optimized. The keywords
‘maximize’ and ‘minimize’ are used to define the
objective for the program. The variable name
provided must contain a mathematical representation
of the problem to be solved. The mathematical
representation may be composed of previously
declared intermediate expressions.

5.1.4 Constraints

constraint $boolean_rule_variable_name

Constraints are boolean expressions that define
assertions about the data. The boolean expression
must evaluate to true in order for the model to be
solvable. The keyword ‘constraint’ is used to define
a constraint annotation. The boolean variable
referenced in the constraint must be previously

declared. The optimization solver uses constraints to
impose bounds on the solution.

5.2 Annotation Semantics

We now turn to define the semantics of DG-Query
statements. As we described in previous sections,
DG-Query is built upon XQuery, as it is a language
extension of XQuery. We assume that XQuery
semantics are kept and well understood. In addition
to the semantics of XQuery, we formally define the
aspect of DG-Query which is unique.

First we define the annotations of the DG-Query
program. It contains any number of either index sets,
‘insert’ expressions with ‘?’ assigned to it,
constraints, and objectives. The constraints in DG-
Query are equivalently a set of boolean variables
defined in an XQuery program. Another assumption
we claim is that the index set structure must be
defined on an XQuery variable which has been
defined on the outermost scope of XQuery
programs. In this case, the index set will be assigned
and evaluated correctly.
DG-annotation::= index set
 | insert statement with ‘?’
 | constraint
 | objective (minimize or maximize)
 ;

The input for a DG-Query program is a set of
XML schemas Si, i = 1, 2, …, n, such as manuf.xsd,
supplier.xsd, and productparts.xsd. The instances of
XML schemas, di, i = 1, 2,…,n, are regular XML
documents, with the only exception that some
values of attributes in XML documents are identified
as missing, i.e., “?”. The output of DG-Query
optimization is an instance set di

’, i = 1, 2, …, n,
with all values populated for attributes.

ܩܦ ≔൏ ܵ, ,ݕݎ݁ݑܳܺ ܩܦ െ ݊݅ݐܽݐ݊݊ܽ 	

ܵ ≔൏ ଵܵ, ܵଶ, … , ܵ 				
ܩܦ െ ݐݑ݊݅ ≔൏ ݀ଵ, ݀ଶ, … , ݀ 																						

A set of functions are defined as follows. The
function fo represents the objective function. This
function maps from the independent variables, i.e.,
the values of attributes sets, which are annotated
with missing values ‘?’ to a real value output
variable, i.e., the objective of DG-Query
optimization. The function set fj, j = 1, 2, …, k,
defines mapping relationships between input
variables, i.e., the values of attributes sets, which are
annotated with missing values ‘?’, to a Boolean
output variable. We assume there are k constraints
defined in the overall DG-Query program. Each
function fj defines the mapping for the corresponding

DG-Query:�An�XQuery-based�Decision�Guidance�Query�Language

159

constraint j.

݂ሺ݀ଵ′ , ݀ଶ
′ , … , ݀′ ሻ

ଵ݂ሺ݀ଵ′ , ݀ଶ
′ , … , ݀′ ሻ	 …

݂
ሺ݀ଵ′ , ݀ଶ

′ , … , ݀′ ሻ

We use the set All_I to represent all possible
instantiations of Si, i = 1, 2, …, n. Another set
Feasible_I represents the possible instantiations of
Si, i = 1, 2, …, n, which belongs to All_I and at the
same time, satisfy all constraints j, j = 1, 2, …, k.
Finally, two sets Min_I or Max_I are defined to
represent the possible instantiations of Si, i = 1,
2, …, n, which belongs to Feasible_I and at the same
time, the value of objective function fo over these
specific instantiations is less than/greater than any
other possible instantiations of Feasible_I.
,ሺ݀ܫ_݈݈ܣ ݅ ൌ 1,2, … , ݊ሻ ൌ ሼሺ݀

′ , ݅
ൌ 1,2, … , ݊ሻ	|	݀

′ 	ݏ݂݁݅ݏ݅ݐܽݏ	 ܵ 	
∧ 	݀

′ ,݀	݂	݊݅ݐܽ݅ݐ݊ܽݐݏ݊݅	݊ܽ	ݏ݅ ݅
ൌ 1,2, … , ݊ሽ

,ሺ݀ܫ_݈ܾ݁݅ݏܽ݁ܨ ݅ ൌ 1,2, … , ݊ሻ ൌ ሼሺ݀
′ , ݅ ൌ

1,2, … , ݊ሻ ∈ |ܫ_݈݈ܣ ଵ݂൫݀
′ , ݅ ൌ 1,2, … , ݊൯ ൌ 	݁ݑݎܶ ∧

	 ଶ݂൫݀
′ , ݅ ൌ 1,2, … , ݊൯ ൌ 	݁ݑݎܶ ∧ …	∧ 		 ݂൫݀

′ , ݅ ൌ
1,2, … , ݊൯ ൌ ݁ݑݎܶ

,ሺ݀ܫ_ݔܽܯ ݅ ൌ 1,2, … , ݊ሻ ൌ ሼሺ݀
′ , ݅ ൌ 1,2,… , ݊ሻ

∈ ሺ݀∀|ܫ_݈ܾ݁݅ݏܽ݁ܨ
", ݅ ൌ 1,2, … , ݊ሻ

∈ ሺܫ_݈ܾ݁݅ݏܽ݁ܨ ݂൫݀
", ݅

ൌ 1,2, … , ݊൯
 ݂൫݀

′ , ݅ ൌ 1,2, … , ݊൯ሻሽ

,ሺ݀ܫ_݊݅ܯ ݅ ൌ 1,2, … , ݊ሻ ൌ ሼሺ݀
′ , ݅ ൌ 1,2, … , ݊ሻ

∈ ሺ݀∀|ܫ_݈ܾ݁݅ݏܽ݁ܨ
", ݅ ൌ 1,2, … , ݊ሻ

∈ ሺܫ_݈ܾ݁݅ݏܽ݁ܨ ݂൫݀
", ݅

ൌ 1,2, … , ݊൯
 ݂൫݀

′ , ݅ ൌ 1,2, … , ݊൯ሻሽ

Finally, we define the answer to the DG-Query
program is an instantiation

nforiIMaxorIMindi ,...,2,1__' .

6 IMPLEMENTATION
PROTOTYPE AND
ARCHITECTURE

6.1 Implementation Prototype

A prototype DG-Query compiler has been
implemented in Java using the following tools:
 ANTLR (Another Tool for Language

Recognition)
 BaseX XQuery 3.0 Processor
 IBM CPLEX OPL (Optimization Programming

language) Java API
The ANTLR and BaseX libraries are written in

pure Java allowing for seamless platform portability;
however the IBM CPLEX OPL Java API requires
native libraries so the corresponding platform
specific software must be installed in order to run
the compiler. The input into the compiler is an
XQuery program annotated with DG-Query. The
DG-Query compiler only contains a subset of the
XQuery language and some syntax has been added
to allow for more concise mathematical
expressiveness.

6.2 Implementation Architecture

The key construction of DG-Query is an extension
of the widely used XQuery language in two
successive levels: Level 1 provides the ability to
introduce non-deterministic variables (and their
constraints) in an intuitive manner. The key
construct is the type of DG-Query statement
“insert @qty as xs:integer on
$manufItems_index := ?”, which essentially
defines a decision variable, which is to be
instantiated by solving a decision problem, and
specifies constraints to be satisfied. After the
definition, the user can refer to the variable in the
conventional XQuery manner as if it has already
been instantiated. Level 2 allows users to define an
objective function over the decision variables using
the construct “maximize/minimize
$objective”, with the objective value optimized.
Mathematical programming concepts and technique
are used behind the scene to instantiate the decision
variables.

The conceptual system architecture is shown in
the diagram above. In this demonstration, we use
standard XQuery 3.0 (W3C), and ILOG/CPLEX as
our mathematical programming (MP) solver. The
DG-Query evaluator (i) compiles a DG-Query
program, using data retrieved with XQuery from

 XML
Document

Mathematical
Programming
Solvers

DG-Query Evaluator

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

160

XML documents, into an MP model expressed in
OPL or a direct solver structure, (ii) uses an external
MP solver to find a solution, and (iii) employs
XQuery statement structure to insert the MP solution
back into the source XML as a set of attributes.

7 EXPERIMENTS

We have taken the running example included in this
paper and adjusted the syntax slightly to conform to
the language grammar of the prototype DG-Query
compiler. The program and input XML data was
successfully translated into CPLEX OPL and solved
accordingly with the following generated OPL
Model:
tuple tuple_productParts_index {
 key string prodid;
 key string partid;
 int partqty;
};

Ordered {tuple_productParts_index}
productParts_index = ...;
float budget = 204.00;
dvar int manufItems_index_qty[manufItems_index];
dvar int suppItems_index_qty[suppItems_index];
dexpr int product_index_producedqty[p in
product_index] = sum(m in manuf_index)
 manufItems_index_qty[item(manufItems_index,
<m.mid,p.prodid>)];

dexpr float total_profit = total_revenue -
total_cost;
maximize total_profit;
constraints {
 forall(mp in manufItems_index)
manufItems_index_qty[mp] >= 0;
 forall(sp in suppItems_index)
suppItems_index_qty[sp] >= 0;
 forall(part in part_index)
 part_index_reqqty[part] <= sum(s in
supp_index)
 suppItems_index_qty[item(suppItems_index,
<s.sid,part.partid>)];
 forall(s in suppItems_index)
 suppItems_index_qty[s] <= s.supply;
total_cost <= budget;
}

The running time of mathematical programs is
often sensitive to the way the problem is
represented. For many classes of problems, a poor
choice of mathematical representation will cause the
solver to take significantly longer to find an optimal
solution. One concern with DG-Query is that
reduction process in modelling may add substantial
overhead by introducing redundant or unnecessary
variables and constraints. It is possible that a
simpler or more concise modelling may lead to a
significantly faster solution.

Our hypothesis is that problems described using
DG-Query are solved as efficiently as when
described using any other modelling tool. To test

this, we took the manufacturing network problem
from Section 2 and manually created a concise
formulation of the OPL model. We then generated
several instances of varying problem sizes and
compared the execution time when solved using this
OPL model and through DG-Query reduction.
Although we did some preliminary experiments, the
complexity of models can scale up. More advanced
experiment designs will be conducted as part of
future work.

8 CONCLUSION AND FUTURE
WORK

This paper introduced the DG-Query language for
decision optimization. We have defined its formal
syntax and semantics. We also used an example to
show that the overhead of using a high-level
language is small when compared with manually
crafted mathematical programming formulation.
With the added benefit of having similar syntax to
XQuery, we believe that DG-Query provides a
practical solution for decision optimization. DG-
Query can be used in many real industry
applications such as finding the best course of action
in an emergency, making a patient treatment
decision for the best prognosis, deciding on public
policies guided by the most positive outcomes, and
deciding on business transactions within a supply
chain, in the enterprise world.

Apart from providing native support for XML
and XQuery, the DG-Query language should also
promote modularity. The Process and Analytics
Language (PAL) provides a great framework for
building composite models from either atomic or
other composite models (Shao G., Kibira D.,
Brodsky A., and Egge, N.E., 2011). The DG-Query
language will use the PAL formalism for providing
the necessary abstractions to support modularity.

ACKNOWLEDGEMENTS

This work is partially support by NIST funding.

REFERENCES

IBM, 2013. Mathematical Programming vs. Constraint
Programming. Data Sources Retrieved from
http://www-01.ibm.com/software/integration/
optimization/cplex-cp-optimizer/mp-cp/

DG-Query:�An�XQuery-based�Decision�Guidance�Query�Language

161

IBM, 2011. OPL, the modeling language: Data Sources
Retrieved from
http://pic.dhe.ibm.com/infocenter/cosinfoc/v12r4/inde
x.jsp?topic=%2Filog.odms.ide.help%2FOPL_Studio%
2Fopllangref%2Ftopics%2Fuss_langref_datasources_
1.html.

AMPL, 2013. http://www.ampl.com/
Boisvert, R. F., Howe, S. E., and Kahaner, D. K. Kahaner,

1985. Gams: a framework for the management of
scientific software. ACM Trans. Math. Softw.,
11(4):313–355.

W3C, Jan. 2012, Extensible Markup Language (XML).
Retrieved from http://www.w3.org/XML/

Rick Jelliffe and Academia Sinica Computing Centre,
2002, The Schematron Assertion Language 1.6,
Retrieved from http://xml.ascc.net/resource/
schematron/Schematron2000.html.

W3C, Sep. 2006. Extensible Markup Language (XML) 1.1
(Second Edition). Retrieved from http://
www.w3.org/TR/2006/REC-xml11-20060816/#dt-
wellformed.

W3C, Dec. 2010. XQuery 1.0: An XML Query Language
(Second Edition). Retrieved from http://
www.w3.org/TR/xquery/

Maplesoft, 2013. Overview of the XMLTools Package.
Retrieved from http://www.maplesoft.com/support/
help/Maple/view.aspx?path=XMLTools.

Brodsky, A. and Nash H., 2006. CoJava: Optimization
modeling by nondeterministic simulation. In F.
Benhamou, editor, Proceedings of Principles and
Practice of Constraint Programming - CP, volume
4204 of Lecture Notes in Computer Science, pages
91–106. Springer.

Brodsky A., Egge N. and Wang X.S., 2011. Reusing
Relational Queries for Intuitive Decision
Optimization, System Sciences (HICSS), 44th Hawaii
International Conference on, pages 1-9.

Brodsky, A., Bhot, M. M., Chandrashekar, M., Egge, N.
E., and Wang, X. S., 2009. A Decisions Query
Language (DQL): High-Level Abstraction for
Mathematical Programming over Databases.
Proceedings of the 35th SIGMOD International
Conference on Management of Data.

Brodsky, A., Egge, N.E., and Wang X.S., 2012.
Supporting Agile Organizations with a Decision
Guidance Query Language, Journal of Management
Information Systems 28 (4), 39-68.

Shao G., Kibira D., Brodsky A., and Egge, N. E., 2011.
Decision support for sustainable manufacturing using
decision guidance query language, International
Journal of Sustainable Engineering 4 (3), 251-265.

APPENDIX

Manufacturers XML Schema Definition:
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="manufacturers">

 <xs:complexType>

 <xs:sequence>
 <xs:element ref="products"

 minOccurs="1"
 maxOccurs="1" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="products">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="product"

 minOccurs="1"
 maxOccurs="unbounded" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="product">
 <xs:complexType>
 <xs:attribute name="mid"

 type="xs:string”
 use="required"/>

 <xs:attribute name="prodid"
 type="xs:string"
 use="required"/>

 <xs:attribute name="name"
 type="xs:string"
 use="optional"/>

 <xs:attribute name="ppu"
 type="xs:decimal"
 use="required"/>

 <xs:attribute name="qty"
 type="xs:integer"
 use="optional"/>

 </xs:complexType>
 </xs:element>
</xs:schema>

Suppliers XML Schema Definition:
<xs:schema

xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="suppliers">

 <xs:complexType>
 <xs:sequence>

 <xs:element ref="parts"
 minOccurs="1"
 maxOccurs="1" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="parts">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="part"

 minOccurs="1"
 maxOccurs="unbounded" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="part">
 <xs:complexType>
 <xs:attribute name="sid"

 type="xs:string"
 use="required"/>

 <xs:attribute name="partid"
 type="xs:string"
 use="required"/>

 <xs:attribute name="name"

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

162

 type="xs:string"
 use="optional"/>

 <xs:attribute name="cpu"
 type="xs:decimal"
 use="required"/>

 <xs:attribute name="supply"
 type="xs:integer"
 use="optional"/>

 <xs:attribute name="qty"
 type="xs:integer"
 use="optional"/>

 </xs:complexType>
 </xs:element>
</xs:schema>

Product Parts XML Schema Definition:
<xs:schema
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="productParts">
 <xs:complexType>
 <xs:sequence>
 <xs:element ref="productPart"

 minOccurs="1"
 maxOccurs="unbounded" />

 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="productPart">
 <xs:complexType>
 <xs:attribute name="prodid"

 type="xs:string"
 use="required"/>

 <xs:attribute name="partid"
 type="xs:string"
 use="required"/>

 <xs:attribute name="qty"
 type="xs:integer"
 use=" required"/>

 </xs:complexType>
 </xs:element>
</xs:schema>

DG-Query:�An�XQuery-based�Decision�Guidance�Query�Language

163

