
A Metadata Focused Crawler for Linked Data

Raphael do Vale A. Gomes1, Marco A. Casanova1,
Giseli Rabello Lopes1 and Luiz André P. Paes Leme2

1Departamento de Informática, PUC-Rio, Rua Marquês de S. Vicente, 225, Rio de Janeiro, Brasil
2Instituto de Computação, UFF, Rua Passo da Pátria, 156, Niterói, Brasil

Keywords: Focused Crawler, Tripleset Recommendation, Linked Data.

Abstract: The Linked Data best practices recommend publishers of triplesets to use well-known ontologies in the
triplication process and to link their triplesets with other triplesets. However, despite the fact that extensive
lists of open ontologies and triplesets are available, most publishers typically do not adopt those ontologies
and link their triplesets only with popular ones, such as DBpedia and Geonames. This paper presents a
metadata crawler for Linked Data to assist publishers in the triplification and the linkage processes. The
crawler provides publishers with a list of the most suitable ontologies and vocabulary terms for triplifica-
tion, as well as a list of triplesets that the new tripleset can be most likely linked with. The crawler focuses
on specific metadata properties, including subclass of, and returns only metadata, hence the classification
“metadata focused crawler”.

1 INTRODUCTION

The Linked Data best practices (Bizer et al., 2009)
recommend publishers of triplesets to use well-
known ontologies in the triplication process and to
link with other triplesets. However, despite the fact
that extensive lists of open ontologies and triplesets
are available, such as DataHub1, most publishers
typically do not adopt ontologies already in use and
link their triplesets only with popular ones, such as
DBpedia2 and Geonames3. Indeed, according to
(Nikolov and d'Aquin, 2011; Nikolov et al. 2012;
Martínez-Romero, 2010), linkage to popular triple-
sets is favored for two main reasons: the difficulty of
finding related open triplesets; and the strenuous
task of discovering instance mappings between dif-
ferent triplesets.

This paper describes a crawler that addresses the
problem of finding vocabulary terms and triplesets
to assist publishers in the triplification and the link-
age processes. Unlike typical Linked Data crawlers,
the proposed crawler then focuses on metadata with
specific purposes, illustrated in what follows.

In a typical scenario, the publisher of a tripleset
first selects a set T of terms that describe an applica-

1 http://datahub.io
2 http://dbpedia.org
3 http://www.geonames.org

tion domain. Alternatively, he could use a database
summarization technique (Saint-Paul et al., 2005) to
automatically extract T from a set of triplesets.

Then, the publisher submits T to the crawler,
which will search for triplesets whose vocabularies
include terms direct or transitively related to those in
T. The crawler returns a list of vocabulary terms, as
well as provenance data indicating how the output
was generated. For example, if the publisher selects
the term “Music” from WordNet, the crawler might
return “Hit music” from BBC Music.

Lastly, the publisher inspects the list of triplesets
and terms returned, with respect to his tripleset, to
select the most relevant vocabularies for triplifica-
tion and the best triplesets to use in the linkage pro-
cess, possibly with the help of recommender tools.
We stress that the crawler was designed to help rec-
ommender tools for Linked Data, not to replace
them.

This paper is organized as follows. Section 2
presents related work. Section 3 summarizes back-
ground information about the technology used. Sec-
tion 4 briefly explains how the crawler works with
the help of an example. Section 5 details the crawl-
ing process. Section 6 describes experiments that
assess the usefulness of the crawler. Finally, Section
7 presents the conclusions.

489do Vale Amaral Gomes R., A. Casanova M., Rabello Lopes G. and André P. Paes Leme L..
A Metadata Focused Crawler for Linked Data.
DOI: 10.5220/0004867904890500
In Proceedings of the 16th International Conference on Enterprise Information Systems (ICEIS-2014), pages 489-500
ISBN: 978-989-758-028-4
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)

2 RELATED WORK

We first compare the proposed crawler to Linked
Data crawlers.

Fionda et al. (2012) present a language, called
NAUTILOD, which allows browsing through nodes
of a Linked Data graph. They introduced a tool,
called swget (semantic web get), which evaluates
expressions of the language. An example would be:
“find me information about Rome, starting with its
definition in DBpedia and looking in DBpedia,
Freebase and the New York Times databases”.

swget <dbp:Rome>
(<owl:sameAs>)* -saveGraph-domains
{dbpedia.org,
 rdf.freebase.com,

 data.nytimes.com}

LDSpider (Isele et al., 2010) is another example of a
Linked Data crawler. Similarly to the crawler pro-
posed in this paper, LDSpider starts with a set of
URIs as a guide to parse Linked Data.

Ding et al. (2005) present the tool created by
Swoogle to discover new triplesets. The authors
describe a way of ranking Web objects in three
granularities: Web documents (Web pages with
embedded RDF data), terms and RDF Graphs (tri-
plesets). Each of these objects has a specific ranking
strategy.

The Linked Data crawlers just described have
some degree of relationship with the proposed
crawler, though none has exactly the same goals. As
explained in the introduction, the proposed crawler
focuses on finding metadata that are useful to design
new triplesets. Furthermore, rather than just derefer-
encing URIs, it also adopts crawling queries to im-
prove recall, as explained in Section 5.1.

We now comment on how the proposed crawler
relates to recommender tools for Linked Data.

Some generic recommender tools use keywords
as input. Nikolov et al. (2011, 2012) use keywords
to search for relevant resources, using the label
property of the resources. Indeed, a label is a proper-
ty used to provide a human-readable version of the
name of the resource4. A label value may be inaccu-
rate, in another language or simply be a synonymous
of the desired word. There is no compromise with
the schema and its relationships. Therefore, the risk
of finding an irrelevant resource is high.

Martínez-Romero et al. (2010) propose an ap-
proach for the automatic recommendation of ontolo-
gies based on three points: (1) how well the ontology
matches the set of keywords; (2) the semantic densi-

4 http://www.w3.org/TR/rdf-schema/#ch_label

ty of the ontology found; and (3) the popularity of
the tripleset on the Web 2.0. They also match a set
of keywords to resource label values, in a complex
process.

The crawler proposed in this work may be used
as a component of a recommender tool, such as
those just described, to locate: (1) appropriate ontol-
ogies during the triplification of a database; (2) tri-
plesets to interlink with a given tripleset. We stress
that the crawler was not designed to be a full rec-
ommender tool, but rather to be a component of one
such system.

3 BACKGROUND

The Linked Data principles advocate the use of RDF
(Manola and Miller, 2004), RDF Schema (Brickley
and Guha, 2004) and other technologies to standard-
ize resource description.

RDF describes resources and their relationships
through triples of the form (s, p, o), where: s is the
subject of the triple, which is an RDF URI reference
or a blank node; p is the predicate or property of the
triple, which is an RDF URI reference and specifies
how s and o are related; and o is the object, which is
an RDF URI reference, a literal or a blank node. A
triple (s, p, o) may also be denoted as “<s><p><o>”.

A tripleset is just a set of triples. In this paper
will use dataset and tripleset interchangeably.

RDF Schema is a semantic extension of RDF to
cover the description of classes and properties of
resources. OWL (W3C, 2012) in turn extends RDF
Schema to allow richer descriptions of schemas and
ontologies, including cardinality and other features.

RDF Schema and OWL define the following
predicates that we will use in the rest of the paper:
 rdfs:subClassOf indicates that the subject of

the triple defines a subclass of the class defined by
the object of the triple

 owl:sameAs indicates that the subject denotes the
same concept as the object

 rdfs:seeAlso indicates that the subject is gener-
ically related to the object

 rdf:type indicates that the subject is an instance
of the object

For example, the triple

<dbpedia:Sweden> <rdf:type> <dbpedia:Country>.

indicates that the resource Sweden is an instance of
the class Country.

Triplesets are typically available on the Web as
SPARQL endpoints (Prud’hommeaux and Seaborne,

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

490

2008) or as file dumps (large files containing all the
data from a tripleset, or small files containing only
the relevant data for a defined term).

More than just a query language similar to SQL,
SPARQL is a protocol: it defines the query interface
(HTTP), how requests should be made (POST or
GET) and how the data should be returned (via a
standard XML). Thus, an agent can perform queries
on a dataset and acquire knowledge to create new
queries and so on.

Finally, VoID (Alexander et al., 2009) is an on-
tology used to define metadata about triplesets. A
VoID document is a good source of information
about a tripleset, such as the classes and properties it
uses, the size of the tripleset, etc.

Let d be a tripleset and V be a set of VoID
metadata descriptions. The classes and properties
used in d can be extracted from tripleset partitions
defined by the properties void:classPartition
and void:propertyPartition that occur in V.
Class partitions describe sets of triples related to
subjects of a particular class. Property partitions
describe sets of triples that use a particular predicate.
These partitions are described by the properties
void:class and void:property respectively.
The set of vocabulary terms used in d can be gener-
ated by the union of all values of the properties
void:class and void:property. In some cases,
the VoID description of a tripleset does not define
partitions, but it specifies a list of namespaces of the
vocabularies used by the tripleset with the
void:vocabulary predicate. One can enrich the
set of vocabulary terms used in d with such a list.

4 A USE CASE

Consider a user who wants to publish as Linked
Data a relational database d storing music data (art-
ists, records, songs, etc.). The crawler proposed in
this paper will help the user to publish d as follows.

First, the user has to define an initial set T of
terms to describe the application domain of d. Sup-
pose that he selects just one term dbpedia:Music,
taken from DBpedia.

The user will then invoke the crawler, passing T
as input. The crawler will query the Datahub.io cata-
logue of Linked Data triplesets to crawl triplesets
searching for new terms that are direct or transitively
related to dbpedia:Music. The crawler focuses on
finding new terms that are defined as subclasses of
the class dbpedia:Music, or that are related to
dbpedia:Music by owl:sameAs or

rdfs:seeAlso properties. The crawler will also
count the number of instances of the classes found.

The crawler will return: (1) the list of terms
found, indicating their provenance - how the terms
are direct or transitively related to dbpedia:Music
and in which triplesets they were found; (2) for each
class found, an estimation of the number of instances
in each tripleset visited; and (3) a list relating the
VoID data of each tripleset with each one of the
terms found in (1).

The user may take advantage of the results the
crawler returned in two ways. He may manually
analyze the data and decide: (1) which of the probed
ontologies found he will adopt to triplify the rela-
tional database; and (2) to which triplesets the
crawler located he will link the tripleset he is con-
structing. Alternatively, he may submit the results of
the crawler to separate tools that will automatically
recommend ontologies to be adopted in the triplifi-
cation process, as well as triplesets to be used in the
linkage process (Leme et al., 2013; Lopes et al.,
2013).

For example, suppose that the crawler finds two
subclasses, opencyc:Love_Song and open-
cyc:Hit_Song, of wordnet:synset-music-
noun-1 in the ontology opencyc:Music. Suppose
also that the crawler finds large numbers of instanc-
es of these subclasses in two triplesets, mu-
sicBrains and bbcMusic. The user might then
decide that opencyc:Music is a good choice to
adopt in the triplification process and that mu-
sicBrains and bbcMusic are good choices for the
linkage process.

5 A METADATA FOCUSED
CRAWLER

This section discusses the construction of the
metadata focused crawler. The reader will find a
pseudo-code describing the crawler in Annex 1.

5.1 Crawling Queries

The crawler works with catalogues that use the
CKAN framework to identify SPARQL endpoints
and RDF dumps. It receives as input a set of terms T,
called the initial crawling terms. Such terms are
typically selected from generic ontologies, such as
WordNet5, DBpedia and Schema.org6, albeit this is
not a requirement for the crawling process.

5 http://wordnet.princeton.edu/
6 http://schema.org

A�Metadata�Focused�Crawler�for�Linked�Data

491

Given T, the crawler proceeds in stages (see Sec-
tion 5.2) to extract new terms using crawling queries
over all triplesets listed in the catalogues and using
URI dereferencing.

The crawling queries find new terms that are re-
lated to the terms obtained in the previous stage
through the following crawling properties (see Sec-
tion 3) rdfs:subClassOf, owl:sameAs and
rdfs:seeAlso. Hence, these queries are respec-
tively called subclass, sameAs and seeAlso queries.

Figure 1 shows one of the templates of the
crawling queries that obtain terms related to a
known term t through the crawling property p.

SELECT distinct ?item
WHERE { ?item p <t> }

Figure 1: Template of the SPARQL query to obtain a
subset of the crawling results.

Notice that, for the properties owl:sameAs and
rdfs:seeAlso, the crawler also uses the template
query of Figure 2. For each term t to be crawled, it
inverts the role of t, as shown in Figure 2, when the
predicate p is owl:sameAs and rdfs:seeAlso,
since these predicates are reflexive and it is reasona-
ble that the description of the term itself will be
explained in that order. However, the crawler does
not invert the role of t when the predicate p is
rdfs:subClassOf, since this predicate is not re-
flexive.

SELECT distinct ?item
WHERE { <t> p ?item }

Figure 2: Template of the inverted SPARQL query.

In the specific case of the crawling property
rdfs:subClassOf, suppose that C and C’ are clas-
ses defined in triplesets S and S’, respectively, and
assume that C’ is declared as a subclass of C through
a triple of the form

(C’, rdfs:subClassOf, C)

Triples such as this are more likely to be included in
the tripleset where the more specific class C’ is de-
fined than in the tripleset where the more generic
class C is defined. Hence, after finding a class C, the
crawler has to search for subclasses of C in all tri-
plesets it has access using the template of Figure 1.

Another case occurs when the relationship be-
tween C and C’ is defined in a third schema S”.
Similarly to the previous example, we need a sub-
class query over S” to discover this relationship
between C and C’. S’’ is obtained by dereferencing
the URI of C’. In most cases the returned tripleset is
the complete ontology where C’ is defined, while in

some other cases only a fragment of the ontology
where C’ is defined is returned.

Finally, a special type of crawling query is ob-
tained by replacing p in Figure 1 with rdf:type.
However, in this case, only the overall number of
instances found and the total number of instances for
each tripleset are retrieved and stored in the result
set of the crawling process.

5.2 Crawling Stages

The crawler simulates a breath-first search for new
terms. Stage 0 contains the initial set of terms. The
set of terms of each new stage is computed from
those of the previous stage with the help of the que-
ries and URI dereferencing, as described in Section
5.1, except for rdf:type, which is used only to
count the number of instances found.

The crawling frontier is the set of terms found
which have not yet been processed. To avoid circu-
lar references, we used a hash map that indicates
which terms have already been processed.

Since the number of terms may grow exponen-
tially from one stage to the next, we prune the search
by limiting:

 The number of stages of the breath-first search
 The maximum number of terms probed
 The maximum number of terms probed in each

tripleset, for each term in the crawling frontier
 The maximum number of terms probed for each

term in the crawling frontier

For each new term found, the crawler creates a
list that indicates the provenance of the term: how
the term is direct or transitively related to an initial
term and in which tripleset(s) it was found. That is,
the crawler identifies the sequence of relationships it
traversed to reach a term, such as in the following
example:

wordnet:synset-music-noun-1 ->
owl:sameAs ->
OpenCyc:Music -> rdfs:subClassOf ->
OpenCyc:LoveSong -> instance ->
500 instances.

5.3 Using VoID to Extract More
Information about Triplesets

The crawler will eventually collect a large number
of terms and count the number of instances of a
reasonable number of classes, declared in many
triplesets. These data can be used to extract more
metadata about a tripleset by parsing its VoID de-
scription, as follows.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

492

For each tripleset t in the catalogues the crawler
uses, if t has a VoID description V, the crawler re-
trieves all objects o from triples of the form
(s, void:class, o) declared in V. The resources
retrieved are compared to all resources the crawler
already located. Each new resource found is saved
and returned as part of the final output of the entire
crawling operation, with an indication that it is also
related to tripleset t through a VoID description.

Although the crawling process has limiting pa-
rameters to avoid time-consuming tasks, the pro-
cessing of VoID descriptions is simple enough and
is, therefore, not subjected to limitations.

6 TESTS AND RESULTS

6.1 Organization of the Experiments

We evaluated the crawler over triplesets described in
Datahub.io. The tool was able to recover 317 triple-
sets with SPARQL endpoints. But, despite this num-
ber, it could run queries on just over half of the tri-
plesets due to errors in the query parser or simply
because the servers were not available.

To execute the tests, we separated three set of
terms related to the music and publications applica-
tion domains. In both cases, we focused on three
generic ontologies to create the initial crawling
terms, WordNet, DBpedia and Schema.org.

WordNet is a lexical database that presents dif-
ferent meanings for the same word. For example, the
term wordnet:synset-music-noun-1 means “an
artistic form of auditory communication incorporat-
ing instrumental or vocal tones in a structured and
continuous manner”. In addition, the term word-
net:synset-music-noun-2 is defined as “any
agreeable (pleasing and harmonious) sounds; "he fell
asleep to the music of the wind chimes"”. Both are
music, but have different meanings.

DBpedia is the triplified version of the Wikipe-
dia database. The triplification process is automati-
cally accomplished and the current English version
already has 2.5 million classified items.

Schema.org is the most recent ontology of all
three. It focuses on HTML semantics and was creat-
ed by Google, Bing and Yahoo. Therefore, Sche-
ma.org is now used by many triplesets7. Schema.org
is also developing other ways to increase the search
results by creating a mapping with other ontologies,
such as DBpedia and WordNet.

We elected these three ontologies as the most

7 http://schema.rdfs.org/mappings.html

generic ones. All three have a collection of terms
that covers numerous domains and could be used
together to determine an initial set that represents the
user intentions. Of course, if a user has good
knowledge about a domain, he can adopt more spe-
cific ontologies to determine the initial crawling
terms. In the examples that follow, we use the ab-
breviations shown in Table 1.

Table 1: Namespace abbreviation.

Abbreviation Namespace
akt http://www.aktors.org/ontology/portal#

bbcMusic http://linkeddata.uriburner.com/about/id/entity/http/w
ww.bbc.co.uk/music/

dbpedia http://dbpedia.org/resource/

dbtune http://dbtune.org/

freebase http://freebase.com/

freedesktop http://freedesktop.org/standards/xesam/1.0/core#

lastfm http://linkeddata.uriburner.com/about/id/entity/http/w
ww.last.fm/music/

mo http://purl.org/ontology/mo/

musicBrainz http://dbtune.org/musicbrainz/

nerdeurocom http://nerd.eurecom.fr/ontology#

opencyc http://sw.opencyc.org/2009/04/07/concept/en/

schema http://schema.org/

twitter http://linkeddata.uriburner.com/about/id/entity/http/tw
itter.com/

umbel http://umbel.org/

wordnet http://wordnet.rkbexplorer.com/id/

yago http://yago-knowledge/resource/

6.2 Results

The experiments involved two domains, Music and
Publications, and used the following parameters:

 Number of stages: 2
 Maximum number of terms probed: 40
 Maximum number of terms probed for each term

in the crawling frontier: 20
 Maximum number of terms probed in each triple-

set, for each term in the crawling frontier: 10

Music Domain. We chose Music as the first domain
to evaluate the crawler and elected three ontologies,
DBpedia, WordNet and Music Ontology8, to select
the initial crawling terms. The Music Ontology is a
widely accepted ontology that describes music, al-
bums, artists, shows and some specific subjects.

The initial crawling terms were:

mo:MusicArtist
mo:MusicalWork

8 http://musicontology.com/

A�Metadata�Focused�Crawler�for�Linked�Data

493

mo:Composition
dbpedia:MusicalWork
dbpedia:Song
dbpedia:Album
dbpedia:MusicalArtist
dbpedia:Single
wordnet:synset-music-noun-1

Table 2: Related Terms.

Related terms

Query type Description

(a) Related terms for mo:MusicArtist
subclass mo:MusicGroup

mo:SoloMusicArtist
instance 103,541 instances, mostly from lastfm

(b) Related terms for mo:MusicalWork
subclass mo:Movement

instance 16,833 instances found in multiple data-
bases like dbtune and academic music
databases

(c) Related terms for dbpedia:MusicalWork
subclass dbpedia:Album

dbpedia:Song
dbpedia:Single
dbpedia:Opera
dbpedia:ArtistDiscography
and 21,413 classes from yago

sameAs dbpedia:MusicGenre
umbel:MusicalComposition

seeAlso lastfm:Syfin
lastfm:Kipling
lastfm:Pandemic
lastfm:Ardcore
lastfm:Lysis
lastfm:Freakhouse
lastfm:Saramah
lastfm:Akouphen
lastfm:Freakazoids
lastfm:Cyrenic
lastfm:Phender
twitter:Ariadne_bullet

instance 145,656 instances

(d) Related terms for dbpedia:Song
Own URL dbpe-

dia:EurovisionSongContestEntry

sameAs schema:MusicRecording

subclass dbpe-
dia:EurovisionSongContestEntry

seeAlso lastfm:Apogee
lastfm:Brahman
lastfm:Anatakikou
lastfm:Sakerock
lastfm:8otto
lastfm:Cro-Magon
lastfm:Ladz
Plus 7 lastfm resources in Japanese

instance 10,987 instances from multiple language
versions of dbpedia, lastfm and others

Table 2: Related Terms. (Cont.)

(e) Related terms for dbpedia:Album
Own URL freebase:en.Album

opencyc:Album
subclass nerdeurocom:Album

and 17,222 subclasses, mostly from yago
sameAs schema:MusicAlbum

freebase:en.Album
dbpedia:Sophomore_Album
and some dbpedia:Album classes from
other Wikipedia languages

instance 100,090 instances from multiple language
versions of dbpedia and others

(f) Related terms for dbpedia:MusicalArtist
seeAlso lastfm:Krackhead

sameAs dbpedia:Musician
umbel:MusicalPerformer

subclass dbpedia:Instrumentalist
dbpedia:BackScene
and 2,178 subclasses from yago

instance 49,973 instances from multiple language
versions of dbpedia

(g) Related terms for dbpedia:Single
seeAlso last.fm:Toxin

last.fm:Dethrone
last.fm:Burdeos
last.fm:Sylence
twitter:joint_popo
last.fm:Toximia
last.fm:Alcoholokaust
last.fm:Electromatic
last.fm:Mighty+Atomics

subclass 3,414 subclasses, the majority from yago
instance 44,623 instances

In what follows, we will first comment on the results
obtained in Stage 1, for each initial term. Then, we
will proceed to discuss how the new terms obtained
in Stage 1 were processed in Stage 2.

Table 2(a) shows the results of Stage 1 for
mo:MusicalArtist. On Stage 2, for each of the
terms mo:MusicGroup and mo:SoloMusicArtist
the crawler obtained similar results: nearly 2,000
resources were found in bbcMusic and mu-
sicBrainz:data, which are large databases about
the music domain; and the seeAlso query pointed to
an artist, lastfm:Hadas. As seeAlso provides addi-
tional data about the subject, we speculate that the
result the crawler returned represents a mistake
made by the database creator.

Table 2(b) shows the results of Stage 1 for
mo:MusicalWork. Note that the crawler found a
variety of instances from multiple databases, mainly
on universities. On Stage 2, when processing
mo:Movement, the crawler found a seeAlso refer-
ence to lastfm:Altmodisch.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

494

On Stage 1, when processing mo:Composition,
the crawler found 13 instances, but no related terms.

Table 2(c) shows the results of Stage 1 for the
first DBpedia term, dbpedia:MusicalWork. The
crawler found 5 subclasses from DBpedia and more
than 20 thousand subclasses from the yago tripleset.
This unusual result is due to the segmentation used
by yago. For example, there are subclasses for seg-
menting records by artist, by historical period, and
even by both.

The first three terms, dbpedia:Album, dbpe-
dia:Song and dbpedia:Single, will be ana-
lyzed in the next paragraphs since they are also in
the initial set of terms.

On Stage 2, the processing of dbpedia:Opera
returned no results and the processing of dbpe-
dia:ArtistDiscography returned 3,423 instanc-
es, but no new term. The processing of um-
bel:MusicalComposition returned 1809 instanc-
es and dbpedia:MusicGenre retrieved 7,808 new
instances.

Table 2(d) shows the results of Stage 1 for
dbpedia:Song. The crawler found the most diver-
sified results in terms of query types and query re-
sults. It was able to identify resources in different
languages (such as Portuguese and Greek), which
was only possible because it focused on metadata.
Crawlers that use text fields (Nikolov and d'Aquin,
2011) can only retrieve data in the same language as
that of initial terms.

On Stage 2, when processing dbpe-
dia:EurovisionSongContestEntry, the crawler
obtained three subclasses from yago, a sameAs rela-
tionship with schema:MusicRecording and found
the same result of dbpedia:Song for the seeAlso
property. The other resource probed on the Stage 2
was schema:MusicRecording which returned no
instances or new crawling terms.

Table 2(e) shows the results of Stage 1 for
dbpedia:Album. The processing of this term also
produced an interesting result. The sameAs query
found a small number unique relationships, but
found some dbpedia:Album in other languages.
One may highlight the opencyc:Album class, for
which the crawler was able to find 245 instances.

Table 2(f) shows the results of Stage 1 for dbpe-
dia:MusicalArtist. The processing of this term
exhibited results similar to those obtained by pro-
cessing dbpedia:Album, in terms of quantity of
subclasses. Therefore, it was possible to recover
results in multiple languages.

On Stage 2, when processing dbpe-
dia:Musician, the crawler found over 163 sameAs

terms, the majority of them pointing to DBpedia in
other languages (even in non-latin alphabets). On the
other hand, the seeAlso query found over 50 terms,
but none of them seems related to the subject. When
processing umbel:MusicalPerformer, the crawl-
er retrieved one subclass, umbel:Rapper, and over
6,755 instances from a variety of triplesets.

Table 2(g) shows the results of Stage 1 for
dbpedia:Single. As for other resources from
DBpedia, the crawler was able to find a large num-
ber of subclasses from yago tripleset. In addition, it
found more than 40 thousand instances from differ-
ent triplesets in many languages.

The last term probed in Stage 1 was word-
net:synset-music-noun-1. The crawler found a
sameAs relationship with an analogue term from
another publisher: wordnet:synset-music-
noun-1. On Stage 2, the crawler found a new
sameAs relationship to opencyc:Music.

Finally, we remark that, when we selected the
terms to evaluate, we expected to find relationships
between DBpedia and Music Ontology, which did
not happened. In addition, we found much better
results using terms from DBpedia than from the
Music Ontology, which is specific to the domain in
question. The definition of links between the Music
Ontology and DBpedia could increase the popularity
of the former. For example, if the term
mo:MusicArtist were related to the term dbpe-
dia:MusicalArtist, crawlers such as ours would
be able to identify the relationship. Also, matching
or recommendation tools would benefit from such
relationship.

Publications Domain. For the second domain,
we focused on two ontologies, Schema.org and
Aktors9, which is commonly used by publications
databases. We selected the following terms:

schema:TechArticle
schema:ScholarlyArticle
akt:Article-Reference
akt:Article-In-A-Composite-Publication
akt:Book, akt:Thesis-Reference
akt:Periodical-Publication
akt:Lecturer-In-Academia
akt:Journal

The results were quite simple. While the queries
based on Schema.org practically returned no results,
queries on Aktors returned enough instances, but
with no complex structure. A quick analysis showed
that almost all triplesets were obtained from popular
publications databases (such as DBLP, IEEE and
ACM) by the same provider (RKBExplorer), which

9 http://www.aktors.org

A�Metadata�Focused�Crawler�for�Linked�Data

495

used the Aktors ontology. In addition, the Aktors
ontology is not linked to other ontologies, which
lead to an almost independent cluster in the Linked
Data cloud.

The VoID processing, as discussed in Section
5.3, was not able to find any new information. In
fact, in a more detailed analysis, it was clear that
VoID seems to be a neglected feature. From the
initial 317 triplesets, only 102 had the VoID descrip-
tion stored in Datahub.io, and only 8 had any triple
with the property void:class (which were not
related to our test domains).

Processing times. Table 3 shows the processing
time for each experiment. In general, the time spent
to process each term was direct related to the num-
ber of terms found (some exceptions apply due to
bandwidth issues).

Table 3 shows that the minimum time was 14
minutes, when no new terms were found, but the
maximum time depended on the number of new
terms in the crawling frontier and how the network
(and the endpoints) responded.

Finally, we observe that the processing time can
be optimized, provided that: (1) the endpoints que-
ries have lower latency; (2) the available bandwidth
is stable across the entire test; (4) cache features are
used; (3) queries are optimized to reduce the number
of requests.

Table 3: Performance evaluation.

Term Proc. time
(minutes)

Music domain
mo:MusicArtist 70
mo:MusicalWork 28
mo:Composition 14
dbpedia:MusicalWork 183
dbpedia:Song 163
dbpedia:Album 173
dbpedia:MusicalArtist 167
dbpedia:Single 186
wordnet:synset-music-noun-1 24

Publications domain
schema:TechArticle 29
schema:ScholarlyArticle 47
akt:Article-Reference 14
akt:Article-In-A-Composite-
Publication

28

akt:Book 14
akt:Thesis-Reference 14
akt:Periodical-Publication 28
akt:Lecturer-In-Academia 14
akt:Journal 14

6.3 A Comparison with Swget

We opted for a direct comparison between the pro-
posed crawler and swget for three reasons. First,
there is no benchmark available to test Linked Data
crawlers such as ours and it is nearly impossible to
manually produce one such (extensive) benchmark.
Second, swget is the most recent crawler available
online. Third, it was fairly simple to setup an exper-
iment for swget similar to that described in Section
6.2 for the Music domain.

Briefly, the experiment with swget was executed
as follows. Based on the examples available at the
swget Web site, we created the following template to
run queries (where t’ is the term to be probed and q’
the current crawling property):

t’ -p <q’> <2-2>

The above query means “given a term t’, find all
resources related to it using the predicate q’ expand-
ing two levels recursively.

Then, we collected all terms swget found from
the same initial terms of the Music domain used in
Section 6.2, specifying which crawled property
swget should follow. Table 4 shows the number of
terms swget found, for each term and crawling prop-
erty.

Table 4: Number of terms found using swget.

Term subclass sameAs seeAlso type
mo:MusicArtist 4 0 0 3
mo:MusicalWork 7 0 0 3
mo:Composition 0 0 0 3
dbpedia:MusicalWork 16 1 0 3
dbpedia:Song 6 1 0 3
dbpedia:Album 6 1 0 3
dbpedia:MusicalArtist 9 1 0 3
dbpedia:Single 6 1 0 3

Based on the experiments with swget and the crawl-
er, we compiled the list of terms shown in Table 5 of
Annex 2. We excluded the terms retrieved from
yago to avoid unbalancing the experiment in favor
of the crawler. Then, we manually inspected the
terms and marked, in Table 5, those that pertain to
the Music domain and those that swget and the pro-
posed crawler found.

The results detailed in Annex 2 can be summa-
rized by computing the precision and recall obtained
by swget and our crawler for the list of terms shown
in Table 5:

 swget: precision = 35% recall = 24%
 crawler: precision = 95% recall = 91%

These results should be interpreted as follows.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

496

Swget achieved a much lower precision since it finds
more generic and more specific terms at the same
time, while our crawler only searches for the more
specific terms. This feature creates undesirable re-
sults for the purposes of focusing on an application
domain. For example, using rdfs:subClassOf as
predicate and dbpedia:MusicalWork as object,
swget returned dbpedia:Work, a superclass at the
first level. At the next stage, swget then found re-
sources such as dbpedia:Software and dbpe-
dia:Film, each of them subclasses of dbpe-
dia:Work, but unrelated to the Music domain.

The crawler achieved a better recall since, in
part, it was able to, given two classes defined in
different triplesets, uncover relationships between
the classes described in a third tripleset. Indeed,
swget processed umbel:MusicalPerformer using
properties rdfs:subClassOf and owl:sameAs.
Our expectation was that it would be able to find the
class dbpedia:MusicalWork, as our crawler was,
which did not happen. A quick analysis showed that
the relationship between both classes was not de-
scribed in any of the original triplesets, but in a third
tripleset, http://linkeddata.uriburner.com/.

This behavior should not be regarded as defect of
swget, though, but a consequence of working with a
general purpose crawler, rather than a metadata fo-
cused crawler, such as ours.

6.4 Lessons Learned

In this section, we highlight the main lessons learned
from the results of our experiments.

We first enumerate some aspects that may influ-
ence the crawling results, such as the settings of the
parameters and the availability of sufficient infor-
mation about the crawled triplesets.

Parameter setting. Since, in our crawler, the set
of terms of each new stage is computed from that of
the previous stage, the number of terms may grow
exponentially. We defined some parameters to prune
the search. Hence, the user must adequately set such
parameters to obtain results in reasonable time,
without losing essential information.

Choosing the initial crawling terms. In the Music
domain experiments, we started with terms from
three different triplesets, DBpedia, WordNet and
Music Ontology, the first two being more generic
than the last one. It seems that the resources defined
in the Music Ontology are not interlinked (directly
or indirectly) with the more popular triplesets. This
limitation is related to the fact that some triplesets do
not adequately follow the Linked Data principles, in

the sense that they do not interlink their resources
with resources defined in other relevant triplesets.

Ontologies describing the domain of interest.
Our crawler proved to return more useful when there
are relationships among the metadata. In the experi-
ments using the publications domain, our crawler
returned a simplified result because all triplesets
related to the initial crawling terms used the same
ontology to describe their resources. In general, the
larger the number of triplesets in the domain, the
more useful the results of our crawler will be.

VoID description. The VoID processing seems to
be an adequate solution to a faster access to tripleset
information. Despite the VoID expressivity, most
triplesets used in our experiments had a simplistic
VoID description available. Hence, our crawler
hardly found new data using the VoID descriptions.

We now highlight some improvements obtained
by our metadata focused crawler, when compared to
traditional crawlers.

Discovering relationships between resources of
two triplesets described in a third one. Using our
crawler, we found cases in which a relationship be-
tween two resources r and r’, respectively defined in
triplesets d and d’, was described in another tripleset
d”. This happens, for example, when the ontologies
used by d and d’ are only stored in a different dataset
d”. In these cases, it was necessary to crawl all tri-
plesets, other than d and d’, to find the relationship
between r and r’. A traditional crawler following
links from d would not find any link between r and
r’ because it is only declared in d”.

Crawling with SPARQL queries. Our crawler re-
turns richer metadata than a traditional crawler since
it uses SPARQL queries, executed over all triplesets.
In particular, our crawler discovers not only the links
between resources, but also the number of instances
related to the crawling terms.

Identifying resources in different languages and
alphabets. Our crawler was able to identify re-
sources in different languages, even in different
alphabets, through the sameAs and seeAlso queries.

Performing simple deductions. Using the prove-
nance lists the crawler generates, one may perform
simple deductions, using the transitivity of the sub-
class property, perhaps combined with the sameAs
relationship. For example, suppose that the crawler
discovered that opencyc:Hit_music is a subclass
of opencyc:Music, which in turn has a sameAs
relationship with wordnet:synset-music-noun-
1. Then, one may deduce that open-
cyc:Hit_music is a subclass of word-
net:synset-music-noun-1.

A�Metadata�Focused�Crawler�for�Linked�Data

497

7 CONCLUSIONS AND FUTURE
WORK

This paper presented a metadata focused crawler for
Linked Data. The crawler starts with a small set T of
generic RDF terms and enriches T by identifying
subclasses, equivalences (sameAs property) and
related terms (seeAlso property).

In general, the metadata focused crawler intro-
duced in this paper helps simplify the triplification
and linkage processes, thereby contributing to the
dissemination of Linked Data. Indeed, the results of
the crawler may be used: to recommend ontologies
to be adopted in the triplification process; to recom-
mend triplesets to be used in the linkage process;
and to increase the quality of VoID descriptions.

Finally, the overall crawling process is open to
several improvements. For example, we may use
summarization techniques to automatically select the
initial set of terms. We may also optimize the crawl-
ing process by combining the crawling queries into a
single query and by using caching to avoid band-
width issues.

ACKNOWLEDGEMENTS

This work was partly funded by CNPq, under grants
160326/2012-5, 303332/2013-1 and 57128/2009-9,
and by FAPERJ, under Grants E-26/170028/2008
and E-26/103.070/2011.

REFERENCES

Alexander, K. Cyganiak, R., Hausenblas, M., Zhao, J.,
2009. Describing linked datasets - on the design and
usage of void, the ‘vocabulary of interlinked datasets’.
Proc. Workshop on Linked Data on the Web
(LDOW’09), Madrid, Spain.

Bizer, C., Heath, T, Berners-Lee, T., 2009. Linked Data -
The Story So Far, Int’l. Journal on Semantic Web and
Info. Sys., 5 (3), pp. 1-22.

Brickley, D., Guha, R.V. (eds.), 2004. RDF Vocabulary
Description Language 1.0: RDF Schema. W3C Rec-
ommendation 10 February 2004.

Ding, l., Pan, R., Finin, T., Joshi, A., Peng, y., Kolari, P.,
2005. Finding and ranking knowledge on the semantic
web. Proc. 4th Int’l. Conf. on the Semantic Web,
Springer-Verlag, pp. 156-170.

Fionda, V., Gutierrez, C., Pirró, G., 2012. Semantic navi-
gation on the web of data: specification of routes, web
fragments and actions. Proc. 21st Int’l. Conf. on
World Wide Web, pp. 281-290.

Isele, R., Harth, A., Umbrich, J., Bizer, C., 2010. LDspi-
der: An open-source crawling framework for the Web
of Linked Data. Proc. Int’l. Semantic Web Conf.
(Posters), Shanghai, China.

Leme, L.A.P.P., Lopes, G.R., Nunes, B.P., Casanova,
M.A., Dietze, S., 2013. Identifying candidate datasets
for data interlinking. Proc. 13th Int’l. Conf. on Web
Engineering, Aalborg, Denmark (July 8-12, 2013), pp.
354-366.

Lopes, G.R., Leme, L.A.P.P., Nunes, B.P., Casanova,
M.A., Dietze, S., 2013. Recommending Tripleset In-
terlinking through a Social Network Approach. Proc.
14th Int’l. Conf. on Web Information System Engi-
neering, Nanjing, China (Oct. 13-15, 2013), pp. 149-
161.

Manola, F., Miller, E., 2004. RDF Primer, W3C Recom-
mendation 10 February 2014.

Martínez-Romero, M., Vázquez-Naya, J., Munteanu, C.,
Pereira, J., Pazos, A., 2010. An approach for the auto-
matic recommendation of ontologies using collabora-
tive knowledge. Proc. 14th Int’l. Conf. on Knowledge-
based and Intelligent Information and Engineering
Systems, Part II, Springer, pp. 74-81.

Nikolov, A., d'Aquin, M., 2011. Identifying Relevant
Sources for Data Linking using a Semantic Web In-
dex. Proc. Workshop on Linked Data on the Web.
Volume 813 of CEUR Workshop Proceedings, CEUR-
WS.org.

Nikolov, A., d'Aquin, M., Motta, E., 2012. What should I
link to? Identifying relevant sources and classes for
data linking. Proc. Joint Int’l. Semantic Technology
Conference, pp. 284-299.

Prud’hommeaux, E., Seaborne, A., 2008. SPARQL Query
Language for RDF, W3C Recommendation 15 January
2009.

Saint-Paul, R., Raschia, G., Mouaddib, N., 2005. General
purpose database summarization. Proc. 31st Int’l.
Conf. on Very Large Data Bases. VLDB Endowment,
pp. 733-744.

W3C OWL Working Group, 2012. OWL 2 Web Ontology
Language �Document Overview (Second Edition).
W3C Recommendation 11 December 2012.

Wang, J., Wen, J., Lochovsky, F., Ma, W., 2004. Instance-
based schema matching for web databases by domain-
specific query probing. Proc. 30th Int’l. Conf. on Very
Large Data Bases. Vol. 30. VLDB Endowment, pp.
408-419.

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

498

APPENDIX

1 Crawler Pseudo-code

genericCrawlingQuery(d, S, t, p; R);
input: d - direction of the query (“direct” or “reverse”)
 S - a SPARQL Endpoint or a RDF Dump to be queried
 t - a crawling term
 p - a predicate
output: R - a set of terms crawled from t
begin

if d == “direct”
 then R := execute SELECT distinct ?item WHERE { ?item p <t> } over S
 else R := execute SELECT distinct ?item WHERE { <t> p ?item } over S

 return R;
end
CRAWLER(maxLevels, maxTerms, maxFromTerm, maxFromSet; T, C; Q, P, D)
Parameters: maxLevels - maximum number of levels of the breath-first search
 maxTerms - maximum number of terms probed
 maxFromTerm - maximum number of new terms probed from each term
 maxFromSet - maximum number of terms probed from a tripleset, for each term
input: T - a set of input terms
 C - a list of catalogues of triplesets
output: Q - a queue with the terms that were crawled
 P - a provenance list for the terms in Q
 D - a provenance list of the triplesets with terms in Q
begin Q, P, D := empty;
 #levels, #terms := 0;
 nextLevel := T;
 while #levels < maxLevels and #terms < maxTerms do
 begin
 #levels := #levels + 1;
 currentLevel := nextLevel; /* currentLevel and nextLevel are queues of terms */
 nextLevel := empty;
 for each t from currentLevel do
 begin
 add t to Q;
 /* crawling by dereferencing */
 S := downloaded RDF content obtained by dereferencing t;
 R1 := empty;
 for each predicate p in { rdfs:subClassOf,owl:sameAs,rdfs:seeAlso } do
 begin
 if p == “rdfs:subClassOf” then d := “direct” else d := “inverse”;
 genericCrawlingQuery(d, S, t, p; RTEMP);
 if (RTEMP not empty)
 then begin add (t, p, RTEMP, S) to P;
 R1 := concatenate(R1, RTEMP);
 end
 end
 /* crawling by direct querying the triplesets in C */
 R2 := empty;
 for each tripleset S from the catalogues in C do
 begin
 RS := empty;
 for each predicate p in { rdfs:subClassOf,owl:sameAs,rdfs:seeAlso } do
 begin
 genericCrawlingQuery(“direct”, S, t, p; RTEMP);
 if (RTEMP not empty)
 then begin add (t, p, RTEMP, S) to P;
 RS := concatenate(RS, RTEMP);
 end
 end
 if (RS not empty)
 then begin add (t, S) to D;
 truncate RS to contain just the first maxFromSet terms;
 R2 := concatenate(R2, RS);
 end
 end
 RT := concatenate(R1, R2)
 for each u in RT do
 begin
 #termsFromTerm := #termsFromTerm +1;
 #terms := #terms +1;

 if (#termsFromTerm > maxFromTerm or #terms > maxTerms) then exit;
 add u to nextLevel;
 end
 end
 end
 return Q, P, D;
end

A�Metadata�Focused�Crawler�for�Linked�Data

499

2 A Comparison Between Swget and the Proposed Crawler for the Music Domain

Terms retrieved by swget or crawler MV SW RC
(Terms retrieved by swget)

dbpedia:MusicalWork - - -
1 dbpedia:Song Y Y Y
2 dbpedia:Single Y Y Y
3 dbpedia:Album Y Y Y
4 dbpedia:Work N Y N
5 dbpedia:ArtistDiscography Y Y Y
6 dbpedia:Opera Y Y Y
7 dbpedia:EurovisionSongContestEntry Y Y Y
8 owl:Thing N Y N
9 dbpedia:Software N Y N
10 dbpedia:RadioProgram N Y N
11 dbpedia:Cartoon N Y N
12 dbpedia:TelevisionSeason N Y N
13 dbpedia:Film N Y N
14 dbpedia:Website N Y N
15 dbpedia:CollectionOfValuables N Y N
16 dbpedia:WrittenWork N Y N
17 dbpedia:Musical Y Y N
18 dbpedia:Artwork N Y N
19 dbpedia:LineOfFashion N Y N
20 dbpedia:TelevisionShow N Y N
21 dbpedia:TelevisionEpisode N Y N
22 dbpedia:Song Y Y Y
23 dbpedia:Single Y Y Y
dbpedia:MusicalArtist - - -
24 dbpedia:Artist N Y N
25 schema:MusicGroup Y Y N
26 dbpedia:Sculptor N Y N
27 dbpedia:Painter N Y N
28 dbpedia:Actor N Y N
29 dbpedia:ComicsCreator N Y N
30 dbpedia:Comedian N Y N
31 dbpedia:FashionDesigner N Y N
32 dbpedia:Writer N Y N
33 dbpedia:Person N Y N
dbpedia:Song - - -
 (No new term retrieved swget)

dbpedia:Album - - -
 (No new term retrieved swget)

dbpedia:Single - - -
 (No new term retrieved swget)
mo:MusicArtist - - -
34 mo:SoloMusicArtist Y Y Y
35 foaf:Agent Y Y N
36 mo:MusicGroup Y Y Y
37 foaf:Person Y Y N
38 foaf:Organization Y Y N
mo:MusicalWork - - -
39 mo:Movement Y Y Y
40 frbr:Work N Y N

41 frbr:ScholarlyWork N Y N
42 frbr:ClassicalWork N Y N
43 frbr:LegalWork N Y N
44 frbr:LiteraryWork N Y N
45 frbr:Endeavour N Y N
46 wordnet:Work~2 N Y N
mo:Composition - - -
 (No term retrieved)

(Terms retrieved only by crawler)
47 umbel:MusicalComposition Y N Y
48 schema:MusicRecording Y N Y
49 freebase:en.Album Y N Y
50 opencyc:Music Y N Y
51 opencyc:Album Y N Y
52 nerdeurocom:Album Y N Y
53 schema:MusicAlbum Y N Y
54 dbpedia:Sophomore_Album Y N Y
55 dbpedia:Musician Y N Y
56 umbel:MusicalPerformer Y N Y
57 umbel:Rapper Y N N
58 dbpedia:Instrumentalist Y N Y
59 dbpedia:BackScene N N Y
60 dbpedia:MusicGenre Y N Y
61 freebase:en.Album Y N Y

36 items from lastfm Y N Y
2 items from twitter N N Y

Notes:
 Column Headers / Values:

“MV” (“Manual Validation”):
o Y = term relevant for the Music domain
o N = term not relevant for the Music domain
“SW” (“Retrieved by swget”) and
“RC” (“Retrieved by the crawler”):
o Y = term retrieved by swget or the crawler
o N = term not retrieved by swget or the crawler

 Terms retrieved by swget or crawler:
Retrieved terms: 99
Relevant terms that were retrieved (identified by “Y”
in column “MV”): 66

 Terms retrieved by swget:
Retrieved terms: 46
Relevant terms that were retrieved (identified by rows
with the pattern (Y,Y,-)): 16
Precision = 16 / 46 = 0.35
Recall = 16 / 66 = 0.24

 Terms retrieved by the crawler:
Retrieved terms: 63
Relevant terms that were retrieved (identified by rows
with the pattern (Y,-,Y)): 60
Precision = 60 /63 = 0.95
Recall = 60/66 = 0.91

ICEIS�2014�-�16th�International�Conference�on�Enterprise�Information�Systems

500

