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Abstract: We propose the use of embedded in-wall thermoelectric harvesters to power nodes of a wireless sensor net-
work. We exploit the significant temperature differences between indoor and outdoor environments in cold
climates. We use heat flow measurements of the exterior (outside-facing) wall of a number of apartments
from the same apartment complex. We report on the degree of variability as well as on the seasonal changes
that characterize the heat flow, and hence the potential for thermoelectric energy harvesting. We also exam-
ine whether the difference between indoor and outdoor air temperature is a good proxy for to the observed
heat flow through the walls. Examples of data carrying capability of a particular harvester and sensor node
combination are also provided.

1 INTRODUCTION

Wireless sensors are used to assist in structure main-
tenance (Vullers et al., 2010), to monitor human ac-
tivity, to help prevent disasters like forest fires, and,
in general, to collect data for scientific and business
purposes. In the construction industry, sensors can be
used to alert of dangerous situations, in cases where
the infrastructure is critically compromised and to
monitor wear and the “health” of buildings in gen-
eral. For example, humidity sensors inside wall struc-
tures can provide advance warning of excess humidity
which could lead to toxic mould growth, and strain
dynamometers sensors can be used to determine the
response of the building during earthquakes.

We consider the standard model for wireless sen-
sor network (WSN) nodes, i.e., as consisting of a
transceiver, the sensor, a microcontroller and an en-
ergy source, usually a battery. Generally, when the
energy source for the WSN node is a battery, there
exists a limit to how long the node can function with-
out servicing, i.e., changing of batteries. With current
technology, the node modules generally exhibit low
energy consumption, therefore the lifetime limit that
a battery imposes can be long enough that, depending
on the situation, replacing batteries will not impose a
significant cost. However, in particular situations, the
sensors are inaccessible, i.e., embedded within struc-
tures, like walls, and the cost of replacing the energy
source might be prohibitive.

There are three possible solutions for difficult–to-

access sensor nodes. They can be either abandoned
after they have performed their function for some time
(with the hope that other, nearby, sensors will take
over the task of measuring the same phenomenon),
or they can be all connected to a wired power distri-
bution subsystem. Finally, energy harvesting could
be employed. Abandoning the sensors is an expen-
sive option and possibly unacceptable. The wiring
option is expensive in terms of labor cost and mate-
rials, exacerbated by the ever increasing price of cop-
per, and wiring defeats the advantage of using wire-
less, since communication can be accomplished over
the same wires that provide power. Wiring also re-
sults in a structure which is more complex and could
be prone to faults (accidental puncture/cutting of the
wires, problems with single points of failure, collec-
tion of RF energy by acting as low frequency anten-
nas, etc.). In short, the ability of each node to power
itself from energy harvesting leads to better node au-
tonomy, and overall system resilience.

The solution adopted in this paper is to use ther-
moelectric energy harvesters to power each sensor
node. Energy harvesters exploit the ambient energy of
the environment to replenish the energy stored in the
battery or the super capacitor. Photovoltaic harvesters
have been studied extensively in previous works e.g.,
(Gorlatova et al., 2011). Buildings with good illumi-
nation can use photovoltaic energy to power sensor
modules. Instead, in this paper we consider thermo-
electric energy harvesting because (a) the potential for
photovoltaic energy can be limited due to sub-optimal
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placement, and because of long nights, as is the case
at latitudes of northern continental climates, while,
(b), during winter the indoor to outdoor temperature
difference can reach as much as 60 degrees Celsius
creating unparalleled opportunities for thermoelectric
harvesting. More specifically, we take advantage of
the difference between indoor and outdoor tempera-
ture in buildings in northern climates. To this end, we
use data collected from an actual inhabited apartment
complex in Fort McMurray, Alberta, Canada. The
particular apartment complex has been constructed
using modular construction techniques.

Placing thermoelectric harvesters inside walls
serves the application of powering co-located sensors
that monitor the wall and building behaviour. In cli-
mates like the one considered in our study, extreme
weather conditions can cause events important to the
integrity of a building, e.g., breakage of water pipes,
more frequently occurring than in moderate climates.
The ability to embed sensors in inaccessible locations
that autonomously operate for several decades (i.e., as
long as the building lasts), monitoring for such events,
can currently only be supported using energy harvest-
ing.

In terms of the methodology followed, we use the
difference between indoor air and outdoor air temper-
ature as the basis for the energy harvesting potential
we report in this paper. Nevertheless, the energy har-
vesting specific to an apartment (and, more specifi-
cally, to a location on an exterior wall of an apart-
ment) depends on a number of factors whose com-
bined effect can be captured by the heat flow rate
through specific locations of the exterior walls. We
therefore study whether the difference between indoor
and outdoor temperature at each apartment is a good
proxy for the actual heat flow via the exterior walls.
The heat flow is the real rate of energy transfer via the
wall unit, i.e., the ground truth. Our study indicates
among other things that, even though the difference
between indoor and outdoor air temperature is a good
(scaled) proxy for the average heat flow, there exists
a high degree of variability of heat flow across apart-
ments. Furthermore, the variability is smaller during
certain times of the year. We comment on how these
observations should guide the design of suitable net-
work protocols.

The remaining of the paper is structured as fol-
lows. Section 2 briefly reviews some related work on
the subject at hand, Section 3 has the description of
the data set, and elements of the methodology we fol-
lowed in interpreting them. Section 4 outlines the sys-
tem model that we employ. Section 5 presents numer-
ical performance results. We conclude with Section 6
summarizing our findings.

2 RELATED WORK

Energy harvesting for wireless networks and low
power wireless sensor node architectures are areas of
intense research activity. The use of energy harvesting
for powering WSN nodes, with example applications,
such as smart buildings and predictive maintenance of
structures has been explored in the past (Vullers et al.,
2010).

In this paper we narrow our focus to thermoelec-
tric generators and specifically exploit the energy lost
through walls in cold climates. We use a device model
loosely based on (Mateu et al., 2006), in which energy
harvesting from the human body was used, which is
an idea explored by other researchers as well, (Ra-
madass and Chandrakasan, 2011; Wang et al., 2009).
The devices proposed in previous works assume oper-
ation based on the difference of temperature between
the human body and its environment, thus indirectly
exploiting the temperature homeostasis of the human
body.

In this paper, we are not concerned with the task of
increasing the energy harvesters efficiency, a topic of
intense activity anyway, e.g., (Hudak and Amatucci,
2008; Luber et al., 2013). We use off-the-shelf com-
ponents and we do not even use a sensor platform op-
timized for energy efficiency. In other words, the re-
sults we present here are very close to representing a
“worst case” scenario with respect to the devices em-
ployed.

In the field of energy harvesting for WSNs, a no-
table work is that of Gorlatova et al. (Gorlatova et al.,
2009; Gorlatova et al., 2011) which focuses on how
to use photovoltaic harvesting under diverse use sce-
narios, by proposing suitable optimization models.
Another distinct property of their work is the study
of photovoltaic harvesting in environments under the
control of the users (depending on indoor illumina-
tion, or in the pocket of users), i.e., with idiosyncratic
and sometimes unpredictable behaviour. They also
consider elementary WSN applications, such as ID
beacon transmission.

3 THE DATA SET

We use data collected over a period of a year, from 11
different apartments within a single apartment com-
plex in Fort McMurray, Alberta, Canada. The data
collected is comprehensive, including such aspects as
water flow and temperature for the water used by radi-
ators for heating, water flow and temperature for res-
idential water, CO2 concentration, etc. For the pur-
poses of this study we consider only the heat flow
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through exterior (outside-facing) walls, the indoor air
temperature, and the outdoor air temperature. The
data collection was conducted in real–time and is still
taking place, but we extract a one year period (8th of
September of 2012 to the 8th of September of 2013)
which is sufficient for the purposes of capturing sea-
sonal variations.

In our data set, we obtain a separate indoor air
temperature for each apartment but have a single out-
door air temperature, as acquired by the Building Au-
tomation System (BAS). It has to be noted that a sin-
gle outdoor air temperature is, again, only an approx-
imation of the locally specific outdoor wall temper-
ature of each wall unit, since phenomena like con-
vection can, depending on airspeed, result in different
temperatures at different spots and orientations.

The heat flow measurements are obtained at two
locations (one on a stud, and one on the insulation)
of the exterior–facing wall of each apartment. Of the
two heat flow measurements the one most relevant to
our study, which we subsequently use, is the heat flow
via the stud. Studs are necessary for the structure and
proper framing of the walls but at the same time they
are responsible for loss of heat as they represent a
“bridge” of smaller thermal resistance (compared to
the insulated area of the wall) between interior and
exterior.

3.1 The Methodological Approach

The heat flow through a wall reflects the combined
results of wall construction qualities (stud spacing,
insulation, etc.), of human activity (e.g. the choice
of thermostat setpoints, opening of windows, etc.),
of weather phenomena (temperature, wind direction,
etc.), the particular orientation and location of the
apartment, and of course the exact location of the sen-
sor in the wall. As we will see, the combination of the
factors leads to a highly variable heat flow which nev-
ertheless exhibits distinct seasonal characteristics.

We use heat flow data to describe the extent to
which thermoelectric energy harvesting through the
exterior walls is adequate to power (and to what de-
gree) WSN nodes. Heat flow (measured in W=m2

units) through exterior walls is directly related to the
temperature difference between the two sides of the
wall. Heat flow through an infinitesimally narrow
slice of surface is defined as, ~q = �kÑT where ~q is
the local heat flow, k is the materials heat conductivity
and ÑT is the temperature gradient. We note that heat
flow is a vector. We use the convention that a positive
heat flow represents loss of heat (i.e., radiating from
the interior side of the wall to the exterior side) while
a negative indicates the reverse direction. Naturally,

due to the climate characteristics in Fort McMurray,
the latter case is infrequent, and occurs almost exclu-
sively during the warmest summer months.

More precisely, if the wall is to be treated as a sin-
gle homogeneous material of infinite area and thick-
ness L the heat flow is inversely proportional to the
thickness, that is, ~q =�kL�1ÑT . In reality, the walls
are more complex non-homogenous structures con-
taining cavities, insulation, studs for wall support,
studs for window framing, etc. impacting collectively
on the heat flow magnitude and direction.

The thermoelectric harvesters are also dependent
on the temperature differences to produce electricity
and their output is governed by �ÑV = SÑT where
S is the Seebeck coefficient of the material and ÑV
is the electric potential between the two harvester ter-
minals. In Section 5 we correlate the heat flux data
(qh f ) with the air temperature difference between in-
door and outdoor (DTair).

After establishing a strong relation between qh f
and DTair, we subsequently use DTair as a proxy of
the actual temperatures of the two (inside and outside)
wall surfaces. This is primarily because the air tem-
perature represents averages whereas qh f is specific
to the location of the wall where the heat flow sen-
sor is mounted. However, our reasoning is that any
thermal harvester installed in the wall will experience
similar heat transfer behaviour as the heat flow sen-
sors measure at the same location. Hence, whereas
DTair is a good basis for an overall estimate of en-
ergy harvesting potential, regardless of where the har-
vester is placed on the exterior wall, qh f allows us to
examine the highly idiosyncratic behaviour (captured
by the standard deviation) due to the factors we listed
at the beginning of this section.

Our interest in DTair and qh f and their relation is
also motivated by the intention to use, in a future de-
sign, a thermoelectric harvester inside the wall whose
two sides are in contact to the two wall surfaces via
materials of high thermal conductivity, e.g., metal.
This would allow the thermal harvester to be a low
thermal resistance “bridge” and hence receive the full
potential of the temperature difference of the two sur-
faces. However, such a design is future work because
it needs to satisfy several other structural, mechanical,
and safety constraints for in-wall embedding.

4 THE DEVICE MODEL

4.1 The Harvester Model

Our model is based on the performance of the TEC1-
12703 Peltier module. The module has a surface area
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of 16 cm2. We carried out characterization experi-
ments to determine the relation between DT and en-
ergy harvested. The setup was a small “refrigerator”,
using TEC1-12703 modules (see Figure 1), arranged
such that, a constant DT was created and the result-
ing energy harvested measured. This refrigerator is
made by using (top to bottom): (i) a heat sink, which
is connected to a TEC1-12703, also connected to a
power supply, to provide the hot side temperature for
the harvester, (ii) the harvester, with its other side con-
nected to, (iii) another TEC1-12703 module, again
connected to the power supply to provide the cold side
temperature. Lastly, another heat sink along with a
small fan was used to help regulate the heat and stabi-
lize DT . This setup was used to maintain constant DT
ranging up to 40 degrees Celsius. The temperatures
were sensed using thermistors, and a separate sensor
module. Our findings indicate that the power output,
W (in mW ), of the particular harvester relates to DT
(in Celsius) as W = (2:57 DT 2 + 5:88 DT + 0:11) �
10�3 (Least Squares fit with R2 = 0:9358).

4.2 The Sensor Model

In order to develop a WSN node energy consumption
model, we use the NanoZ-CC2530 device which em-
ploys the TI CC2530 microcontroller. We operate it
with another node acting as data sink, communicating
using the z-stack tool (ti.com, 2012) (Zigbee compli-
ant). We carried out energy-exhaustion tests to deter-
mine for how long (how many bytes) of payload can
be transmitted for the amount of energy accumulated
to sufficiently charge a 1 Farad capacitor (rated at 5V )
up to 3:6 V . The packets transmitted followed the
standard Zigbee data frame structure. We first con-
ducted experiments using the TEC1-12703 harvester
connected to a Texas Instruments BQ25504 Evalua-
tion Board to regulate the voltage and to determine
the ability of the harvester to charge the capacitor.
After the success of the first step, and in the interest
of accelerating the experiments, we used a standard
power supply (GPC-3030) to charge the capacitor to
the same 3:6V . The capacitor was then connected to
the NanoZ module and used to send data until exhaus-
tion. From the measurements we concluded that it
was possible to transmit an average of 4103.7 bytes of
payload per Joule using messages of maximum pay-
load size (90 bytes per packet). The sensor modules
are not energy efficient, as we measured that they con-
sume 0:49 mW in their sleep state when the processor
is set to the sleep mode PM2 (only low-frequency os-
cillator operating), of which only approximately 6µW
is due to the processor consumption (as per the pro-
cessor datasheet).

Figure 1: The harvester experimental setup. Shown in the
figure are: (a) heat sink for temperature control of the “hot
side”, (b) thermistor for measuring the “hot side” tempera-
ture, (c) thermoelectric heater for the hot side, (d) the ther-
moelectric harvester, (e) the same as (c) but for generating
the “cold side” temperature, (f) fan with heat sink for ther-
mal control of the “cold side”.

Table 1: Correlation of DTair and qh f .

Apartment corr(DTair;qh f )
1 0.86
2 0.93
3 0.90
4 0.82
5 0.81
6 0.88
7 0.85
8 0.91
9 0.84
10 0.86
11 0.84

5 NUMERICAL RESULTS

We first consider the correlation of the DTair and qh f
time series over the entire year and separately for each
apartment. The time series represent hourly averages
of the respective values. Table 1 demonstrates the
overall strong correlation of the two time series but
there exist differences (e.g. 0.93 for apartment 2 and
0.82 for apartment 4) that are ultimately related to the
occupant(s) actions and behaviour. To illustrate the
nature of differences consider the scatterplots of DTair
and qh f in Figure 3 and 4 for the entire year, show-
ing an overall strong correlation but with significant
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Figure 2: Intra-day qh f in apartments 2 and 4.
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Figure 3: Apartment 2 DTair vs. qh f .
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Figure 4: Apartment 4 DTair vs. qh f .

variance and occasional outlier points.
Without precisely knowing the inhabitants be-

haviour, one can only conjecture on several reasons
for certain outliers (the resident could have been us-

ing an electrical radiator close to the location of the
heat flow sensor, or touching the wall at the sensor
location, or had the windows open, etc.). To illus-
trate the differences that might show up, consider Fig-
ure 2 showing the heat flow during a specific day (in
mid-March of 2013) during which one of the two pre-
sented apartments had almost constant heat flow (pos-
sibly the apartment was vacant that day) while the
other one had highly variable heat flow (the oscilla-
tions are probably due to the heating cycling around
the thermostat setpoint, while higher setpoints and
possible resident activity are evident from approxi-
mately 6am to 12pm and from approximately 8pm to
10pm).

We define s(d)avg, s(d)max, and s(d)min as, respectively, the
average, maximum, and minimum of daily qh f stan-
dard deviation, calculated based on the hourly mea-
surements of each day. Essentially we try to cap-
ture the statistics of variability of qh f within the same
day as they behave across the year. As can be seen
from Table 2 the remarkable fact is that there exist
days that almost every apartment shows a drastically
small standard deviation. Apartments 3 and 4 exhibit
a s(d)min of 0.18 and even the apartment 11 which has
the largest intra-day standard deviation of 8.37 still
has low variability days as its s(d)min of 0.37 illustrates.
Our current conjecture is that the days of low vari-
ability represent days that the apartments were pos-
sibly vacant, and hence no resident–related influence
was introduced apart from leaving the thermostat at a
particular (and possibly low) setpoint.

Next, we try to capture the differences across
groups of apartments based on the floor and their ori-
entation. To this end, we define s

(y)
avg, s

(y)
max and s

(y)
min,

representing, respectively, the average, maximum and
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Table 2: qh f and its standard deviation for various apartments, and potential harvesting output.

Apt. avg:qh f s(d)avg s(d)max s(d)min harvested (mW ) bytes/day
1 7.19 1.70 5.17 0.31 2.15 761864(588130)
2 5.91 0.98 2.76 0.19 1.74 617129(443395)
3 8.31 1.82 5.76 0.18 2.58 916274(742539)
4 6.80 2.06 6.42 0.18 2.06 730854(557119)
5 6.50 1.84 6.55 0.34 2.30 815768(642034)
6 8.25 2.64 7.20 0.41 2.23 790079(616345)
7 5.61 2.46 6.77 0.48 2.11 747428(573694)
8 8.07 1.40 4.15 0.26 2.45 870314(696580)
9 7.30 2.74 5.79 0.29 2.28 809130(635396)

10 6.85 3.24 7.99 0.42 2.06 730610(556876)
11 7.18 2.15 8.37 0.37 1.91 675688(501954)

minimum of the standard deviation of the daily av-
erages of particular groupings of apartments across
the entire year. Table 3 (e stands for a quantity less
than 0.005) provides some interesting results. As ex-
pected, by comparing to Table 2, the overall variabil-
ity is less pronounced at the larger time scale of a year
as it dilutes the effects of intra-day variance seen in
Table 2. While the maximum variability, i.e., s

(y)
max,

can still reach significant levels, it is less than the one
observed intra–day.

The minimum, s
(y)
min, reaches a small value which

occurs during summer days when the outdoor and in-
door temperatures are almost equal and the temper-
ature across all apartments is similar as well. Un-
fortunately, less variable days across apartments are
also days of small harvesting potential because DT is
small. Furthermore, due to the occupant behaviour,
we encounter cases such as the average qh f at floor 3
and 4 being quite different (6.66 vs. 7.41). The im-
plication of this observation is that, should multi-hop
forwarding be used in the sensor nodes, the bottle-
neck (in terms of nodes with least harvested energy)
could assume undesirable topological characteristics,
by restricting the paths that could be followed to col-
lect the data to sink nodes. In this example, an entire
floor may not have enough energy to forward traffic
between adjacent floors, towards a sink node placed
at the bottom floor.

Despite the variability, seasonal patterns are evi-
dent across all apartments. Consider for example Fig-
ure 5 which shows the differences of two apartments
(number 2 and 4) over the entire year. Indeed, even
though the differences on certain days can be signifi-
cant, they follow identical seasonal trends. The trends
are also similar to all the other apartments (not shown
here for the sake of brevity).

Finally, we note that there exist relatively impor-
tant differences in the heat flow, and hence on harvest-
ing potential, between night and day. To put it dif-

Table 3: Average qh f vs. orientation/elevation.

avg:qh f s
(y)
avg s

(y)
max s

(y)
min

Orientation
North 7.00 0.95 3.08 0.17
South 7.14 0.78 3.04 0.24

Elevation
1st floor 7.05 0.25 4.19 e

2nd floor 7.22 0.78 3.57 0.11
3rd floor 6.66 0.74 3.02 0.03
4th floor 7.41 1.06 4.18 0.02

ferently, the amount of energy collected in the morn-
ing hours is generally different from what could be
collected overnight. Therefore, the intra–day vari-
ability could be handled by collecting energy over
an entire (and possibly more than one) day, modulo
of course the seasonal variations. For the night vs.
day differences, we present the, rather arbitrarily cho-
sen, intervals of day (6am to 6pm) and night (6pm to
6am). Hence, each day represents two (average) mea-
surements. When considered in groupings of weeks,
and across all weeks of the year, we produce Table 4
where we can readily see the ratio between maximum
and minimum standard deviation can be significant
and it is not uncommon to find a 5-times difference
(apartment 6 is a good example with maximum over
a week of 4.09 and minimum over another week of
0.77). Extending the averaging over a longer time
scale will naturally smooth the variability extremes.
For example, in Table 5, each entire day is represented
by its average value, and the standard deviation of the
daily measurements over a month (defined as a se-
quence of 30 days) are reported, across the entire year.
The maximum variability is tamed but the difference
between minimum and maximum standard deviation
of the same apartment can still be surprisingly large
(apartment 6 has a maximum of 3.09 and a minimum
of only 0.30).
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Figure 5: Daily average qh f in apartments 2 and 4.

Table 4: Average, maximum and minimum weekly standard
deviation of qh f .

Apt. s(w)avg s(w)max s(w)min
1 1.25 2.28 0.48
2 0.87 1.51 0.29
3 1.51 3.21 0.37
4 1.50 3.17 0.49
5 1.24 3.25 0.47
6 1.97 4.09 0.77
7 1.38 2.31 0.49
8 1.37 2.79 0.49
9 1.93 2.91 0.79

10 1.97 3.54 0.70
11 1.53 3.17 0.61

5.1 Data Transfer Capabilities

Let us return to Table 2 and notice the harvested
power potential using DTair and the model of the har-
vester noted earlier. The average power that can be
harvested in the apartments exterior wall is 2:17 mW
with a standard deviation of 0:22 mW . The highest
average is 2:58 mW , and the apartment producing the
lowest could harvest 1:74 mW . Assuming we har-
vest energy to transmit once a day, each node could
transmit an average of approximately 770 kbytes of
payload per day. The per-apartment potential daily
transfer volume can be seen in Table 2. The numbers
in parentheses are the payload that could be trans-
mitted per day assuming at all other times the sen-
sor node idles as described in the node model, i.e.,
consuming 0:49 mW in its sleep state. Admittedly,
much better performance is possible with better de-

Table 5: Average, maximum and minimum monthly stan-
dard deviation of qh f .

Apt. s(m)
avg s(m)

max s(m)
min

1 1.40 2.27 0.81
2 0.93 1.57 0.40
3 1.52 2.44 0.68
4 1.44 2.34 0.62
5 1.17 1.79 0.35
6 1.89 3.09 0.30
7 1.44 2.17 0.44
8 1.47 2.36 0.48
9 1.80 2.61 0.18

10 1.99 2.76 1.22
11 1.57 2.65 0.62

signed nodes. However, even at 600 kbytes of payload
per day, a sensor can adequately send samples of its
own sensing (e.g.. slowly changing humidity values
or accelerometer activity compressed to the interest-
ing events only) and still have some energy capacity
to perform multi-hop routing.

However, as Figure 5 indicates, during the sum-
mer there might not be enough power to send data
without risking an outage. Specifically, apartment 11
during the week of 6/29 to 7/5 was able to harvest
only an average power of 0:113 mW , that is not suf-
ficient to even power the sensor module. The exact
sensor node design is also important. For example,
assuming that an external circuit duty-cycles the oper-
ation of the entire node, then the restarting (equivalent
to a cold boot) of the particular nodes we employed
takes around 2 seconds to complete during which
time it consumes the same power as when transmit-
ting, 84:51 mW . After those 2 seconds the device en-
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ters sleep mode where it consumes 0:49 mW . Hence,
power-up is a costly overhead of � 169:02 mJoule,
and a strategy of repeatedly powering up on-demand
to gather data (not even transmitting) is probably un-
acceptable. Or, equivalently, the particular sensor
would have to harvest energy for an average of 1497
seconds, to just cope with the 2 seconds startup energy
cost before it performed any useful sampling, com-
putation, and transmission (energy permitting), thus
limiting the rate of sampling/sensing.

If the energy storage capacity is small to allow
the longer term harvesting, outage is almost certain
during summer months. The particular apartments do
not have air-conditioning units for cooling, as they are
rarely used in such northern climates. Thermoelectric
harvesting during the summer occurs mostly at night
when the outside temperature drops.

The good news is that due to the significant vari-
ability across apartments and throughout the day, a
protocol to determine, at least locally, which node has
(or has had in the recent past) the good fortune of har-
vesting more energy could be suitable for routing. In
other words, there indeed exists diversity of oppor-
tunities to spend energy of another neighboring node
because of the corresponding diversity in inhabitant
behaviour. As a rule though, such routing strategies
must become more conservative during the summer
when the harvesting potential is reduced in both abso-
lute numbers and in terms of variability across apart-
ments. Our recommendation would therefore be in
favour of “seasonally-aware” routing algorithms.

The potential of photovoltaic output from a cell of
the same surface area (16 cm2) as the thermoelectric
harvester used, at the same geographical location, and
using off-the-shelf solar cells with efficiency 17% on
a south-facing vertical wall is an average daily power
of 88:739mW (according to data in Natural Resources
Canada website (pv.nrcan.gc.ca, 2013). The average
power from thermoelectric harvesting appears low by
comparison. However, one has to consider that (1) the
solar power favors the south facing side of the build-
ing, over the north facing ones, and (2) to harvest solar
energy the placement of the photovoltaic cells is cru-
cial and one has to consider problems of occlusion of
the light source, compared to a fairly flexible place-
ment of the thermoelectric harvesters. Finally, as a
matter of aesthetics, a photovoltaic harvester requires
that it be exposed to outside view, whereas a ther-
moelectric harvester can be embedded “out of sight”
within the wall structures.

6 CONCLUSIONS

In anticipation of deploying in-wall wireless sensors
for structure monitoring this paper reports measure-
ments of temperature difference and heat flux taken
in an apartment building at Fort McMurray, Alberta,
to evaluate the feasibility of using thermoelectric en-
ergy harvesting in cold northern climates. We con-
clude that the use of such harvesters for wireless sen-
sor modules is possible with current technology albeit
not without some challenges.

First, even though the difference between indoor
and outdoor air temperature is a good proxy for the
potential energy harvesting, the exact behaviour of
heat flow that ultimately governs the thermoelectric
harvesting at particular points of the wall structure
are subject to factors that are dependent on weather
phenomena (e.g., convection phenomena on the wall
surfaces) but, more importantly, on the behaviour pat-
terns of the residents who are in control of not only
the thermostat setpoints but also of objects attached
to or close to the walls, extra forms of directional heat
radiators (e.g. electric heaters), and so on.

Second, even though the heat flow follows, as ex-
pected, a seasonal pattern, its variability from one out-
side wall to another (one apartment to another) can be
significant, especially when observed in small time
scales, e.g., intra-day. Hence, despite the regularity
of the harvesting potential, it is to be expected even
within the same day, that the wall on some apart-
ments can sustain higher volume of sensor data trans-
fers than others. The implications of this behaviour to
multi-hop routing are obvious. Short-term alternative
routing paths would need to be considered.

Finally, the harvesting potential is reduced in the
summer months and appears possible almost exclu-
sively later in the day. Additionally, in the summer
months, the variability of harvesting becomes smaller.
Hence, sizing the energy storage (e.g., capacitance of
a supercapacitor) necessary to sustain the sensor node
operations, should be based on the worst case sum-
mer harvesting potential. One could argue that we
need to consider complementing thermoelectric har-
vesting with photovoltaic harvesting which reaches its
peak output during the summer months. Nevertheless,
such a decision is dependent on a decision to expose
the photovoltaic element which we try to completely
avoid as we wish to deploy the sensors as inconspicu-
ously as possible.

We are currently working towards a modular de-
sign for simple in-wall placement.
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