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There are several script-centric approaches, APIs, and tools available to implement automated provisioning,

deployment, and management of applications in the Cloud. The automation of all these aspects is key for
reducing costs. However, most of these approaches are script-centric and provide proprietary solutions
employing different invocation mechanisms, interfaces, and state models. Moreover, most Cloud providers
offer proprietary Web services or APIs to be used for provisioning and management purposes. Consequently,
it is hard to create deployment and management plans integrating several of these approaches. The goal of
our work is to come up with an approach for unified invocation of scripts and services without handling each
proprietary interface separately. A prototype realizes the presented approach in a standards-based manner using
the Topology and Orchestration Specification for Cloud Applications (TOSCA).

1 INTRODUCTION

Automated provisioning, deployment, and manage-
ment of Cloud applications are key enablers to reduce
costs of their operation (Leymann, 2009). However,
it is hard to implement automated processes for man-
aging applications in production after the actual de-
velopment is finished. The main reason is that key
aspects for operating an application in production were
not considered during development. The idea of Dev-
Ops (development & operations) aims to eliminate the
barrier between developers and operations personnel
(Humble and Molesky, 2011). Consequently, a highly
automated management environment has to be estab-
lished during development already to continuously
deploy and manage new iterations of an application
to different environments (e.g., development, test, and
production).

When automating such deployment and manage-
ment processes there are typically a number of building
blocks involved: (i) different Cloud providers expose
proprietary APIs to provision and manage resources
such as storage and virtual machines. (ii) Several tools
such as Chef (Nelson-Smith, 2011) originating in the
DevOps community provide a means to automatically
deploy application components on top of the Cloud
resources provisioned before. The DevOps community
also publicly offers reusable artifacts to be used for the

deployment of particular application components. (iii)
Custom scripts (e.g., Unix shell scripts) may be imple-
mented to manage the application during runtime (e.g.,
adding new users).

However, it is hard to combine these building
blocks because the invocation mechanisms of Web ser-
vices/APIs, scripts, and other plans involved in these
automated processes differ significantly and the major-
ity of them is not standards-based (Breitenbiicher et al.,
2013). The main goal of our work is to address this
deficit by creating a management bus to provide a uni-
fied invocation interface hiding all the technical details
of the employed management technologies. This inter-
face is used by management plans implementing the
logic required to automate a particular management
task. The main contributions of our work are outlined
in the following. We present:

Concepts for unified invocation of different kinds
of scripts (e.g., used for deployment) and different
APIs (e.g., used for provisioning).

Acrchitecture and prototype of a unified invocation
bus and interface to be used by management plans
based on the Topology and Orchestration Specifi-
cation for Cloud Application (TOSCA) (OASIS,
2013).

Evaluation based on an end-to-end open source
toolchain to show that plans get simpler and the
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number of specific “wrappers” used for invoking
certain scripts and services are reduced.

The remaining of this paper is structured as fol-
lows: 2 outlines the currently existing issues and limi-
tations we address in our work. We present TOSCA
as an emerging standard for managing Cloud applica-
tions in 3 because major parts of our work is based
on it. 4 discusses the notion of a management plan
and the orchestration of management operations using
plans. Our concepts regarding the unified invocation
approach are presented in 5, followed by an evaluation
of this approach in 6. Finally, we discuss some related
work in 7 and conclude this paper in 8.

2 PROBLEM STATEMENT

Regarding the state of the art of provisioning and de-
ployment of Cloud applications, several approaches
emerged in the last few years. Some of the most popu-
lar approaches today are based on tools originating in
the DevOps community such as Chef (Nelson-Smith,
2011), Puppet (Loope, 2011), CFENngine (Zamboni,
2012), and Jujul. (Delaet et al., 2010) survey and
compare some of the technical aspects of these tools
in more detail. The main purpose of these tools is
automating the installation and configuration of appli-
cation components on physical and virtual machines.
This is the reason why they are often called configu-
ration management tools. To implement deployment
logic for application components such as a \Web server
or a database, scripting languages are used. As an ex-
ample, Chef uses a domain-specific language (Glinther
et al., 2010) based on Ruby to implement deployment
and management operations. In case of Chef, these op-
eration implementations are called recipes, bundled in
cookbooks?. Since each tooling uses different concepts
for developing, managing, and invoking management
operations, it is hard to combine them in order to au-
tomate the deployment of a certain application stack.
Such a stack typically consists of several components,
some of which are hosted on others (e.g., a PHP ap-
plication hosted on on an Apache HTTP Server) and
connected to each other (e.g., an application is con-
nected to a database). We further refer to such a stack
as an application topology.

The hard-to-realize interoperability of these ap-
proaches would make a lot of sense because the com-
munities affiliated with these tools provide plenty of
reusable management operations such as cookbooks

Ljuju: http://juju.ubuntu.com
2Cookbooks: http://community.opscode.com/cookbooks
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provided by the Chef community and charms® offered
by the Juju community. These operations can be used
to implement deployment plans automating the de-
ployment of whole application stacks consisting of
different components. Especially components that are
commonly used as middleware such as the Apache
HTTP Server can be deployed by parameterizing these
operations. As an example for the deployment of a typ-
ical stack, a publicly available Juju charm can be used
to create a MySQL database cluster, an already avail-
able Chef recipe may be used to create an instance of
the Apache HTTP Server, whereas the deployment of a
particular PHP application is implemented by a custom
Unix shell script. As of today, however, the orchestra-
tion of these operations is limited to the boundary of a
single ecosystem, including its operations, its tooling,
and its community.

Another limitation of the approaches described be-
fore is their limited management view on application
topologies. Since an application typically is not a
monolithic block, there are several application com-
ponents involved that are related to each other. Some
of these tools provide a means to model topologies
and stacks such as the Juju GUI* and Amazon Web
Services’ OpsWorks®, but most of them do not. This
limited management view, mostly focusing on single
more or less isolated parts of a topology, makes it hard
to manage large and distributed applications. Relations
between components are only modeled implicitly and
are typically hard-wired in the operations’ implemen-
tation. However, especially the relations are important
for management to understand the dependencies and
possible side effects of a management action. What
these tools miss anyhow is a portable and standards-
based approach to specify such topologies. This is
another reason why the orchestration of different oper-
ation types is hard to implement because if there is a
means to model an application topology it is limited to
a single ecosystem. Furthermore, different approaches
own different state models where properties are stored
following a certain structure. A central and overarch-
ing state model is required to access these data in a
unified manner.

The provisioning of resources such as storage or
virtual machines in the Cloud is another key aspect
in this context. This is typically the first step of a de-
ployment process because a machine is required to be
running to deploy and manage application components
on it. In addition, provisioning of resources is a funda-
mental part of many management tasks. For example,
to scale an application, additional resources must be

3Juju Charms: http://jujucharms.com
4Juju GUI: http://juju.ubuntu.com/resources/juju-gui
5 AWS OpsWorks: http://aws.amazon.com/opsworks



Unified Invocation of Scripts and Services for Provisioning, Deployment, and Management of Cloud Applications Based on

provisioned. There are standardization and unification
efforts going on such as OpenStack (Pepple, 2011) and
Deltacloud® to provide a unified API for provisioning
tasks across different Cloud providers. However, in
practice there are still lots of different APIs such as
the Google Compute Engine API”, the Amazon Web
Services API®, and Baremetalcloud’s API° to name
a few. Consequently, in a multi-cloud management
scenario where application components are distributed
across different Cloud providers (e.g., for resilience
purposes), it is hard to combine them because of their
different APIs.

The goal of our work is to address the issues de-
scribed before by presenting an approach for creating
overarching plans orchestrating different kinds of op-
erations and APIs. Furthermore, plans, covering both
deployment and runtime management of Cloud appli-
cations, should be able to access a holistic topology
model covering the whole automatically deployed ap-
plication stack.

We present the most important concepts of the
Topology and Orchestration Specification for Cloud
Applications in the next section. The purpose of using
this emerging standard in our work is to specify ap-
plication topologies and package them together with
corresponding management plans in a portable man-
ner.

3 TOSCA

The Topology and Orchestration Specification for
Cloud Applications (TOSCA) (OASIS, 2013) enables
the definition of application topologies including their
application components, the relations between them,
and the resources where they are hosted on such as
VMs. It is an emerging standard supported by a num-
ber of prominent industry partners such as IBM and
Hewlett-Packard to enable the portable definition of
topology models. 1 shows a TOSCA-based topology
model for SugarCRM, an open source customer rela-
tionship management software. The SugarCRM appli-
cation topology is used by the TOSCA interoperability
subcommittee!® as an example for different vendors to
check whether their TOSCA runtime environment is
compliant to the specification. The topology model is
a graph consisting of nodes that represent both appli-
cation components (Apache HTTP Server, SugarCRM

6Deltacloud: http://deltacloud.apache.org
"http://cloud.google.com/products/compute-engine

8 AWS API: http://aws.amazon.com/documentation
9Baremetalcloud: http://www.baremetalcloud.com
10sygarCRM: http://www.sugarcrm.com
115ygarCRM Interop Topology: http://goo.gl/C6pgRd

TOSCA

App, etc.) and infrastructure resources (VM 1, VM
2). These nodes are linked by relationships to express
that a particular node is hosted on another one (e.g.,
SugarCRM App is hosted on Apache HTTP Server)
and to specify a connection between two nodes (e.g.,
application connects to the database).

SugarCRM App connects to SugarCRM DB

Script Script
1A install() connect() install() A
hosted on Script | hosted on
A 4 1A A 4

Apache HTTP MySaL
Seon Server + PHP Database Server =
1A install() install() 1A

hosted on hosted on

h 4 v
VM 1 VM 2
WAR (Ubuntu Linux) (Ubuntu Linux) WAR
provision() provision()

Figure 1: SugarCRM topology model.

Each node and relationship can have management
operations attached. For instance, a VM node has a
provision operation defined that is in charge of provi-
sioning a-new VM. Furthermore,-nodes representing
application components typically own an install oper-
ation to install and configure a particular application
component. Operations can also be attached to re-
lationships as it the case for the connect operation
attached to the relationship wiring the application with
the database. However, at this level an operation is still
an abstract modeling construct. To make it executable,
an implementation artifact (1A) needs to be attached
to each operation that implements the operation. As
an example, a WAR file exposing a Web service could
be attached to the provision operation of a VM node.
This WAR file is then deployed to a servlet container
provided by the TOSCA runtime environment. Once
the operation is invoked, a request is sent to the Web
service performing the actions required to create a new
VM. Another example is to attach a Unix shell script
to the install operation of an application component
node. When the operation is invoked, the script gets
copied to the target VM and then is executed there.
If several 1As are attached to a single operation, it is
assumed that all of them implement the same logic
based on different technologies. The TOSCA runtime
environment is free to pick one of them to perform the
operation.

In addition to defining the topology model and im-
plementing the 1As, plans need to be written such as a
build plan to create new instances of such a topology
model. A plan basically defines the order of opera-
tion invocations to achieve a certain management goal
(Binz etal., 2012). BPMN4TOSCA (Kopp et al., 2012)
proposes TOSCA-specific modeling constructs to be
used in plans based on BPMN (OMG, 2011). TOSCA
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further defines a packaging format called Cloud Ser-
vice Archive (CSAR) to deliver all ingredients belong-
ing to a particular topology model such as IAs, plans,
and the topology model itself as a single file, a CSAR.

The following 4 outlines the notions of manage-
ment plans and management operations as well as how
they work together. These are the fundamentals for the
concepts we describe later.

4 MANAGEMENT PLANS
AND OPERATIONS

Management logic is implemented on different levels:
script-centric artifacts provided by the DevOps com-
munity (Wettinger et al., 2013) typically implement
the installation and configuration of application com-
ponents such as an Apache HTTP. Server or a PHP
module on a physical or virtual machine (VM). Since
the nature of these artifacts is relatively fine-grained,
specifying low-level management tasks that need to be
performed, we refer to these artifacts as management
operations. They are typically designed in a way to
perform a configurable “atomic” management action
such as installing an Apache HTTP Server or adding a
new user account to an application. These operations
focus on the deployment of application components as
well as their management at runtime such as changing
the configuration of a particular component:

Management Operations automate management
actions that are considered “atomic™, i.e., it does not
make sense to split them up further to achieve a certain
low-level management goal.

=3 Invocation

Scale-out Application
(Management Plan)

[0 [

(Management Plan) (Management Plan)

A AN
(Management Operations) J (Management Operations) J

Figure 2: Plans orchestrate plans and operations.

[ Scale-out Component X

[ Scale-out Component Y

A particular management operation may, for in-
stance, represent a script performing a particular man-
agement action on a VM. However, it could also be an
invocation of a service or an API offered by a Cloud
provider, for instance, to provision new resources such
as VMs. In order to enable the orchestration of several
management operations, for instance, to deploy a com-
plete application topology, more coarse-grained plans
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are required. We refer to these plans as management
plans:

Management Plans control the invocation of man-
agement operations and other management plans.
They specify the proper ordering of the invocations
as well as handling the input and output of each invo-
cation.

As mentioned in the definition before, plans may
also be used to combine existing plans and operations,
so plans can be positioned on different levels as shown
in 2. As an example, a scalable application typically
consists of several components that are deployed in
a distributed manner. In order to scale such an appli-
cation in or out, some of the components need to be
scaled according to the current workload. There could
be amanagement plan for each component that realizes
its scale-out. A plan on this level (e.g., implemented
as a Ruby script) may invoke operations (e.g., Chef
recipes) to reconfigure deployed instances that belong
to this particular component of the application as well
as operations to create and configure new instances to
enable the scale-out. Moreover, an overarching man-
agement plan (e.g., realized as a workflow) could be
implemented to invoke individual management plans
for each component involved in the scale-out process.
Finally, management plans enable multi-cloud manage-
ment scenarios: a particular plan may invoke different
operations for resources distributed across different
Cloud providers such as installing a database on a VM
at provider A and installing an application server on a
VM at provider B. Furthermore, such a management
plan can use APIs and services (management opera-
tions) exposed by different providers to provision new
resources such as storage or a VM.

Actually, management plans are very similar to
workflows and business processes. (Binz et al., 2012)
describe how to use existing workflow technology and
standards such as the Business Process Model and
Notation (BPMN) (OMG, 2011) and the Business Pro-
cess Execution Language (BPEL) (OASIS, 2007) to
implement and execute management plans. The recur-
sive character of management plans, i.e., orchestrating
existing management plans by another management
plan, is similar to how BPEL deals with Web services:
a BPEL workflow is not limited to invoking existing
Web services. It can also be exposed as a new Web
service that can then be invoked by another BPEL
workflow, possibly as subprocess (Kopp et al., 2010).
The distinction of management logic in plans and oper-
ations is similar to how workflows are typically distin-
guished: low-level workflows (similar to operations)
are often referred to as micro flows (Manolescu and
Johnson, 2001) that can be orchestrated by “real” work-
flows (similar to plans).
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By implementing management plans as workflows
based on established standards such as BPMN or
BPEL, the plans’ portability is improved. Existing
general-purpose workflow engines can be used to ex-
ecute these plans. Moreover, the plans inherit the
properties of workflows such as recoverability and
compensation as discussed by (Binz et al., 2012).

To enable the portability of management oper-
ations, domain-specific languages (DSLs) such as
the Ruby-based DSL used by the Chef community
(Glnther et al., 2010) can be used. These languages
provide platform-independent abstractions for typical
low-level management and deployment actions such
as installing a particular software package, writing a
configuration file, or setting file permissions.

Again similar to workflows, there are different fla-
vors of plans and operations: management logic can
be implemented in an imperative or in a declarative
manner. Whereas a declarative implementation only
specifies what actions have to be performed, an imper-
ative implementation additionally describes how these
actions need to be performed. As an example, a declar-
ative management operation may define a set of soft-
ware packages that need to be installed. The imperative
variant would further define how to install these pack-
ages. Imperative management plans based on work-
flows can be realized using BPMN or BPEL. However,
there are also declarative workflow languages (Pesic
and van der Aalst, 2006) available that could be used
to implement declarative management plans. For man-
agement operations, the very same distinction exists:
some of the DevOps tools such as Puppet provide a
declarative domain-specific language, whereas Chef
recipes, for instance, can be implemented using both
a declarative (Ruby-based domain-specific language)
and an imperative approach (plain Ruby). Further-
more, Unix shell scripts as for instance used by several
Juju charms are a typical example for imperative man-
agement operations because their logic encapsulates
several system commands that exactly define what
action to perform and how to perform this action. Con-
ceptually, there is no limitation to combining plans and
operations of different flavors. As a result, an impera-
tive management plan could invoke several declarative
plans and operations or vice versa.

In the following section we present concepts for
a standards-based approach to tackle the problems
outlined in 2. Furthermore, we come up with an ar-
chitecture and a prototype that realizes these concepts
based on TOSCA.

TOSCA

5 UNIFIED INVOCATION
INTERFACE FOR PLANS

As outlined in 2 it is difficult to combine different
management operations such as Chef recipes, Unix
shell scripts, or certain provider APIs because each
of them has individual invocation mechanisms. To
address this issue the goals of our concepts presented
in this section are threefold:

1. Creating management plans has to be as simple
as defining the flow logic (e.g., a sequence) of
operations of particular nodes or relationships in
a TOSCA topology model. The technical details
of invoking a particular operation are completely
hidden to such a management plan.

2. The number of implementation artifacts (1As) cre-
ated for a CSAR should be reduced as much as
possible. As an example, the CSAR should not de-
liver an |A that implements the execution of scripts
of a certain kind, because this logic does not im-
mediately belong to the application’s management
logic and thus has to be provided by other means.

3. Different operations in a topology model can be
implemented using different kinds of 1As such as
Chef recipes, Unix shell scripts, or Juju charms.
However, there should not be any dependency on
additional IAs (e.g., an IA exposed as Web service
to execute a Chef recipe) to enable the execution
and orchestration of such operations.

All these goals enable separation of concerns, so
that (i) a management plan focuses on the logic of
combining operations properly, (ii) a CSAR contains
artifacts and plans only related to the application it
specifies, and (iii) different kinds of IAs can be used
to implement a particular operation without changing
higher-level management plans.

To achieve these goals a unified invocation inter-
face is required that can be used by plans to invoke op-
erations without knowing what kind of 1A or technol-
ogy is used in the background. The unified invocation
interface is implemented based on OpenTOSCA (Binz
et al., 2013), an open source TOSCA runtime environ-
ment. OpenTOSCA is one of the core components of
an end-to-end toolchain to create and process TOSCA
models. First, we outline how OpenTOSCA deals with
plans, operations, and their invocation without such an
interface. Then, we describe how we improved Open-
TOSCA addressing the issues we discussed before.
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OpenTOSCA Runtime Environment

ﬁ Cloud Provider A Management 1A

----------- . Apache Server Install. Script 1A

¥ PHP Module Install. Script 1A
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Cloud Provider A
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== CSAR Import —>» API/Service Call

==» Execution via SSH Connection

Cloud Provider B

Figure 3: Original architecture without a unified invocation interface for plans.

5.1 Original Architecture of
OpenTOSCA

3 shows a simplified overview of the architecture of
OpenTOSCA. It further outlines the process of cre-
ating an instance of a particular application topology
specified by a CSAR as it is currently implemented
without the issues in mind we mentioned before. The
initial step is to import a CSAR to the runtime environ-
ment, so that new instances can be created based on the
model described in the CSAR. In addition to the actual
topology model, the CSAR further contains all con-
figuration and management plans as IAs and TOSCA
management plans (Binz et al., 2012). We assume that
each CSAR contains an overarching build plan speci-
fying which operations of nodes and relationships in
the topology have to be invoked in which order. This
plan is executed by the OpenTOSCA runtime environ-
ment to build a new instance of the topology described
in the model.

When the plan invokes a particular operation the
corresponding implementation artifact (1A) is executed.
Some 1As may be implemented as SOAP-based Web
services in Java (WAR files), others may be imple-
mented as Unix shell scripts or Chef recipes. When
importing a CSAR, all implementation artifacts that
have to run in the local OpenTOSCA management
environment are deployed. For instance, the 1As pro-
viding Web services implemented in Java are hosted
on a local Java servlet container that is part of the
OpenTOSCA runtime environment. We refer to these
IAs as local 1As. OpenTOSCA further supports local
IAs providing RESTful Web services implemented in
Java. All other IAs such as script |As are obviously not
deployed locally because they need to be executed on
the target VMs remotely. Therefore, we refer to these
IAs as remote IAs. Plans are bound to local 1As, so the
corresponding plan and IAs are hard-wired. This fact
decreases the portability and reusability of plans.

The sample plan outlined in 3 depicts several man-
agement operations that are performed in a multi-cloud
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management scenario. These represent a subset of
operations required to create a new instance of the
SugarCRM application topology described in 3. (i)
The plan uses the local Cloud Provider A Management
IA to interact with the API of provider A. The same
applies to the Cloud Provider B Management IA for
provider B. However, the invocation interfaces differ
(SOAP+HTTP vs. REST+HTTP). Consequently, the
plan needs to be aware of the interfaces’ idiosyncrasies
in terms of invocation, passing input data, and receiv-
ing the result of the execution. (ii) Furthermore, the
plan invokes operations implemented by script 1As
(Unix shell scripts) such as the Apache Server Installa-
tion Script IA. Since these scripts need to be executed
remotely on a target VM at the provider, there are two
options to deal with remote execution: the plan itself
could implement the management logic for copying
the scripts to the target machine using SSH, setting in-
put and environment variables accordingly, performing
the execution, and retrieving its output. Alternatively,
a local wrapper 1A such as an SSH Unix Shell Script
Invoker IA could be implemented and packaged with a
CSAR. This IA would expose the management logic
for handling the execution of a certain type of script
(Unix shell scripts) as Web service to be used by the
plan. The second option is typically necessary in case
the plan is implemented as workflow, e.g., based on
BPEL, because such workflows cannot establish SSH
connections without proprietary extensions.

Both options for executing remote IAs such as
scripts pollute plans and CSARs with management
logic that does not belong to the application’s manage-
ment logic and should therefore be provided by the
management environment. In this case, such manage-
ment logic can be reused by different CSARs. Fur-
thermore, plans need to deal with different invoca-
tion mechanisms such as SOAP+HTTP, REST+HTTP,
and SSH-based script execution. Thus, plans can get
complex even if the application topology is relatively
simple.



Unified Invocation of Scripts and Services for Provisioning, Deployment, and Management of Cloud Applications Based on

TOSCA

SOAP+HTTP

Operation
CSAR 1 Invoker
(topology ..
& plans) Manager

OpenTOSCA Runtime Environment

¥ Cloud Provider A Mgmt. IA

SSH
= !
s JJ Apache Install. Script 1A

Script Plugin
REST Plugin

REST+HTTP

SSH
I PHP Mod. Install. Script 1A

%% Cloud Provider B Mgmt. IA

Cloud Provider A

Cloud Provider B

== CSAR Import —>» API/Service Call

==» Execution via SSH Connection

Figure 4: Improved architecture providing a unified invocation interface for plans.

5.2 Improved Architecture with Unified
Invocation Interface

Based on the state of OpenTOSCA without a unified
invocation interface presented before, 4 outlines how
we improved OpenTOSCA'’s architecture to provide
a unified invocation interface to plans. Thus, we im-
plemented an additional component, namely the Op-
eration Invoker acting as a bus in the sense of a ser-
vice bus (Chappell, 2004). This component provides
a unified interface to plans to invoke operations. In
contrast to the original architecture outlined in 3, the
plan does only communicate with the single unified
interface of the Operation Invoker. Technically, the
unified interface is implemented as SOAP-based Web
service. However, it could alternatively or additionally
make the interface accessible through a RESTful Web
service or any other communication protocol.

The unified interface enables loose coupling be-
tween plans and 1As. When a particular operation is
called through the Operation Invoker, it checks what
kind of IA is available to execute the operation. Then,
it checks whether there is a plugin registered that can
execute |As of the given type (e.g., an IA of type SOAP
or of type REST). In case there is a corresponding plu-
gin, this plugin gets invoked, which itself invokes the
corresponding IA. The Operation Invoker is extensible
by adding plugins to it enabling OpenTOSCA to pro-
cess any kind of IA. These plugins are implemented
using OSGi*?.

(Leitner et al., 2009) and (De Antonellis et al.,
2006) present solutions similar to the Operation In-
voker in order to dynamically invoke different kinds of
Web services. However, these solutions are limited to
service invocation and do not consider the execution of
arbitrary executables such as scripts on a VM. In case
of deploying and managing Cloud applications, ser-
vice invocations do typically only cover provisioning
tasks, e.g., creating a new VM. The actions to install
and configure application components on the VM are

120sGi: http://www.osgi.org

typically implemented as scripts. We discussed this
fact in 2, especially in the context of the tools such as
Chef or Puppet originating in the DevOps community.
Thus, it is essential for the Operation Invoker and the
unified invocation interface that it provides a means
to manage and monitor the execution of scripts. To be
able to easily combine different kinds of scripts such
as Chef recipes or Unix shell scripts the Operation
Invoker has to deal with their individual invocation
mechanisms and their way of handling input and out-
put.

We decided to create the Script Plugin to enable
the Operation Invoker to deal with IAs that are im-
plemented as scripts. However, the actual logic for
dealing with the idiosyncrasies of different types of
scripts is realized by a separate reusable component,
namely the Script Manager, which is used by the Op-
eration Invoker’s Script Plugin. When a plan invokes
an operation that is implemented as a script, the Ser-
vice Invoker calls the Script Manager and passes the
references to the script files, some meta information
such as the type of the script, and the context such as
the properties of the node of which the particular op-
eration belongs to. The following XML listing shows
an example for a message that is created by the Script
Plugin when a plan invokes the install operation of the
SugarCRM App node:

1 <Definitions ...

2 targetNamespace="http://www.opentosca.org/script"
3 xmIns="http://.../tosca"

4 xmlIns:toscaBase="http://.../toscaBaseTypes"
5 xmlns:s="http://www.opentosca.org/script'>
6

7

8

9

<ArtifactTemplate ...
<Properties>
<toscaBase:ScriptArtifactProperties ...>
10 <ScriptLanguage>sh</ScriptLanguage>
11 <PrimaryScript>scripts/install.sh</PrimaryScript>
12 </toscaBase:ScriptArtifactProperties>
13 </Properties>
14 <ArtifactReferences>
15 <ArtifactReference reference="scripts/install.sh" />
16 </ArtifactReferences>

type=""toscaBase:ScriptArtifact’>
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17 </ArtifactTemplate>

19 <s:ArtifactContext>
20 <!-- OpenTOSCA’s RESTful APl to access CSAR content -->
21  <Files url="http://localhost/.../CSARs/SugarCRM/" />

23  <Operation>

24 <InputParameter name="licenseKey" type="string">
25 DUMMY_KEY

26 </InputParameter>

27 <OutputParameter name="stdout™ type="string" />
28  </Operation>

30 <Node>
31 <I-- properties of SugarCRM App node -->
32 <NodeProperties nodeTypeName="SugarCRMApp'>

33 <I-- admin password, app settings, etc. -->
34 </NodeProperties>

35

36 <I1-- properties of server node on which the
37 SugarCRM App node is hosted -->

38 <HostProperties nodeTypeName="UbuntuLinuxServer">
39 <I-- public DNS address, SSH credentials, etc. -->
40 </HostProperties>

41 </Node>

42 </s:ArtifactContext>

43 </Definitions>

This message is then sent to the Script Manager.
First, the script files (line 15) are retrieved from Open-
TOSCA's RESTful API endpoint (line 21). Second, the
Script Manager establishes, for instance, an SSH con-
nection to copy the script files to the target VM, to set
the corresponding environment variables, to execute
the scripts, and to retrieve the result of the execution.
The Operation Invoker’s Script Plugin uses a RESTful
API provided by the Script Manager to monitor the sta-
tus of the execution and to finally retrieve the output to
pass it back to the plan through the unified invocation
interface. Such a message is structured as shown in
the following XML listing:

1 <body>
2 <status>completed</status>

3 <output>

4 <param>

5 <name>stdout</name>

6 <type>string</type>

7 <value>SugarCRM installed successfully</value>
8 </param>

9 </output>

0

10 </body>

We evaluated our concepts based on the improved
architecture of OpenTOSCA to show that our solution
proposal can be implemented in practice to address the
issues outlined in 2. The following section discusses
the evaluation in more detail.
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6 EVALUATION

Based on the topology of SugarCRM described in 3
we show that the concepts and the improved architec-
ture presented in the previous 5 can be implemented
in practice to address the issues discussed in 2. The
overarching build plan to create new instances of Sug-
arCRM is implemented using BPEL (OASIS, 2007).
The main reason for using standards-based workflow
languages as proposed in TOSCA is to benefit from
the workflows’ advantages such as recoverability and
to reuse existing workflow engines for plan execution.
However, the plan’s implementation does not rely on
any unique feature of BPEL. If certain workflow prop-
erties such as recoverability or compensation are not
required for a particular plan it could also be imple-
mented, for instance, using a scripting language such
as Ruby or Python.

For evaluation purposes we created two CSARs
including a build plan for each of them: (i) the original
one does not use the Operation Invoker at all, so the
build plan directly invokes Web services provided by
local 1As bound to certain operations. The IAs’ imple-
mentation is part of the CSAR. Consequently, a local
wrapper |A was created to copy scripts on VMs and ex-
ecute these scripts because a BPEL plan cannot do this
directly. (ii) The improved CSAR’s build plan invokes
all operations through the Operation Invoker, meaning
there is no direct dependency to any IA. Furthermore,
there is no 1A needed to invoke scripts because this
task is delegated to the Script Manager. By using the
Operation Invoker for each operation invocation cen-
tralized monitoring can be implemented because all
input and output is going through a central component.
1 summarizes the evaluation results showing that (i)
the complexity (measured as the number of XML el-
ements in the BPEL plan) of the improved CSAR’s
build plan is lower, so plan creation gets simplified by
using the Operation Invoker. This is mainly because
many low-level actions such as copying scripts to the
target machine do not appear in the plan. (ii) In con-
trast to the original CSAR the improved one does not
require a special 1A for invoking scripts because the

Table 1: Evaluation Results.

CSARs: Original Improved
Complexity of build plan (num- 563 161

ber of XML elements)

Wrapper A for script invocation  yes no

IAs exchangeable
changing plans

without no yes
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Operation Invoker uses the Script Manager for this
purpose. (iii) 1As can be arbitrarily exchanged in case
of the improved CSAR because the plan only points
to the operations that need to be invoked. Then, the
Operation Invoker deals with the 1As and invokes them
accordingly.

7 RELATED WORK

Invoking Web services dynamically by using some
kind of unified invocation interface was discussed be-
fore (Leitner et al., 2009; De Antonellis et al., 2006).
These approaches do not consider the invocation of
arbitrary management operations such as Chef recipes
or Unix shell scripts. However, their invocation is of
utmost importance in case of creating management
plans because many operations such as installing and
configuring application components are implemented
as scripts. In the field of multi-cloud research there is
related work (Petcu et al., 2011; Moscato et al., 2011,
Sampaio and Mendonga, 2011) proposing concepts
and architectures to talk to different Cloud providers
using a unified API. Only some of them (Liu et al.,
2011) marginally consider the invocation of scripts
on VMs in the target Cloud. Most of the time it is
assumed that application components are bundled and
deployed as virtual image files, e.g., using OVF.

In terms of provisioning resources such as VMs,
libraries (e.g., jclouds!® and fog'*) enable the abstrac-
tion of specific Cloud provider APIs. However, their
functionality is limited to provisioning tasks and they
can only be used in a programmatic manner. Conse-
quently, a standards-based plan (e.g., based on BPEL
or BPMN) cannot use such libraries directly without a
wrapper exposing the libraries’ functionality as Web
services. Beside these libraries, approaches such as
cloud-init'® can be used to run scripts on a VM when
it gets started. This may work for the initial deploy-
ment of application components. However, arbitrary
management operations such as a database backup that
need to be performed later cannot be covered by this
approach.

Some DevOps approaches can also perform pro-
visioning actions. However, they are either bound to
specific Cloud providers such as AWS OpsWorks?®,
or they are mainly used as a command-line tool such
as Chef’s knifel’ and Juju*®. Beside the DevOps tools

Bjclouds: http://jclouds.incubator.apache.org

1fog: http://fog.io

5¢loud-init: http://launchpad.net/cloud-init

16 AWS OpsWorks:http://aws.amazon.com/opsworks
7K nife: http://docs.opscode.com/knife.html

183yju: http://juju.ubuntu.com

TOSCA

such as Chef or Puppet, there is another category of
tools emerging. These are in particular platform-as-a-
service (PaaS) frameworks such as Cloud Foundry'®,
Their goal is to provide an integrated environment,
namely a PaaS environment (Mell and Grance, 2011),
for deploying and running applications and all their
management processes. However, standards such as
TOSCA are not considered there.

8 CONCLUSIONS AND
FUTURE WORK

The unified invocation interface presented in 5 cleanly
decouples overarching management plans (e.g., the
application’s build plan) from their underlying man-
agement operations (e.g., lAs implemented as Chef
recipes and Unix shell scripts). The Script Manager
used to invoke management operations implemented
as scripts can be arbitrarily extended to support the
execution of any kind of scripts. This enables reusing
existing management operations published by the Dev-
Ops community that can be embedded into CSARs to
implement certain operations. Finally, IAs exposing
SOAP-based or RESTful Web services (e.g., to provi-
sion a new VM) can also be invoked by a plan through
the Operation Invoker without binding the plan to a
certain Web service. As a result, management plans fo-
cus on the actual orchestration of different operations
and thus do not have any dependency on particular 1As
or scripts. Our evaluation presented in 6 confirmed
that this approach can be implemented in practice.
Furthermore, the complexity of plans can be notably
decreased.

In terms of future work we aim to extend our pro-
totype in two dimensions: (i) extending the Script
Manager to process a wide range of existing manage-
ment operations (Puppet, Juju, etc.) and (ii) exposing
the Operation Invoker’s unified interface as RESTful
Web service to make it directly usable for scripts im-
plemented in Ruby, Python, etc. This enables the
implementation of plans based on scripting languages
as an alternative to workflows. Provisioning libraries
such as jclouds mentioned in 7 can be wrapped as 1As
to be reused in different CSARs for provisioning tasks.
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