
Evaluating Impact of Cross-platform Frameworks in Energy
Consumption of Mobile Applications

Matteo Ciman and Ombretta Gaggi
Department of Mathematics, University of Padua, Via Trieste 63, 35121 Padua, Italy

Keywords: Mobile Applications Development, Cross-platform Frameworks, Energy Consumption.

Abstract: In this paper we analyze energy consumption of mobile applications using different smartphones sensors, e.g.,
GPS, accelerometer, etc., and features, e.g., acquiring video or audio from the environment. In particular, we
have studied how the use of frameworks for mobile cross-platform development may influence the amount of
required energy for the same operation. We use an hardware and software tool to measure energy consumption
of the same application, using different sensors, when developed natively or using two frameworks, Titanium
and PhoneGap. Our experiments have shown that frameworks have a significant impact on energy consump-
tion which greatly increases compared to an equal native application. Moreover, the amount of consumed
energy is not the same for all frameworks.

1 INTRODUCTION

With the advance of mobile technologies, modern
mobile devices are equipped with an ample set of
sensors, like GPS, accelerometer, light sensor, etc.
The presence of these sensors allows the implementa-
tion of more and more attractive applications, which
can analyze the surrounding environment to better an-
swer to the user’s need. As an example, applications
can use GPS to provide information about interesting
places near the user, the accelerometer to understand
the current user activity (e. g., if he/she is walking,
riding a bike or using a car), and the light sensor to
adapt the screen brightness.

Acquiring data from all these sensors have a cost
in terms of energy. The software implementing the
acquisition of data from sensors and the adaptation
process must conserve battery power since energy is a
vital resource for mobile computing and smartphones
may operate for days without being recharged.

Battery life is, in fact, a critical performance and
user experience metric on mobile devices. As stated
by Bloom et al. (Bloom et al., 2004), battery life is
one of the most important aspects considered by users
when dealing with mobile devices, and most of the
time users request a longer battery life. For this rea-
son, energy consumption is an extremely important
factor to consider when developing applications for
smartphones. Unfortunately, it is difficult for devel-
opers to measure the energy used by their apps both

before and after its implementation.
In this paper, we analyze energy consumption of

mobile applications which acquire data using differ-
ent smartphones sensors, e.g., GPS, accelerometer,
etc., and features, e.g., acquiring video or audio from
the environment. We compare the request in terms of
power consumption of different sensors, with differ-
ent samples frequency. We use the Monsoon Power
Monitor (Monsoon Solutions Inc., 2013) during our
experiments to reduce the impact of external events.
We must note here that this tool requires to have direct
access to the battery, therefore cannot be used with
iOS devices without opening them.

Moreover, we have studied how the use of frame-
works for cross-platform development may influence
the amount of required energy for the same opera-
tions. Our experiments have shown that frameworks
have a significant impact on the total amount of con-
sumed energy, since an application developed using
a cross-platform framework for mobile development
can consume up to 60% more energy than an equal
native application, which means, a strong reduction
in terms of battery life. Moreover, the amount of con-
sumed energy is not the same for all frameworks. This
means that power consumption can be one of the fac-
tors to be considered in the choice between native im-
plementation and using a framework, or in the choice
between two different frameworks.

The paper is organized as follows: related works
are discussed in Section 2. Section 3 describes the

423Ciman M. and Gaggi O..
Evaluating Impact of Cross-platform Frameworks in Energy Consumption of Mobile Applications.
DOI: 10.5220/0004857604230431
In Proceedings of the 10th International Conference on Web Information Systems and Technologies (WEBIST-2014), pages 423-431
ISBN: 978-989-758-023-9
Copyright c 2014 SCITEPRESS (Science and Technology Publications, Lda.)



frameworks for cross-platform mobile development
already present in literature. The experiments made
are presented in Section 4. We conclude in Section 5.

2 RELATED WORKS

Other works in literature analyze power consumption
of mobile applications but they usually do not cover
all sensors/features available on smartphones, and do
not consider the use of cross-platform framework for
development of mobile applications.

(Balasubramanian et al., 2009) measure energy
consumption of mobile networking technologies, in
particular 3G, GSM and WiFi. They find out that 3G
and GSM incur in tail energy overhead since they re-
main in high power states also when the transfer is
complete. They developed a model for energy con-
sumed by networking activity and an efficient proto-
col that reduces energy consumption of common mo-
bile applications.

(Thompson et al., 2011) propose a model-driven
methodology to emulate the power consumption of
smartphone application architectures. They develop
SPOT, System Power Optimization Tool, a tool that
automates code generation for power consumption
emulation and simplifies analysis. The tool is very
useful since it allows to estimate energy consumption
of potential mobile architecture, therefore before its
implementation. This is very important since changes
after the development can be very expensive. More-
over the tool is able to identify which hardware com-
ponents draw significantly more power than others
(e.g, GPS).

(Mittal et al., 2012) propose an energy emulation
tool that allows to estimate the energy use for mo-
bile applications without deploying the application on
a smartphone. The tool considers the network char-
acteristics and the processing speed. They define a
power model describing different hardware compo-
nents and evaluate the tool through comparison with
real device energy measurements.

PowerScope (Flinn and Satyanarayanan, 1999a;
Flinn and Satyanarayanan, 1999b) is a tool to mea-
sure energy consumption of mobile applications. The
tool calculates energy consumption for each program-
ming structure. The approach combines hardware in-
strumentation to measure current level with software
to calculate statistical sampling of system activities.
The authors show how applications can modify their
behavior to preserve energy: when energy is plenty,
the application allows a good user experience, other-
wise it is biased toward energy conservation.

AppScope (Yoon et al., 2012) is an Android-based

energy metering system which estimates, in real-time,
the usage of hardware components at a microscopic
level. AppScope is implemented as a kernel module
and provides an high accuracy, generating a low over-
head. For this reason, the authors also define a power
model and measure energy consumption with external
tools to estimate the introduced error, which is, in the
worst case of about 5.9%.

Eprof (Pathak et al., 2012a), is a fine-grained
energy profiler for mobile apps, which accurately
captures complicated power behavior of smartphone
components in a system-call-driven Finite State Ma-
chine (FSM). Eprof tries to map the power drawn and
energy consumption back to program entities. The
authors analyzed the energy consumption of 21 apps
from Android Market including AngryBirds, Android
Browser, and Facebook, and they found that third
party advertisement modules in free apps could con-
sume up to 65-75% of the total app energy, and track-
ing user data (e.g., location, phone stats) consumes up
to 20-30% of the total energy. Moreover, smartphone
apps spend a major portion of energy in I/O compo-
nents such as 3G, WiFi, and GPS.

Pathak et al. (Pathak et al., 2012b) study the
problem of no-sleep energy bugs, i. e., errors in en-
ergy management resulting in the smartphone com-
ponents staying on for an unnecessarily long period
of time. They develop a static analysis tool to detect,
at compile-time no-sleep bug in Android apps.

In other papers, the authors compare different
framework for cross-platform mobile development
according to a set of features. (Heitkötter et al.,
2013) compare jQuery Mobile (Firtman, 2012), Sen-
cha Touch (Sencha Inc., 2013), The-M-Project (Pana-
coda GmbH., 2013) and Google Web Toolkit com-
bined with mgwt (Kurka, 2013) according to a partic-
ular set of criteria, which includes license and costs,
documentation and support, learning success, user in-
terface elements, etc. They conclude that jQuery Mo-
bile is a good solution for simple applications or as
first attempt in developing mobile apps, while Sencha
Touch is suited for more complex applications.

(Palmieri et al., 2012) evaluate Rhodes (Motorola
Solutions, Inc, 2013), PhoneGap (Apache Software
Foundation, 2013), dragonRAD (Seregon Solutions
Inc., 2013) and MoSync (MoSync Inc., 2013) with
particular attention to the programming environment
and the APIs they provide. The authors provide an
analysis of the architecture of each framework and
they conclude highlighting Rhodes over other frame-
works, since this is the only one which supports both
MVC framework and web-based services.

(Ciman et al., 2014) evaluate different cross-
platform frameworks, i.e. Phonegap, Titanium,

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

424



jQuery Mobile and MoSync, with the focus on ap-
plications with animations, i.e. games. Besides the
standard evaluation parameters like IDE, debug tools,
programming complexity, etc., they evaluate more
mobile and games-related aspects like APIs for ani-
mations, mobile devices supported, support for Na-
tive User Interface, performances etc. They conclude
that, according to the actual state of art of the frame-
works, Titanium is the best framework, since it sup-
ports animations and transitions, and its performances
are good even in case of complex applications.

Issues about performances are discussed in (Char-
land and Leroux, 2011). They stated frameworks
based on web technologies experience a decrease in
performances when the applications implement tran-
sition effects, effects during scrolling, animations,
etc., but this problem affects essentially games, while
the loss in performances are unnoticeable in business
application, i. e., applications which support business
tasks.

All the addressed works make a critical analysis
of the chosen frameworks according to criteria which
never include power consumption. In some case they
include performances which are considered in terms
of user experience. In this paper we want to study
how the use of a cross-platform framework for mobile
device may affect the energy consumption of the final
application with respect to native development.

3 FRAMEWORKS FOR
CROSS-PLATFORM MOBILE
DEVELOPMENT

According to Raj and Tolety (Raj and Tolety, 2012),
frameworks for cross-platform development can be
divided into four approaches: web, hybrid, inter-
preted and cross compiled. They highlight strength
and weakness of each approach, concluding that a
preferred solution for each kind of application does
not exist, but the decision about which framework to
use should be made considering the features of the
application to be developed. To help the developers
in this decision, they provide a matrix which shows
which are the best choices to develop a specific fea-
ture. This classification can help to correctly interpret
the results of our tests.

The Web Approach (WA) allows the program-
mer to develop a web application using HTML, CSS
and Javascript. Given the new emerging features of
HTML5 and CSS3, these technologies allow the cre-
ation of rich and complex applications, therefore their
use cannot be considered a limitation. The applica-

Figure 1: Architecture of an application using the WA.

tion can be accessed through a mobile device using
only its integrated browser, connecting to the right
public internet address. Figure 1 shows this approach.
In this way, a full devices support is guaranteed (lim-
ited only by the maturity of the native browser respect
to the standard technologies specifications), but the
problems arise when the application needs to access
to the smartphone’s sensors, because this feature is
not provided for web applications. Moreover, the user
does not interact with a mobile application, but he/she
must run the browser to access a web page containing
the web application. An example of framework using
the WA is jQuery Mobile (Firtman, 2013).

The Hybrid Approach (HA) is a middle way be-
tween native and web approach. In this case, the ap-
plication operates in two different ways. It uses the
webkit rendering engine to display controls, buttons
and animations. The webkit engine is therefore re-
sponsible to draw and manage user interface objects.
On the other site, the framework and its APIs provide
access to device features and use them to increase
the user experience. In this case, the application will
be distributed and installed and appears on the user
device as native mobile applications, but the perfor-
mances are often lower than native applications be-
cause its execution requires to run the browser render-
ing engine. An example of this kind of frameworks is
PhoneGap, also known as Apache Cordova (Apache
Software Foundation, 2013), and the architecture of
the final application is shown in Figure 2.

With the Interpreted Approach (InA), the devel-
oper has the possibility to write the code of the ap-
plication using a language which is different from
languages natively supported by the different plat-
forms. An example can be Javascript: developers who
already knows this language are simply required to
learn how to use the APIs provided by the framework.
When the application is installed on the device, the fi-
nal code contains also a dedicated interpreter which is
used to execute the non-native code. Even in this case,
the developer has access to the device features (how

Evaluating�Impact�of�Cross-platform�Frameworks�in�Energy�Consumption�of�Mobile�Applications

425



Figure 2: Hybrid approach application architecture.

many and which features depend on the chosen frame-
work) through an abstraction layer. This approach al-
lows the developer to design a final user interface that
is identical to the native user interface without any
additional line of code. This approach can reach an
high level of reusable code, but can reduce a little the
performances due to the interpretation step. Titanium
(Appcelerator Inc., 2013a) is an example of this kind
of framework and Figure 3 shows the architecture of
the framework.

Figure 3: Interpreted Approach architecture.

The last approach, the Cross Compiled Approach
(CCA), lets the developer write only one application
using a common programming language, e. g. C#.
Frameworks which follow this approach generate, af-
ter compilation, different native applications for dif-
ferent mobile platforms. The final application uses
native language, therefore can be considered a native
mobile application to all intents and purposes. There-
fore, this approach lets the programmer have full ac-
cess to all the features provided by smartphones and
the performances can be considered similar (even if
not equal) to the native approach for simple applica-
tion. In fact some tests have shown that for complex
applications the native solution is better since the gen-
erated code gives worst performances of the resulting
application, compared to code written by a developer.
An example of this framework is Mono (Monologue
Inc., 2013).

4 EXPERIMENTS

Our goal is to provide objective information about en-
ergy consumption of the most common sensors with
which smartphones are usually equipped. To per-
form the best measure of energy consumption, it is
important to avoid influences from external factors.
A simple possibility is to run a background appli-
cation that measures battery power at fixed intervals
of time. This solution is adopted by some of the re-
lated works discussed in Section 2, but clearly intro-
duces an overhead and must consider the possibility
that other external events like call, messages, network
problems and connectivity may influence energy con-
sumption. Moreover these external events are almost
unpredictable and unlikely reproducible, thus leading
to unequal test sets.

4.1 Study Setup

For the reason mentioned before, during our experi-
ments we use the Monsoon Power Monitor (Monsoon
Solutions Inc., 2013). The hardware device comes
with a software tool, the Power Tool, which gives the
possibility to analyze data of energy consumption of
any device that uses a single lithium battery. The in-
formation retrieved are energy consumption, average
power and current, expected battery life, etc. These
data are extremely important because can help the de-
veloper to understand which tasks use most of the en-
ergy of the battery, for how much time, etc. Moreover,
it helps to analyze and improve the application code
according to its power consumption. Using data ac-
quired by Power Monitor, it is possible to understand
if and where some energy can be saved increasing bat-
tery life, an extremely important aspect when working
with mobile devices. Figure 4 shows the hardware
setup of the system.

Our goal is to compare energy consumption of
applications developed in a native way or using a

Figure 4: Hardware setup of the system.

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

426



cross-platform framework, and to compare perfor-
mances, in terms of energy consumption, among dif-
ferent frameworks. The application used for our anal-
ysis allows to choose between several sensors and the
frequency with which they retrieve data and update
the user interface showing the retrieved data. This
application can be considered a sort of lower bound
for applications behavior in terms of energy consump-
tion, because usually applications that collect data
from sensors, perform several computation before up-
dating the user interface.

As explained before, to use the Power Monitor
tool it is necessary to have direct access to the bat-
tery of the smartphone, in order to be able to connect
the entire system and to measure the consumed en-
ergy. For this reason, we made our comparison using
an Android device with removable battery, because
the iOS devices do not allow to have direct access to
the battery in a safe way.

To compare energy consumption of mobile cross-
platform frameworks, we select Titanium and Phone-
Gap. As already explained in Section 3, these two
frameworks belong to two different categories. Ti-
tanium belongs to the interpreted frameworks, while
PhoneGap follows an hybrid approach. In this way,
first of all we can compare the native approach and its
consumption with two different cross-platform frame-
works. Then, we can even compare two different
frameworks, getting information about the less expen-
sive, in terms of power consumption, information that
can influence the framework choice when considering
mobile application development.

Our test smartphone is a Samsung Galaxy i9250.
The (theoretical) capacity of the battery is 1750mAh.
Even if this smartphone is not an up-to-date device,
what is important for us is if the usage of a cross-
platform framework has negative effects on energy
consumption, and in which measure, for applications
that use smartphone’s sensors. With this question in
mind, is easy to see that what we want to know, af-
ter our experiments, is how much (in percentage) the
energy consumption increases. Even if characteris-
tics and performances of sensors may vary between
different smartphones, our tests are performed on the
same device and comparisons are made on the per-
centage increase of energy consumption, to limit the
influence of the chosen device on our final results. We
must note here, that many devices, although different
in terms of brand and model, share the same hardware
components for sensors.

To make our tests, we used three different appli-
cations: a native mobile application, one built with
PhoneGap and another one used to test the Titanium
framework. We developed from scratch the applica-

tion used to test the native solution and the Phonegap
framework. These applications let the user chooses
the sensor to test and the sampling frequency. In-
stead, we tested the Titanium framework using the
Kitchen Sink app provided by Appcelerator (Appcel-
erator Inc., 2013b), a sample application built to show
the different APIs and features provided by the frame-
work.

All the applications retrieve data from the ac-
celerometer, the compass and the GPS tests and dis-
play this information simply as a numerical value with
a label. To test the microphone API, we record audio
from the microphone and save it on the device as a
3GPP file. To test energy consumption due to the use
for the camera, all the developed applications show
the images captured from the camera for a predefined
time interval, and take a picture at its end. Each test
lasted two minutes. Previous experiments show that,
after an initial interval, the duration of a test does not
influence the final value of the expected battery life,
and we chose this amount of time to get a stable final
value from the system. The version of the Android
API was 4.2.2, PhoneGap was version 3.0.0 while Ti-
tanium SDK was version 3.2.

4.2 Results

In this section we report the final results of our anal-
ysis. We analyze the most common sensors which
can be used through the APIs provided by at least
one the two analyzed frameworks. For each sensor,
our application (either native or developed using a
cross-platform framework) starts to acquire data com-
ing from the selected sensor and display them on the
user screen.

We made our experiments keeping the screen on,
since this situation is much more adherent to reality
where it’s very difficult that an user interact with an
application keeping the screen off: consider, as an ex-
ample, Google Maps, which uses the GPS sensor to
capture the position of the user and to give the correct
directions.

Measures are repeated several times, in order to
get a mean final value of each test. The main value
we are interested in is the consumed energy, which
shows how much energy is used by that particular
task during this two minutes test. The smartphone
was in flight mode (thus unable to receive any phone
call or message that could arbitrarily increase energy
consumption) and with WiFi and Bluetooth connec-
tivity are turned off.

To get an idea about energy consumption of an ap-
plication, we need a base value to compare with. For
our purpose, we decided to measure the consumed

Evaluating�Impact�of�Cross-platform�Frameworks�in�Energy�Consumption�of�Mobile�Applications

427



energy when the smartphone is turned on, with the
screen on and without any running applications. This
is the base value for our analysis. Clearly, it is quite
impossible to measure the same value from another
smartphone, but, since our discussion does not deal
with absolute values of energy consumption, but with
the increment in energy consumption in term of per-
centage, this initial value is important for our com-
putation. Using the test smartphone, the consumed
energy in two minutes is 6047,31 µAh. Moreover, the
analysis of the increment in energy consumption re-
ported in percentage helps to give results which are
not tightly related to the chosen hardware.

Table 1 shows the results of our experiments, i.
e., it compares how the consumed energy increases
when the smartphone uses its sensors with a native
application, or with applications developed using the
two frameworks, PhoneGap and Titanium. We must
note here that native development provides full access
to all the available sensors of the device, while the
number and type of supported sensors may vary be-
tween different cross-platform frameworks, depend-
ing on the state of the art of the frameworks them-
selves. For example, Titanium provides access to the
microphone and record audio data only for iOS de-
vices and not for Android devices, while PhoneGap
supports this features for iOS, Android and Windows
Phone.

The columns D of Table 1 show how the con-
sumed energy increases compared to the consumed
energy of our base value, i.e. the smartphone with the
screen on, without running applications. This value
gives an idea of how much more expensive is to per-
form a particular task among our initial idle state.

As it is easy to see, the differences between power
consumed by the native app and the solutions devel-
oped with a framework for cross-platform develop-
ment is very high.

Let us begin the analysis with the comparison
between applications which do not capture any data
from sensors. The purpose of this test is essentially to
investigate if the adoption of a cross-platform frame-
work instead of a native development requires more
energy consumption simply to “show” the applica-
tion without any computation behind. The results are
shown in the first row of Table 1 denoted with the
label “Only App”. As we can see, the energy con-
sumption increases of about 7% for PhoneGap and
slight more than 2% for Titanium, i. e., the adoption
of a cross-platform framework produces, basically, a
little more expensive applications in terms of power
consumption, and this increment is not equal for all
frameworks.

Considering applications that use smartphones

sensors to retrieve data, we can measure differences
only for sensors that are supported at least from one of
the two frameworks. The measurements made show
that the usage of the accelerometer requires about
60% more energy using the PhoneGap application in-
stead of the native one. This is an extremely high
value, which means that the usage of this sensor in a
cross-platform application is really a battery consum-
ing task that can decrease user experience. Therefore,
if the application needs to retrieve data from the ac-
celerometer it is necessary to consider if it would be
better to develop different, more performing, native
applications for each platform.

The result reported for the Titanium framework
needs a particular attention. Data reported on the ta-
ble could lead to the wrong conclusion that it cost less
energy to retrieve data with the Titanium framework
in respect to the PhoneGap solution. The reason for
this lower consumption is that the update frequency
for the native (and the PhoneGap) application is about
a sample every 64ms, while the Titanium frequency is
about a sample every 600ms. To read data and update
the user interface with a lower frequency (about 10
times lower) clearly reduces the amount of required
energy. To be able to compare the performances of the
Titanium framework, we used the PhoneGap applica-
tion to acquire data at the right frequency (600ms) and
we compared the final results (see Table 2). What we
got is that, with the same update frequency, the delta
of PhoneGap is about +40%, while for Titanium is
about +98%. This means that, if compared together,
the PhoneGap framework works better than the Tita-
nium framework (about 60%).

All the cross-platform frameworks perform worst
than the native solution also for data acquisition from
compass and GPS: about 45% more power for acqui-
sition from compass and about 10% more power for
acquisition from the GPS using the PhoneGap frame-
work; a little less than 5% more power for acquisition
of data from GPS using Titanium, compass is not sup-
ported by Titanium yet.

The only sensor for which the difference in power
consumption is very low is the use of camera to take
pictures. In this case, the amount for energy con-
sumed with a native application and with an applica-
tion developed with a cross-platform framework dif-
fers of 8% - 12%, which is very low if we consider the
total amount of energy required to use the camera (see
the “Camera” row of Table 1). This behavior can be
explained because in this case the cross-platform ap-
plication makes only one call to the system API, and
waits from the system the result (an image) and so the
difference between the native and the cross-platform
solution is really low.

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

428



Table 1: Energy consumption comparison between native applications and apps developed with a framework for cross-
platform development. Note that data marked with (�) use a different updating frequency.

Native PhoneGap Titanium
Sensor Consumed D (%) Consumed D (%) Consumed D (%)

Energy (µAh) Energy (µAh) Energy (µAh)
Only App 7705,54 +27,42% 8130,85 +34,45% 7860,97 +29,99%
Accelerometer 9179,99 +51,80% 12849,82 +112,49% 11972,16� +97,97%�

Compass 9489,85 +56,93% 12124,6 +100,50% - -
Microphone (Rec) 8120,92 +34,29% 8404,71 +38,98% - -
GPS 9301,48 +53,81% 9947,60 +64,50% 9577,27 +58,37%
Camera 21857,38 +261,44% 22347,52 +269,54% 22576,45 +273,33%

A similar situation takes place for data acquired
from the microphone (although test data are not avail-
able for the Titanium framework) and from the GPS.
In the last case the difference, in terms of energy con-
sumption, ranges between 5 and 11%.

Comparing the frameworks PhoneGap and Tita-
nium, the overhead of energy consumed introduced
by the two frameworks is particularly different when
the user interface has to be updated frequently. This
difference comes from the nature of the two frame-
works. As already mentioned in Section 3, PhoneGap
belongs to the hybrid family, while Titanium to the
interpreted frameworks. This means that if we com-
pare the two different platforms in terms of perfor-
mances and energy consumption, the hybrid applica-
tion is better, since the consumed energy by this appli-
cation is lower, meaning that the overhead introduced
is lower.

Another possibility to compare different develop-
ment frameworks, and in particular how sensors us-
age affects application performances and energy con-
sumption, would be to test these applications without
updating the values of the retrieved information on
the screen or turning off the screen while perform-
ing operations. In this case, the differences between
the native solution and the cross-platform solutions
when acquiring data from accelerometer or compass
are much more lower, about 20%. Unfortunately, this
is only a theoretical result. In fact, every application
that retrieves data from sensors does not use this raw
data immediately, but it usually elaborates the data
and updates the user interface accordingly. Therefore,
to use this theoretical results to promote the use of
cross-platform framework would not adhere to the re-
ality because we would not consider two extremely
important parts of the applications, i. e., data elabora-
tion and user interface management.

If we compare together the same cross-platform
application, what we can note is that the difference in
terms of consumed energy to show or not to show data
from sensors is about 80% for both the framework.
This essentially means that, without concern on the
chosen cross-platform framework, the most expensive

task for it is to update the User Interface.
Unlike Titanium, PhoneGap allows the developer

to decide the frequency to retrieve data from sensors.
This is an extremely important option, because lets
the developer to define the right update frequency de-
pending on the target application and the needs of
data. This possibility is available for both the ac-
celerometer and the compass sensor. In this cases,
we made several test at predefined update frequen-
cies (60ms, 150ms, 300ms, 600ms) to see how, and
in which measure, changing the update frequency af-
fects energy consumption. The results are shown in
Table 2. As it is easy to see, if the update frequency
decreases, the consumed energy decreases, with a dif-
ference that can reach 70% between 60ms and 600ms
update frequency. This means that the developer has
to pay extremely attention when developing a cross-
platform application, because if the user experience
do not requires an extremely fast update, it is useful
to reduce the update frequency of sensor data in order
to save energy, and so battery life.

5 CONCLUSION

Due to the diffusion of different smartphones and
tablet devices from different vendors, the cross-
platform development approach, i. e., to develop only
one single application and distribute it to different de-
vices and mobile platforms, is growing and becom-
ing extremely important. This cross-platform devel-
opment incorporates several approaches, i. e., web,
hybrid, interpreted or cross compiled. All these ap-
proaches have several positive and negative aspects,
either from a developer or a user point of view.

Many papers address the problem of how to
choose the best framework for the development of a
particular application, but, to the best of our knowl-
edge, no one considers the power consumption as one
of the key issue to make a correct choice.

In this paper we analyze the influence of the dif-
ferent approaches on energy consumption of mobile

Evaluating�Impact�of�Cross-platform�Frameworks�in�Energy�Consumption�of�Mobile�Applications

429



Table 2: Consumed energy using different sampling frequencies to capture data with PhoneGap.

Consumed Energy increase (%)
Sensor 60ms 150ms 300ms 600ms
Accelerometer +112,49% +70,06% +49,84% +40,25%
Compass +100,50% +75,31% +52,92% +46,62%

devices, in particular for the Hybrid (PhoneGap) and
the Interpreted (Titanium) approach. We compared
the performances of a simple application, built with
a particular framework, that retrieves data from sen-
sors and updates the user interface, to a native appli-
cation with the same behavior, to measure differences
in terms of power consumption. Despite other pre-
vious analysis, we do not use a software to measure
energy consumption since it introduces a not valu-
able overhead; for this reason we used the Monsoon
Power Tool which allows to measure, through hard-
ware links, consumed energy and to understand how
this consumption increases with the two frameworks.

Our comparison shows that, visualization of data
(business applications) perform better on the inter-
preted approach (Titanium), that can be a good so-
lution for simple applications that do not retrieve data
from sensors, e. g., on-line shopping, home banking,
games which do not use accelerometer, etc. More-
over, the two analyzed frameworks, PhoneGap and
Titanium, have very similar performances for Camera
and GPS.

A particular sensor needs specific discussion.
Even if Titanium seems to be the right choice if en-
ergy consumption is a key issue, our experiments
have shown that it fails in case of retrieval of data
from accelerometer for two reasons: the available API
does not allow to impose an update frequency, and
compared to other framework with the same update
frequency it consumes about 60% more energy than
PhoneGap. This result derives from the Interpreted
approach: the necessary interpretation step can be ex-
tremely expensive and lead to more energy consump-
tion. We must note here that this sensor consume a lot
of energy, therefore if the application make a strong
use of the accelerometer, the developer has to con-
sider also the native solution.

The results that we got show that a cross-platform
approach involves an increase in terms of energy con-
sumption that is extremely high, in particular in pres-
ence of an high usage of sensors data and user inter-
face updates. This increase can vary even in order
of about 60%, meaning that it is important to choose
the right framework to preserve the battery duration
and to avoid negatively affecting user experience with
usage of a cross-platform framework during develop-
ment. In fact, several research studies have shown that
energy consumption and battery life are the most im-

portant aspects considered by mobile devices users.
The results provided are clearly related to the state

of art of the framework under examination at the time
of writing. This means that, they can change in the
future according to the improvements of the frame-
works.

As future works, we plan to increase the total
number of analyzed frameworks and to add HTML5
applications in our comparisons, trying to cover all
the different approaches. Moreover, we will try to
follow the development of the different frameworks
in order to reach a complete analysis of the different
sensors provided by the smartphones and their con-
sumption in user applications.

REFERENCES

Apache Software Foundation (2013). Phonegap, http://
phonegap.com/.

Appcelerator Inc. (2013a). Titanium, http://
www.appcelerator.com/platform/titanium-platform/.

Appcelerator Inc. (2013b). Titanium Mobile Kitchen Sink
Demo, https://github.com/appcelerator/KitchenSink.

Balasubramanian, N., Balasubramanian, A., and Venkatara-
mani, A. (2009). Energy consumption in mobile
phones: a measurement study and implications for
network applications. In Proceedings of the 9th ACM
SIGCOMM conference on Internet Measurement Con-
ference, IMC ’09, pages 280–293.

Bloom, L., Eardley, R., Geelhoed, E., Manahan, M., and
Ranganathan, P. (2004). Investigating the relationship
between battery life and user acceptance of dynamic,
energy-aware interfaces on handhelds. In Proceedings
of the International Conference Human Computer In-
teraction with Mobile Devices & Services, pages 13–
24.

Charland, A. and Leroux, B. (2011). Mobile application de-
velopment: web vs. native. Communications of ACM,
54(5):49–53.

Ciman, M., Gaggi, O., and Gonzo, N. (2014). Cross-
platform mobile development: A study on apps with
animations. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing, SAC’14.

Firtman, M. (2012). jQuery Mobile: Up and Running -
Using HTML5 to Design Web Apps for Tablets and
Smartphones. O’Reilly Media.

Firtman, M. (2013). jquery mobile,
http://jquerymobile.com/.

Flinn, J. and Satyanarayanan, M. (1999a). Energy-aware
adaptation for mobile applications. In Proceedings of

WEBIST�2014�-�International�Conference�on�Web�Information�Systems�and�Technologies

430



the seventeenth ACM Symposium on Operating Sys-
tems Principles, SOSP ’99, pages 48–63.

Flinn, J. and Satyanarayanan, M. (1999b). Powerscope: A
tool for profiling the energy usage of mobile applica-
tions. In Proceedings of the Second IEEE Workshop
on Mobile Computer Systems and Applications, WM-
CSA ’99, Washington, DC, USA. IEEE Computer So-
ciety.

Heitkötter, H., Hanschke, S., and Majchrzak, T. (2013).
Evaluating cross-platform development approaches
for mobile applications. In Cordeiro, J. and Krempels,
K.-H., editors, Web Information Systems and Tech-
nologies, volume 140 of Lecture Notes in Business
Information Processing, pages 120–138. Springer
Berlin Heidelberg.

Kurka, D. (2013). mgwt - Making gwt Work with Mobile.
http://www.m-gwt.com/.

Mittal, R., Kansal, A., and Chandra, R. (2012). Empow-
ering developers to estimate app energy consumption.
In Proceedings of the 18th annual International Con-
ference on Mobile Computing and Networking, Mobi-
Com ’12, pages 317–328.

Monologue Inc. (2013). Mono framework, http://www.
mono-project.com/.

Monsoon Solutions Inc. (2013). http://www.msoon.com/
LabEquipment/PowerMonitor/.

MoSync Inc. (2013). MoSync http://www.mosync.com.
Motorola Solutions, Inc (2013). Rhodes

http://www.motorolasolutions.com/us-en/rhomobile+
suite/rhodes.

Palmieri, M., Singh, I., and Cicchetti, A. (2012). Compar-
ison of cross-platform mobile development tools. In
16th International Conference on Intelligence in Next
Generation Networks, ICIN ’12, pages 179–186.

Panacoda GmbH. (2013). The-m-project http://www.the-
m-project.org/.

Pathak, A., Hu, Y. C., and Zhang, M. (2012a). Where is the
energy spent inside my app?: Fine grained energy ac-
counting on smartphones with eprof. In Proceedings
of the 7th ACM European Conference on Computer
Systems, EuroSys ’12, pages 29–42.

Pathak, A., Jindal, A., Hu, Y. C., and Midkiff, S. P. (2012b).
What is keeping my phone awake?: Characterizing
and detecting no-sleep energy bugs in smartphone
apps. In Proceedings of the 10th International Confer-
ence on Mobile Systems, Applications, and Services,
MobiSys ’12, pages 267–280.

Raj, R. and Tolety, S. (2012). A study on approaches to
build cross-platform mobile applications and criteria
to select appropriate approach. In Annual IEEE India
Conference, INDICON ’12, pages 625–629.

Sencha Inc. (2013). Sencha touch, http://www.sencha.
com/products/touch.

Seregon Solutions Inc. (2013). dragonrad http://dragonrad.
com/.

Thompson, C., Schmidt, D. C., Turner, H. A., and White,
J. (2011). Analyzing mobile application software
power consumption via model-driven engineering. In
Benavente-Peces, C. and Filipe, J., editors, PECCS,
pages 101–113. SciTePress.

Yoon, C., Kim, D., Jung, W., Kang, C., and Cha, H. (2012).
Appscope: Application energy metering framework
for android smartphones using kernel activity mon-
itoring. In Proceedings of the 2012 USENIX Con-
ference on Annual Technical Conference, USENIX
ATC’12, pages 36–36, Berkeley, CA, USA. USENIX
Association.

Evaluating�Impact�of�Cross-platform�Frameworks�in�Energy�Consumption�of�Mobile�Applications

431


